A Appendix

A.1 Proof for Lemma 1

Lemma 1. For n € [N] and k € [K], the set of CP vectors having potential to be optimal is
constructed as

Trm = Uy {concat (TP} | m)}, (13)

where we extend the concat operator for the case where the first argument is a set of vectors, which
simply returns the set of concatenated vectors.

Proof. We prove the lemma by showing that any CP vector T ¢ ﬁfi’m, form e {k,...,n—1},
cannot be subvector of the optimal CP vectors for problems with larger n and % for any z € R, i.e.,
concat(T,m) & kﬁt forn >m.Form e {k,...,n—1},letT ¢ ﬁf;m be a CP vector which
is NOT optimal for all z € R, i.e.,

Li—1m(z,7) > LYY, (2) Vz€R.

It suggests that, forany m € {k,...,n — 1} and z € R,
LG = min (L2 0(2) 4 Calzhman))

< LZT17W(Z) + C((2)mt1:m)
< Li—1,m(2,T) + C(x(2)m+1:n)

for all z € R. Thus, for any choice of m € {k,...,n—1}and z € R, 7 & Eofi,m cannot be a
subvector of the optimal CP vector for problems with larger n and k. In other words, only the CP
vectors in U " ﬁfim can be used as the subvector of optimal CP vectors for problems with larger
n and k.

A.2 Proofs for Lemma 2 and 3 for the case when K is unknown in §4

Lemma 2. For m < n, if a vector T € T,°", then concat(7,m) & T,°P*.
Proof. For m < n, if a vector 7 ¢ 7,2,

Ly (z,7) > L% (2) Vz €R.
It suggests that, for any m € {0,...,n — 1} and z € R,

L) = _min (L) + O@(2)m 1) + )

< L) + Cla(hmsrin) + B
< Lp(z,7) + C(x(2)mt1:n) + B
Therefore, for any m € {0, ...,n — 1}, if 7 & T,°P', then concat (7, m) & T,°P".
Lemma 3. For m < n, if 7 € T,°P* and
Ly(z,7)— B> L% (2) VzeR
holds, then T & T,°Pt.
Proof. For any m € {0,...,n — 1} and z € R, we have

L' (z) = . min {L?np’t(z) + C(®(2)m/+1:0) + B}
m’e€{0,...,n—1}

< LYY (2) + C(®(2)mt1:n) + B-
For any m € {0,...,n — 1}, if a CP vector T ¢ T,2P" satisfies Lemma 3, then it suggests
LiP(2) < Lid'(2) + C(2(2)mt1m) + B
& LPY2) < Li(z,7) — B+ C(x(2)mi1m) + B
A L%pt(z) < L (z,7) + C(x(2)m+1:n)
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for all z € R. On the other hand, we have
Lm(Z, T) + C(m(z)7rz+1:n) S Ln(zv T)

holds for any z € R because the cost is always reduced when adding a changepoint at position m
without the penalty term. Hence, we have

LSPY(2) < Lin(z,7)
for all z € R. Therefore, T ¢ 7;?‘” and Lemma 3 holds.

A.3 Additional tricks for methods proposed in §3.

Finding optimal CP vector when z = —oo in paraCP(n, k, 77@,”) in Algorithm For each

T € 727”, the corresponding loss function at 7 is written as a positive definite quadratic function.
Therefore, at z = —oo, the optimal CP vector is the one whose corresponding loss function Ly, (z, T)
has the smallest coefficient of the quadratic term. If there are more than one quadratic function having
the same smallest quadratic coefficient, we then choose the one that has the largest coefficient in
the linear term. If those quadratic functions still have the same largest linear coefficient, we finally
choose the one that has the smallest constant term.

Additional pruning condition for parametric DP when K is fixed. In §3.3, we showed that
7725’; can be constructed from the set 7% , C Tj . By using the following lemma, we can construct a

smaller superset of 7}35’;, which leads to further efficiency of parametric DP.
Lemma4. Forn € [N], and k € [K], let
Tim = {7 € Tom—1\ Porune} U {concat(ﬂff;’nfl,n -1},

where . .
Pprune = {T € 77c,n—1 | Lk,n—l(zzT) > szfl}nfl(z)yvz S R}

Then T8 € Tien € Thom-

Proof. First, to show Ty, 2 Ty n» from ,

ﬁ,n = Uz;lk{concat(nofim,m)}
= U"mfk{concat(ﬂff;,m, m)} U{concat(ﬁof;_’nfl, n—1)}
= 7A7€,n,1 U{concat(ﬂff;’n_l, n—1)}
D {72,,1,1 \ Pprune } U{concat(ﬁfiyn_l,n 1)} = Tem-
Next, to show 7:?‘: C ’En we only need to prove that 7 € Pp,rune Never be the optimal CP vector at
k,n,ie,T ¢ ’7721:. For any 7 € Pyrune
Lyn(z,7) > L p-1(2,T)
> LijLnﬂ(Z)
=L 1(2) + C@(2)nin)

2 e B () + O (@) meayn))

for any z € R. Therefore, T € Pyyune never belongs to ’77:7?.

A.4 Distribution of naive p-value and selective p-value when the null hypothesis is true

We demonstrate the validity of our proposed OptSeg-SI method by confirming the uniformity of
p-value when the null hypothesis is true. We generated 12,000 null sequences © = (1, ..., zy) in
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which 2;¢[n] ~ N(0, 1) for each case N € {10, 20,30, 40} and performed the experiments to check
the distribution of naive p-values and selective p-values. From FigureBl, it is obvious that naive
p-value does not follow uniform distribution. Therefore, it fails to control the false positive rate. The
empirical distributions of selective p-value are shown in Figure[9] The results indicate our proposed
method successfully control the false detection probability.

(a) N =10 (b) N =20 (c) N =30 (d) N =40

Figure 8: Distribution of naive p-value when the null hypothesis is true.
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Figure 9: Distribution of selective p-value when the null hypothesis is true.

A.5 Details for numerical experiments.

Methods for Comparison. We compared the performance of the OptSeg-SI with the following
approaches:

e SMUCE [[14]. This is asymptotic test for multiple detected CPs. The implementation of SMUCE
is available athttps://cran.r-project.org/web/packages/stepR/index.html,

o [BinSeg-SI] SI for Binary Segmentation [18] In Hyun et al. [18], it was reported that SI for
Fused Lasso (proposed by the same authors), is worse than BinSeg-SI. Therefore, we only compare
to BinSeg-SI. BinSeg-SI had been considered as a computationally efficient approximation of the
problem in (7)), where the authors additionally condition on extra information for computational
tractability, e.g., the order that CPs are detected. This is one of the reasons why BinSeg-SI has
low power. The implementation of BinSeg-SI is available at https://github. com/robohyun66/
binseginf.

o [OptSeg-SI-oc] SI method for optimal CPs with over-conditioning. In SI, there are mainly
two approaches to characterize the selection event. In the first approach, the selection event is
only constructed based on the optimality condition of the problem, which is usually difficult or
computationally impractical. Therefore, the second approach is used to overcome the computational
challenge by additionally conditioning on extra event. Although the type I error can be properly
controlled in the second approach, the power is generally low because of over-conditioning.

To see the advantage of minimum conditioning of the proposed method, we compare with two variants
of SI for optimal CPs (each for fixed K and unknown K cases), which we call OptSeg-SI-oc. In each
of these variants, instead of the truncation region Z characterized in the main paper, its subsets are
used as the conditioning set. These subsets are constructed by considering all the operations when DP
algorithm is used for detecting the optimal CPs. The OptSeg-SI-oc method and BinSeg-SI in Hyun
et al. [18] are categorized as the second approach. We actually first developed OptSeg-SI-oc as our
first SI method for optimal CPs (unpublished). The derivation of OptSeg-SI-oc is shown in Appendix
[A77] Then, its drawback (over-conditioning) was resolved by the proposed OptSeg-SI method in this

paper.
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Figure 10: Additional results for power demonstration. In the left figure, the blue line and the grey circles
indicate the underlying mean and the observed sequence, respectively. The red dotted lines are the results of
optimal segmentation (OptSeg) and binary segmentation (BinSeg) algorithms. Here, the CP detection results of
OptSeg and BinSeg were the same. Then, the significance of each CP is tested. With Bonferroni correction, to
control false detection rate at 0.05, the significance level is decided by % ~ 0.006. Three different p-values
are shown for each detected CP: BinSeg-SI p-value, OptSeg-SI-oc p-value and OptSeg-SI p-value. BigSeg-SI
missed many true CPs (D, G, I). This problem is the same for OptSeg-SI-oc (D, E, F, I). The OptSeg-SI method
can identify all true CPs. The segments recovered based on the results of the significant testing from each method
are shown in the right figure.

Experimental Results. We show the detail of experimental results as follows:

o Additional experiment for power demonstration of the proposed method. In Figure we
show additional results to demonstrate that our OptSeg-SI method can identify many true CPs.

e The robustness of the proposed OptSeg-SI method in terms of the FPR control.

— Non-normal data: we considered the data following Laplace distribution, skew normal
distribution (skewness coefficient 10) and ¢4 distribution. In each experiment, we generated
12,000 null sequences for N € {10, 20, 30,40}. We tested the FPR for both o = 0.05
and o = 0.1. The FPR results are shown in Figure [ITa] [[Tb|and [TIc] In case of Laplace
distribution and skew normal distribution, our proposed method can properly control the
FPR. For the case of ¢4 distribution, the FPR is just a bit higher than the significance level.

— Unknown o2: We generated 12,000 null sequences € = (21, ..., x ), in which 2;¢n] ~
N(0,1), for N € {50,60,70,80} and conducted experiments. In this case, the value of
o2 is also estimated from the data. We first perform CP detection algorithm to detect the

segments. Since the estimated variance tends to be smaller than the true value, we calculated

the empirical variance of each segment and set the maximum value for o2. The results are

shown in Figure[TTd} Our proposed method still can properly control the FPR.

e Comparison of FPR control when the sequence contains correlated data points. In this ex-
periment, we demonstrate that the asymptotic method (SMUCE) cannot control the FPR when
the sequence contains correlated data points while our OptSeg-SI method can successfully con-
trol the FPR under the significance level a« = 0.05. We generated 1,200 null sequences
x = (x1,..,on) ~ N(u,E), where N = 20, p = (p1, ..., uy) in which p;e;n) = 0, and
2 = 02(£li791); jen) in which £ is degree of correlation and o = 1. We conducted experiments
for £ € {0.0,0.2,0.4,0.6,0.8}. The results are shown in Figure When £ = 0.0, i.e., there is no
correlation between the data points, SMUCE can control the FPR at o = 0.05. However, when &
increases, the FPR also increases. It indicates that SMUCE cannot control the FPR when the data
points are correlated. On the other hand, our proposed OptSeg-SI method can successfully control
the FPR under « in all cases.
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Figure 11: False positive rate of the proposed OptSeg-SI method when data is non-normal or o is unknown.
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Figure 12: Comparison of FPR control when the sequence contains correlated data points. With SMUCE, the
FPR increases when the degree of correlation increases. On the other hand, our proposed OptSeg-SI method can
successfully control the FPR under o = 0.05 in all cases.

A.6 Details for real-data experiments.

Array CGH data. Array CGH analyses detect changes in expression levels across the genome.
The dataset with ground truth was provided in Snijders et al. [37]. The results from our method were
shown in Figure [I3]and [I4] The solid red line denotes the significant changepoint which has the
p-value smaller than the significance level after Bonferroni correction. All of the results are consistent
with Snijders et al. [37].

Nile data. The interest lies in unexpected event such as natural disasters. This data is the annual
flow volume of the Nile river at Aswan from 1871 to 1970 (100 years). In Figure[T3] the proposed
algorithm results the changepoint at the 28" position, corresponding to year 1899. This result is
consistent with Jung et al. [21]].

A.7 Derivation of OptSeg-SI-oc mentioned in §5

As our first idea of SI for optimal CPs, we developed OptSeg-SI-oc. However, this method inherits
the drawback of current SI studies (over-conditioning). Therefore, we have not officially published it
yet. Later, we developed novel parametric programming techniques and proposed OptSeg-SI, which
is presented in this paper, to address the over-conditioning problem. Here, we show the derivation of
OptSeg-SI-oc.
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Figure 13: Experimental results for cell line GM03576.
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Figure 14: Experimental results for cell lines GM00143 and GM01750.
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Figure 15: Experimental result for Nile data. The changepoint is detected at 28 position which indicates there
is a change in volume level in year 1899.

The main idea behinds OptSeg-SI-oc is to characterize the conditional data space based on all steps
of DP algorithm, i.e., performing inference conditional on all steps of DP. We focus on the case when
K is fixed, and it is easy to extend to the case when K is unknown.

Notation. We denote X’ as a conditional data space in OptSeg-SI-oc. The difference between
X in §3.1 and X’ here is that the latter is characterized with additional constraints on DP process.
For an observed sequence x° € R¥, its optimal CP vector is defined as 79°¢. For a sequence with
length n € [IN], a set of all possible CP vectors with dimension k € [K] is defined as 7y, ,,. Given
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x € RY, the loss of segmenting its sub-sequence x1.,, with T € T}, ,, is written as

k+1
Lk,n($a T) = Z C(mTﬁ,_l-‘rl:‘rﬁy
k=1

For a sub-sequence x;.,, the optimal loss and the optimal k-dimensional CP vector are respectively
written as

opt _ :
Lyt () = in. Lyn(z,7)

T." (x) = argmin Ly, (z, 7).
TE€Tk,n

Conditional data space characterization. Since the inference is conducted conditional on all
steps of DP, the conditional data space X" is written as

K N
X' = {w eRY [ () ) T (@) = T% (a), (@) = q(w°b5)} : (14)

k=1n=~k

For simplicity, we denote 75 = T, ‘;t (°"), the conditional data space X’ can be re-written as

K N
X' = {w eRV | ) () T8 (@) = 78, g(w) = q(azObS)} : (15)

k=1n=k

From the second condition, the data is restricted to the line [[26} [12]. Therefore, the remaining task is
to characterize the region in which & € R¥ satisfies the first condition.

For each value of k € [K] and n € [N], T,S}:Lt (z) = 7% if and only if

min Ly (2, T) = Lo (2, 75) (16)
Ten,n ’

& L () = L (€%, 705). (17)

\n
Based on the recursive structure of DP, we have

L@ = _min AL @)+ Clania) | (18)

Combining and (I8), we have
Ly, (@) 4+ C(@imi1in) > Ly (@, 75), (19)

form € {k,...,n — 1}. Since the cost function is in the quadratic form, (19) can be easily written in
the form of & " Ay, ,, m@ < 0, where the matrix Ay, ,, , € RV*¥ depends on k, n and m. It suggests
that the conditional data space in (I4) can be finally characterized as

K N n-1
X = {sc cRY | ﬂ ﬂ ﬂ $TAk,TL7'm-T <0,q(x) = q(mobS)} .

k=1n=k m=k

Now that the conditional data space X" is identified, we can easily compute the truncation region and
calculate p-value for each detected CP.
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