A Supplementary Material

A.1 Proofs

Lemma 1. Expected instance transition matrix. Given a set / of n independent instances I ~
UZ", we have that VH; (t < o) compatible with 1,

Eryw, [T (r, s|Heya0)] = Brya, i, 1 [T (r, s|He, a0)) = T(r, s | ag, s0),  Vr,s. (15)

Proof. We observe that

]EI|Ht[TI(7‘,5|Ht,(Lt)] :]Elet[ELlHt [T (, 6|Ht7at)]]’
= ]EI|Ht[ i|Hy, I [5((T s ) (T7 S)|Ht’atvi)]]7
=K, [6((r", 8') = (r,8)|Hy, ar,9)], (16)
= E(pi o0 1, [6((r, 8') = (r, 8)|Hy, ar)],
=T(r,s | a,st),

where the first equality is taken from Equation 9 and we leveraged the construction process of the
transition matrix for the instance 7" and the basic property E[d(z = x¢)] = P(z = o).

O

The following corollary (Corollary 1) states that the expectation over the instances of the instances-
specific probability distribution of future rewards, states and observations for every past history H;
and policy 7 (p((7, 8, 0)¢+1:t4n|Hzt, 7, I)), is the transition distribution of the future rewards, states
and observations of the environment T'((r, s, 0)¢41:¢+n|H¢, 7). This result will be used to prove
Lemma 2.

Corollary 1. Given a set I of n independent instances I ~ US™, a policy m(a | H'), and a time
horizon n, we have that VH; (t < co) compatible with T

]EI|Ht [P((Ty S, 0)t+1:t+n|Ht7 T, I)] = T((T7 S, 0)t+1:t+n|Ht7 7T)7 VT, S,
T((r, 8,0)t41:0-4n | He, 7) =TI 20 (st | Hiw ) )T((r,8,0)erj41 | St4js @rts)- an

Qt:ttn—1

Where (marginalizing over observational variable k in Equation 1 for simplicity) we have
T((r,8,0)t4j+1 | St+jsar+5) =T((7,8)t4j+1 | St4j5145)O(014541 | Qrgjs St4jr1).  (18)

Proof. Following the proof of Lemma 1, we observe that for any sequence of rewards, states and
observations ¥ = Ty 1.44j,5 = S¢4+1:t4j,0 = Ory1:4+;, and any sequence of actions @ = as.44j—1,
the following holds

Enm,[p(7,8,0| Hy,a, 1)) =Eqnu, [Eijm, 1[p(7,5,0 | ;. a,
= Epp, [Eim, 1 [6((F 1,5, 50) = (F 5 )IHt,a i)]l;
= EF'L’§11707 [5((T Sl 02) 7: 5
=T(7,5,6 | a,s;) = I1}Z OlT((

19)

That is, the expectation across instances of the n-step transition of states, rewards, and observations
of the instance transition model matches the underlying model for any sequence of actions.

On the other hand, if we consider a particular policy = we have

]EllHt [p(f, 5,0 | Ht7ﬂ-7I)] = ]EIlHt [f 1_[gz_=10 W(a’t-i-n | Ht+n)p('F» 5,0 | Htvav[)]v
- f]:Elle (at+n | Ht-‘,—n) (7‘75’5 | Htadaj)]v
= an =0 ﬂ-(a’t"rn | Ht+n) ]EI|H,5 [p(,F7 5,0 | Hta(_]'7 I)]7 (20)

f (at+n | Ht—‘r’ll)T(’Fv gv 0 | C_Lv St)v
a
T(r 5,0 | Hy,m).
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On the first equality we marginalize across actions, on the second equality we exchange the integral

and the expectation operator, and on the third we observe that Hﬂ;}) 7(attn | Hetr) is constant w.r.t.
1. The fourth and final equality are derived from equations 19 and 15 respectively.

This shows that the expected (across instance sets) reward, state, and observation transition matrix for
any policy 7 and history H* matches the true model. O

Lemma 2. Unbiased value estimator. Given a set I of n independent instances I ~ UJ", and
policy 7, we have that VH? ({ < oo) compatible with I,

Byyap [V (HP)] = Ve (HY). @1
Proof. We observe that
IE:I|H§ [V‘/TI(H)?)] = I|IE:I°[ A@ [E] 1 fyj 1Rt+)]] (22)

{Rf+1}J _f\f H

By linearity of expectation, we focus on Ry ;,

Enmex|Rirs) = [ Rt+7ZP(I | HY)p(Reyj | 1,7, HY),
Rf+

= [ P(So | HY) f Rt+] EP (I| H))p(Rs+j | Hy,m, 1),
So:+
= f P(So:t | H f Rf+] f ZP(I | Hf) ((R7O:S)t+1:t+j | Htﬂﬂ”»

So:t Riy; Ry
(80014 (23)

= j p(SOZt | Hto) j RtJro((Rv S7O)t+1:t+j|Ht77T)7

So:t (R,5.0);T]
= fp Sf | HO) f RtHT((R,S, O)t+1:t+j|Hz?=Sta7T)»

St (R,S,0)i11

Rf Riyjp(Royj|HY, 70) = ER, ;e x[Ri+j]-

t+3j

Here the second equality comes from marginalizing over Sy.; and that H; = H; @& Sp.¢, then we used
Corollary 1 for the fourth equality. In the fifth equality we observe that the policy only depends on
the observed history, and that the future trajectories depend on current state and the policy. From this
result and the linearity of expectation, we recover the statement of the lemma.

O

Lemma 3. State belief sub-optimality. Given a finite set of instances I ~ Ug?" and a belief function
such that b (HY) = p(i, 7,|H?, I),VHY,

7l = argmax V!(b/(HY)) € argmaxVI(HY). (24)
m(albT (H)) m(alHP)

Moreover, a policy that depends on the generalizeable belief function b( HY) = p(s:|HY) is potentially
sub-optimal for I. Conversely, the policy 7! is potentially sub-optimal for the true value function
Vx(HY):

max  VI(bI(HY)) > max V[I(b(HY)),

m(albl (HP)) " m(alb(HY))

na; Vi(b(H?)) > V, b (H?)).
e Va(b(H?)) > Ve (b1 (H7)

(25)

Proof. Equation 24 is a straightforward application of Lemma 1, since from Equation 9 we observe
that ¢, 7 define the Markov kernel over 7.
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Equation 25 also follows from Lemma 1 since

max VI(I(HP)) = max VI(HP),
w(alb? (Hp)) (b(H?) w(alH?) (It)
max VI (b(HY)),
V() = e (H( >( ! o
max Vi max Vi (HY),
w(alb(H{)) ¢ n(alHp) ¢
> Vo (b (HY)),

A%

where the equalities are obtained from Lemma 1 and the inequalities from set inclusion, {m : H? —
A4} D (s f(HP) — AA}.

O

Lemma 4. Generalization bound on instance learning. For any environment such that |V (H})| <
C/2,YH{,, for any instance set I, belief function b, and policy function 7(b(HY)), we have

I 202
]]}:|V7r @) = V(D) < W X MI(I,mob), 27

with () indicating the value of a recently initialized trajectory before making any observation.

Proof. Instances I are independently sampled, since the value function V! of the model is bounded

between [—%, %] for any policy 7, then V! is C-subGaussian VI, 7. The result follows from
observing Lemma 2 (E;[V,/(-)] = V;(+)) and a direct application of Theorem 1 in [26]. O

15



A.2 Glossary

Table 2: Glossary table

Symbol

Name

Notes

sES
a€e A
reR
0e O

kekK

w
O(o | s,k)

T(Ta s | G, st)

Hy = {ao;t—l,SO:t,OO;t,’fl;t}
Hto = {aO:tflvooztv rl:t}

m(a | s)
A'A

V(")

b: HY — B
H(-)
L AP (SEH 0P REY)

Ti(r,s | az, Hy)

TI(r,s | a, Hy)

Vi (H7)

MI(-,")

Environment state
Agent action
Instantaneous reward
Environment observa-
tion

Observation modality

Initial state distribu-
tion
Observation distribu-
tion
POMDP transition ma-
trix

History

Observable history
Agent policy

Simplex over A ac-
tions

Value function

Belief function
Entropy

Instance
function

trajectory

Episode lengths

Deterministic distribu-
tion

transition matrix of in-
stance ¢

transition matrix of in-
stance set |

value function over in-
stance set |
Mutual information

Parameter affecting observations consistently
throughout the episode, but independent of
state transitions (e.g.: background color, illu-
mination conditions)

Observations in the POMDP are sampled
from this distribution at each timestep
T(r,s | at,st) = p(r | az, s)p(s | at, se),
reward only depends on current state and ac-
tion

Collection of all relevant variables through-
out an episode

Collection of all variables obseved by the
agent

Depending on context, policy may depend on
POMDP states s, history H:, or observable
history H?

Set of all possible distributions over A

Value of policy 7 conditioned on known fac-
tors -
Function that processes observed histories

Deterministic function that characterizes an
instance, assigns a history H; to any action
sequence A®' (up to episode termination).
Since 74 (ao:t—1) uniquely defines a node in
the instance trajectory tree, we abuse notation
to also indicate current node on the trajectory
tree

Duration of n-th episode and maximum
episode length respectively

Assigns probability 1 to event a = b, and 0
everywhere else.

instance  transition matrix  depends
on entire history H;,  determinis-
tic, T'(r,s | Hear) = 6((r,s) =

7“%4-17 3%4—1 |th+1(a0:t))-

instance set transition matrix depends on en-
tire history H¢, stochasticity of the transition
is a function of not knowing on which in-
stance 7 € [ the agent is acting on.

value of policy 7 conditioned on observed
history H{ and known instance set
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A.3 Example of state belief sub-optimality

This example illustrates how optimal policies on true states and instances can have arbitrarily large
differences both in behaviours and in expected returns. We present a sequential bandit environment,
with a clear optimal policy, and we show that if we sample an instance from this environment,
the optimal instance-specific policy for the environment is now trajectory-dependent, instead of
state-dependent. The optimal environment policy is shown to have a significantly smaller return on a
typical environment instance than its instance-specific counterpart. Conversely, the instance-specific
policy has lower expected return on the true, generalizeable dynamics. We note that this is an intrinsic
problem to instance learning (and reusing instances in general), and that this toy example showcases
the statements made in Lemma 3.

Suppose we have a fully observable environment with a single state (bandit), and |.4| actions, with
the following state and reward transition matrix and observation function:

T(r=1,s|s,a=0) =7p,
T(r=0,8|s,a=0) =1-7,
T(r=1,s|s,a#0) =p, (28)
T(r=0,s|s,a#0) =1-—p,
O(o|s,a) =d(o=s)

Here p > p; an episode consists of N consecutive plays. It is straightforward to observe that
p(s | HY) = 65, VH?, and therefore the state-distribution dependent policy m(a | p(s | HY) is
constant 7(a | p(s | Hy) = m,Va, Hy. Furthermore, the value of the initial observed history HY = ()
can be computed as

Vatalp(s129)(0) = Etalpoimoy X 7”]'\/_133_']’
= (mop+ (1 — 71'O)IZ) Zj§1 =L, (29)
= (mop+ (1 — FO)IZ)%,

and the maximal state-dependent policy is m(a | p(s | Hf) = 6(a = 0) with value Vj(,—0)(0) =
_1—~N

T
On the other hand, suppose we have a single instance (|| = 1) of this environment, with probability
(1-p)(1 — (1 — p)~1) each node in the instance transition tree has zero reward on the optimal
arm (a = 0), but non-zero reward on at least one sub-optimal arm. Overall, with probability
1 —((1 =p)(1 — p)*~1) each node in the instance tree has a non-zero reward action. It is thus

straightforward to observe that a typical instance i has an observation-dependent policy 7(a | HY)
that achieves

e Vi () > (1= (1=P) (1= A2 (30)

This return can be achieved by merely checking if the node in the instance tree the agent is on has any
non-zero-reward action and selecting one of those at random. An illustration of the state dynamics of
the environment versus the transition tree of the instance is shown on Figure 4.

Notice that as stated in Lemma 3, we have that the optimal generalizeable policy is sub-optimal on
the instance set I, and vice-versa. Furthermore, for large action spaces |.A|, the instance-specific

N
policy 7 = arg max V! (alH9) has an expected value on the instance set of VZ () = 1_77 , but can be
(alHY)

1—

. . . . —_ N . .
arbitrarily close to the worst possible return on the true environment Vz(()) ~ p 1117 . This undesired
behaviour arises from a mismatched objective, where we want our policy to maximize expected
reward on the model dynamics, but we instead provide instance-specific dynamics that might have

different optimal policies.
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Figure 4: Left: Transition model of a bandit with two actions. Right: transition tree of a given
instance of the environment, the optimal action sequence is shown in red. Note that the optimal
instance-specific policy takes different actions for observed histories with the same p(s | HY).

A.4 TImplementation details

The implementation details of the proposed instance agnostic policy ensembles method (IAPE)
whose objective was described in Equation 14 are presented next. We describe the importance
weighting technique used in order to leverage the experience acquired with the consensus policy to
compute instance-specific policies and values. We then provide details about the architectures and
hyperparameters.

Here we focus on Off-policy Actor-Critic (AC) techniques because we wish to make use of trajectories
collected under one policy to improve another, we do this via modified importance weighting (IW).
We use policy gradients for policy improvements, and similarly to [41, 42, 43], we modify the n-step
bootstrapped value estimate for the off-policy case to estimate policy values.

Consider an observed trajectory Hy collected using the consensus policy 7 on instance ¢ belonging
to instance subset I,,,. We use clipped IW to define the value target for policy 7, at time 7 as

T+n—1

g = ) ’YtiwanJTHl + ”/nwfqi?vﬂm (06,740 H7 1),
t-:T . i (alb) (31)
w%iﬂM%ﬁmﬁ%m

where w < 1 < w define the minimum and maximum importance weights for the partial trajectory;
this clipping is used as a variance reduction technique. The dependencies ¢ = ¢ (H?),b, =
b(H?Y), are omitted for brevity. Note that we clip the cumulative importance weight of the trajectory,
mm(a;]b;)

since it is well reported that clipping —= (alb5)
VAR

[43]).

This clipping technique leads to the exact IW estimate for likely trajectories, and is equivalent to the
on-policy n-step bootstrap estimate when both policies are identical. Using this estimator, the value
target (critic) and policy (actor) losses for this sample are

1 (HE 1) = Vi (s H2) g,
b, (Y. 7) =~ log(mm(ay | b)) %) (r s g% ) — Vi on (b)),

where the policy gradient also requires an importance weight similar to [41]. The bolded terms are
the only gradient propagating terms in the loss. The full training loss for the model is computed as

L = IEImII EH?,TlIM,,ﬁ'[%l‘/'nL (Hz?v T) + lTrm (Htov T)] + )\reg||9> {¢m}v {'(/}m}v ||gv (33)

where A is a prior over the network weights. Note that all instance-specific parameters only receive
gradient updates from their own instance set.

individually leads to high variance estimates (see

(32)

All experiments use the Impala-CNN architecture [41] for feature extraction, these features are
concatenated with a one-hot encoding of the previous action, and fed into a 256-unit LSTM, policy
and value functions are implemented as single dense layers. Parameters for all experiments are shown
in Table 3.
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Table 3: Hyperparameter table.

Method base 02 2-CO IAPE \ oo-levels
¥ .99 .99 .99 .99 .99
bootstrap rollout length 256 256 256 256 256

w 2 2 2 2 2

— 1 1 1 1 1
wo ) 3 2 3 3 3
minibatch size 8 8 8 8 8
ADAM learning rate 2x107* 2x107* 2x107* 2x107* | 2x107*
£ penalty 0 2x107° 2x107° 2x107° | 2x107°
# of training levels 500 500 500 500 o0
uses Cutout No No Yes No No
uses Batchnorm Yes Yes Yes Yes Yes

# of ensembles - - - 10 -
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A.5 Extended results

Figures 5 and 6 show an extended version of the results presented in Table 1. Figure 5.a shows
the empirical distribution of the time-to-reward difference on successful training instances w.r.t the
base policy (ATpqsc|R = 10) for each method. In most cases these distributions are positively
skewed, indicating that the obtained policies tend to be slower than the baseline on training levels.
This is considerably noticeable for the co-level policy. Figure 5.b presents the distribution of the
per-training-instance KL-divergence between the time-averaged policy of each method and the one
obtained on the unbounded training levels (D}, (. |7)). The IAPE method has the most concentrated
distribution out of all the methods, while the base method has the most disperse one. This observation
is supported by Figure 5.c where we see the distribution of the per-training-instance average policies,
the base policy is noticeably different from the co—level policy. Figure 6 shows the same plots for
test levels, here the difference in ATy, s.|R = 10 is less significant across methods.

ATpauu| R = 10 distribution . ATpase|R = 10 distribution ATpyse|R = 10 distribution ATpase|R = 10 distribution ATeys4|R = 10 distribution
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Figure 5: Results on training instances. a) Time-to-reward difference on successful training instances
w.r.t the base policy. b) KL-divergence between the time-averaged policy per-training-instance of
each method and the oco-level method. ¢) Distribution of the per-training-instance average policies
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Figure 6: Results on 500 Test instances. a) Time-to-reward difference on successful test instances
w.r.t the base policy. b) KL-divergence between the time-averaged policy per-test-instance of each
method and the co-level method. ¢) Distribution of the per-test-instance average policies
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