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Abstract

Adversarial robustness measures the susceptibility of a classifier to imper-
ceptible perturbations made to the inputs at test time. In this work we
highlight the benefits of natural low rank representations that often exist
for real data such as images, for training neural networks with certified
robustness guarantees.

Our first contribution is for certified robustness to perturbations measured
in ¢ norm. We exploit low rank data representations to provide improved
guarantees over state-of-the-art randomized smoothing-based approaches
on standard benchmark datasets such as CIFAR-10 and CIFAR-100.

Our second contribution is for the more challenging setting of certified robust-
ness to perturbations measured in /o, norm. We demonstrate empirically
that natural low rank representations have inherent robustness properties,
that can be leveraged to provide significantly better guarantees for certified
robustness to /. perturbations in those representations. Our certificate
of /, robustness relies on a natural quantity involving the co — 2 matrix
operator norm associated with the representation, to translate robustness
guarantees from /5 to £, perturbations. A key technical ingredient for our
certification guarantees is a fast algorithm with provable guarantees based
on the multiplicative weights update method to provide upper bounds on
the above matrix norm. Our algorithmic guarantees improve upon the state
of the art for this problem, and may be of independent interest.

1 Introduction

It is now well established across several domains like images, audio and natural language, that
small input perturbations that are imperceptible to humans can fool deep neural networks at
test time [1, 2, 3, 4]. This phenomenon known as adversarial robustness has led to flurry of
research in recent years (see Section A for a discussion of related work). Following most prior
work in this area [5, 6, 7, 8, 9], we will study the setting where adversarial perturbations to
an input = are measured in an ¢, norm (p =2 or p = 00).

In this work, we study methods for certified adversarial robustness in the framework developed
in [10, 11]. The goal is to output a classifier f that on input z € R™ outputs a prediction y in
the label space Y, along with a certified radius r¢(z). The classifier is guaranteed to be robust
at « up to the radius r(z) (with high probability), i.e., Vz : ||z|, < r¢(z), f(z + 2) = f(x).
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For an ¢, norm and ¢ > 0, the certified accuracy of a classifier f is defined as

accg”)(f) = P [f(x) =y and rp(z) > 5}, (1)
(@,y)~D

where D is the data distribution generating test inputs. We call the radius r¢(z) returned
by the classifier as the certified radius on x. When ¢ = 0 this is the natural accuracy of f.

For certified adversarial robustness to ¢ perturbations, the randomized smoothing procedure
proposed in [10, 11] is a simple and efficient method that can be applied to any neural
network. Randomized smoothing works by creating a smoothed version of a given classifier
by adding Gaussian noise to the inputs (see Section 2). The smoothed classifier exhibits
certain Lipschitzness properties, and one can derive good certified robustness guarantees
from it. The study of randomized smoothing for certified ¢ robustness is an active research
area and the current best guarantees are obtained by incorporating the smoothed classifier
into the training process [12] (see Section A).

It seems much more challenging to obtain certified adversarial robustness to ., perturba-
tions [13, 14, 15]. In particular, the design of a procedure akin to randomized smoothing
has been difficult to achieve for ¢, perturbations. One approach to obtain certified £,
robustness is to translate a certified radius guarantee of € for ¢5 perturbations (via random-
ized smoothing) into an £/+/n certified radius guarantee for £, perturbations; here n is the
dimensionality of the ambient space. Furthermore, recent work [16, 17, 18] has established
lower bounds proving that randomized smoothing based methods cannot break the above
\/n barrier for £, robustness in the worst case.

However real data such as images are not worst case and often exhibits a natural low rank
structure. In this work we show how we can leverage such natural low-rank representations
for the data, in order to design algorithms based on randomized smoothing with improved
certified robustness guarantees for both ¢5 and /., perturbations.

Our Contributions. We now describe our main contributions.

Improved certified {5 robustness: Our first contribution is to design new smoothed classifiers
for achieving certified robustness to /5 perturbations. These classifiers achieve improved
tradeoffs between natural accuracy and certified accuracy at higher radii. We achieve
this by leveraging the existence of good low-rank representation for the data. We modify
the randomized smoothing approach to instead selectively inject more noise along certain
directions, without compromising the accuracy of the classifier. The large amount of noise
leads to classifier that is less sensitive to ¢5 perturbations, and hence achieves higher certified
accuracy across a wide range of radii. We empirically demonstrate the improvements obtained
by our approach on image data in Section 2.

Fast algorithms for translating certified robustness guarantees from £o to £, : For the more
challenging setting of ¢, robustness we consider classifiers of the form f(Pxz) where P is
an arbitrary linear map, and f represents an arbitrary neural network. When translating
certified robustness guarantees for 5 perturbations to obtain guarantees for ¢, perturbations,
the loss incurred is captured by the co — 2 operator norm of matrix P. While computing
this operator norm is NP-hard, we design a fast approximate algorithm based on the
multiplicative weights update method with provable guarantees. Our algorithmic guarantees
give significant improvements over the best known bounds [19, 20] for this problem and may
be of independent interest (see Section 3).

Certified l, robustness in natural data representations: Real data such as images have
natural representations that are often used in image processing e.g., via the Discrete Cosine
Transform (DCT). Via an empirical study we highlight the need for achieving ¢, robustness
in the DCT basis. More importantly, we demonstrate that the representation in the DCT
basis is robust, i.e., there exist low rank projections that capture most of the signal in the
data and that at the same time have small oo — 2 operator norm.! We develop a fast
heuristic based on sparse PCA to find such robust projections. When combined with our

1This is also true for domains such as audio in the DCT basis. See Appendix G for experimental
evidence.



multiplicative weights based algorithm, this leads to a new training procedure based on
randomized smoothing. Our procedure can be applied to any network architecture and
provides stronger guarantees on robustness to {, perturbations in the DCT basis.

2 Certified Robustness to /5 Perturbations

We build upon the randomized smoothing technique proposed in [10, 11] and further developed
n [12]. Consider a multiclass classification problem and a classifier f: R™ — ), where ) is
the label set. Given f, randomized smoothing produces a smoothed classifier g where

g(w) = argmax P(f(z + ) = y). (2)

Here § ~ N(0,021I) is the Gaussian noise added. The following proposition holds.

Proposition 2.1 ([10, 11]). Given a classifier f, let g be its smoothed version as defined in
(2) above. On an input x, and for § ~ N(0,02I) define y4 = arg maxy P(f(z+0) =y), and
let pa =P(f(x+9) =ya). Then the prediction of g at x is unchanged up to Ly perturbations
of radius

g

r(z) = 5(‘1)71(;%) -9 '(pn)). (3)

Here pp = maxy,, P(f(z +0) =y) and &~ is the inverse of the standard Gaussian CDF.

Hence, randomized smoothing provides a fast method to certify the robustness of any given
classifier on various inputs. In order to get robustness to large perturbations it is desirable
to choose the noise magnitude o as large as possible. However, there is a natural tradeoff
between the amount of noise added and the natural accuracy of the classifier. As an example
consider an input x € R™ of {5 length y/n. If o is the average amount of noise added then
one is restricted to choosing o to be a small constant in order for the noise to not overwhelm
the signal.

However, it is well known that natural data such as images are low dimensional in nature.
Figure 5 in Appendix B shows that for the CIFAR-10 and CIFAR-100 datasets, even when
projected, via PCA, onto 200 dimensions, the reconstruction error remains small. If the
input is close to an r-dimensional subspace, then it is natural to add noise only within the
subspace for smoothing. Formally, let II be the projection matrix on to an r-dimensional
subspace and x be such that ||TIz]|s ~ ||z|l2 = /7. For § ~ N(0,02I) we have ||TI§||2 ~ o/7.
Hence if we only add noise within the subspace, then o can be as large as y/n/r as opposed
to a constant without significantly affecting the natural accuracy.

We formalize this into an efficient training algorithm as follows: we take a base classifier /neural
network f(z) and replace it with the smoothed classifier gr(x) where

gn(z) = arg mex P(f(Ilz + o) = y). (4)

where II is a projection matrix onto an r-dimensional subspace and dyy is a standard Gaussian
of variance o2 that lies within II. For data such as images, good projections II can be
obtained via methods like PCA. Furthermore, certifying the robustness of our proposed
smoothed classifier can be easily incorporated into existing pipelines for adversarial training
with minimal overhead. In particular using the rotational symmetry of Gaussian distributions
it is easy to show the following

Proposition 2.2. Given a base classifier f : R — Y and a projection matriz 11, on any
input xz, the smoothed classifier gri(x) as defined in (4) is equivalent to the classifier given by

gn(x) = argmax P(f (I +9)) = y). (5)

2

Here § is a standard Gaussian of variance o* in every direction.

Hence constructing our proposed smoothed classifier simply requires adding a linear transfor-
mation layer to any existing network architecture before training via randomized smoothing.
We propose to train the smoothed classifier as defined in (5) by minimizing its adversarial



standard cross entropy loss as proposed in [6]. However, since dealing with arg max is hard
from an optimization point of view, we follow the approach of [12] and instead minimize the
cross entropy loss of the following soft classifier
Gr(z) = E I(x + 6))]. 6

n@ =, E . [f{[@+)] (6)
This leads to the following objective where /.. is the standard cross-entropy objective and
€ > 0 is perturbation radius chosen for the training procedure.

argmin E [ max (..(Gu(z + z),y)]. (7)

I (zy) " zllzl2<e
Following [6, 12], the inner maximization of finding adversarial perturbations is solved
via projected gradient descent (PGD), and given the adversarial perturbations, the outer
minimization uses stochastic gradient descent. This leads to the following training procedure.

Algorithm 1 Adversarial training via projections

1: function ROBUSTTRAIN(training data (z1,y1),..., (€m,Ym), subspace rank r, base
noise magnitude o, A € [0, 1], number of steps T', mini batch size b)

2: Perform PCA on (unlabeled) data matrix A € R™*™ to obtain a rank-r projection
matrix II.

3 Set G as in (6) with o = A/n/r.

4 fort=1,...,T do

5 Obtain a mini batch of b examples (¢, , Yt, )y - - -, (Tt,, Yz, )-

6: For each x, use projected gradient ascent on inner maximization in (7) to get xy, .

7 Given perturbed examples {(2},,:,)}icp), update network parameters via SGD.

8 Output the smoothed classifier gr(z).

Empirical Evaluation. We compare Algorithm 1 with the algorithm of [12] for various
values of o and e (used for training to optimize (7)). We choose € € {0.25,0.5,0.75,1.0} and
for each e we choose the value of o as described in [12]. In each case, we train the classifier
proposed in [12] using a noise magnitude o, and we train our proposed smoothed classifier

using higher noise values of Agy/n/r, where A is a parameter that we vary. To obtain the
projection matrix II we perform a PCA onto each image channel separately and use the top
200 principal components to obtain the projection matrix II.

In all experiments, we train a ResNet-32 network on the CIFAR-10 dataset by optimizing
(7). The complexity of Algorithm 1 is comparable to the complexity of training a smoothed
classifier as in the work of [SYL+ 21 19]. The PCA step incurs a one time preprocessing cost
and the projection step at the beginning simply corresponds to adding a linear layer to an
existing ResNet architecture. As an example, on the CIFAR-10 dataset, for ¢ = 0.25, training
the classifier of [12] takes on average 21.27 seconds per epoch, whereas Algorithm 1 takes 21.29
seconds per epoch on average. The same behavior holds across different parameter settings.
Figure 1 shows a comparison of certified accuracies for different radii and different values of
A. See Appendix B for a description of the hyperparameters and additional experiments.
For application to other domains such as text data where the input representation is not
fixed, training the linear projection II along with the network could be beneficial and in fact
necessary. For image datasets above, we also experimented with simultaneously training the
projection with the network parameters. The results obtained were similar to using a fixed
projection and we did not see any significant advantage.

As can be seen from Figure 1, varying the value of A lets us tradeoff lower accuracy at small
values of the radius for a significant gain in certified accuracy at higher radii as compared
to the method of [12]. In particular we find that choosing values of A close to 0.5 leads
to networks that can certify accuracy at much higher radii with minimal to no loss in the
natural accuracy as compared to the approach of [12].

In Figure 2 we present the result of our training procedure for various values of € and o and
compare with the ¢o smoothing method of [12] on the CIFAR-10 and CIFAR-100 datasets.
For both datasets, our trained networks outperform the method of [12] across a large range of
radius values. For higher values of radius (say, £ 0.5) our method achieves a desired certified
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Figure 2: A comparison of certified radius guarantees obtained via Algorithm 1 as compared
to the approach of [12]. The x-axis is the radius, and the y-axis represents the certified
accuracy. The top row describe results for the CIFAR-10 dataset — (left) certified accuracies
for various values of ¢, (right) for e = 0.5. Similarly, the bottom row describe the results for
the CIFAR-100 dataset.

accuracy with significantly higher natural accuracy as compared to the method of [12]. For
instance in the CIFAR-10 dataset, at a radius of 1.0 and a desired certified accuracy of at
least 0.35, the method of [12] achieves a natural accuracy of ~ 0.5 (blue dotted curve at
radius 0). In contrast our method achieves the same with a natural accuracy of a2 0.65 (green
solid curve at radius 0). On the other hand, at very small radius values the method of [12]
is better. This is expected as we suffer a small loss in natural accuracy due to the PCA
step in Algorithm 1. We remark that in practice, we may not know the radius of adversarial
perturbation (and the ideal choice of ¢) beforehand. Hence sacrificing a small amount of
accuracy at small radii for a significant gain at higher radii is a desirable tradeoff.
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3 Methods for Certified /., Robustness

We now describe our algorithms for the more challenging problem of certified robustness to
{+, perturbations in a given basis or representation. Our approach is to leverage the existence
of good representations of natural data measured by a certain robustness parameter, and
translate /5 robustness guarantees from Section 2 to get certified ¢, guarantees. Consider
f:R" = Y and g(x) := f(Ilz), where IT € R™*" represents a projection matrix. The
certified accuracy of g satisfies

Ve > 0, acc(e‘”)(g) > accl? (g) for 0 <&’ < &/||M|sos2, where |[I||lsoyo = max [Tz

!
€ @[ @ 0o <1

is the oo — 2 operator norm of IT and represents a robustness parameter (see Proposition C.2
for a formal claim). Hence, to translate guarantees from ¢ to ¢, we look for robust
projections IT that have small co — 2 operator norm. Our approach is inspired by the recent
theoretical work of [21], and finds a low-dimensional representation given by an (orthogonal)
projection matrix II for the data that has small ||II||oo—2. By matrix norm duality, there is
a nice characterization for ||II||oo—2 as the maximum ¢; norm among Euclidean unit vectors
in the subspace of II (this is a notion of sparsity of the vectors). For a rank r projector II,
the range of values taken by ||I||oo—2 is [/, v/n]. Hence if the projection is not low-rank
and sparse, ||II||oo—2 could be as large as \/n (e.g., when II = I). This is consistent with
the loss of \/n factor in robustness radius to {, perturbations for general datasets [16, 17].
Moreover as we have seen in Section 2, good low-rank representations of the data also give
stronger certified ¢5 robustness guarantees (and in turn, stronger certified £, guarantees).

The goal is to find a good robust rank-r projection of the data if it exists. We propose a
heuristic based on sparse PCA [22] to find a robust projection with low error (see Section D.2).
Since we aim for certified robustness, an important step is to compute and certify an upper
bound on ||II||so—2, for a projection II. This is an NP-hard problem, related to computing
the famous Grothendieck norm [23]. We describe a new, scalable, approximate algorithm for
computing upper bounds on ||II||—2 with provable guarantees.

Certifying the co — 2 operator norm. Our fast algorithm is based on the multiplicative
weights update (MWU) method for approximately solving a natural semi-definite program-
ming (SDP) relaxation, and produce a good upper bound on ||II]|c—2. Our upper bound
also comes with a certificate from the dual SDP i.e., a short proof of the correctness of the
upper bound. Given a candidate II our algorithm will compute an upper bound for ||II||so—1
which by matrix norm duality satisfies

125 = 1T]mss = maxa Tz subject to ] < 1. (8)

This problem falls into the more general class of problems called Quadratic Programming:

Given a symmetric matrix M with Vi € [n]: M;; >0, ”m”aX< ' M. (9)
z:|| x| oo <1

The standard SDP relaxation for the problem (see (12) in Appendix D.1), has primal variables
represented by the positive semi-definite (PSD) matrix X € R™*" satisfying constraints
Xi; <1 foreach i € [n]. The SDP dual of this relaxation (given in (14) of Appendix D.1) has
variables y1, . .., Yy, > 0 corresponding to the n constraints in the primal SDP. Since the SDP
is a valid relaxation for (9), it provides an upper bound for co — 1 operator norm? . Classical
results show that it is always within a factor of /2 of the actual value of ||M||co—1 [24, 25].
However, it is computationally intensive to solve the SDP using off-the-shelf SDP solvers
(even for CIFAR-10 images, X is 1024 x 1024). We design a fast algorithm based on the
multiplicative weight update (MWU) framework [26, 19].

Description of the algorithm Our algorithm differs slightly from the standard MWU
approach for solving the above SDP. The algorithm below takes as input a matrix M and
always returns a valid upper bound upbd,;, on the SDP value, along with a dual feasible

2A fast algorithm that potentially finds a local optimum for the problem will not suffice for our
purposes; we need an upper bound on the global optimum.



solution yupmin that can act as a certificate, and a candidate primal solution X that attains
the same value (and is potentially feasible). Theorem 3.1 proves that for the right setting of
parameters, particularly the number of iterations Tt = O(nlogn/ §3), the solution X is also
guaranteed to be feasible up to small error d > 0.

Algorithm 2 Fast Certification of co — 1 norm and Quadratic Programming

1: function CERTIFYSDP (M € R"*", iteration bound T, slack §, damping p)
2: Initialize « = (1,1,...,1) € R™. primal X = 0, dual y = 0", upbd,;, = oo,
Yubmin = on.

3: fort=0,1...,T do

4: a+— (1-8a+d6(1,1,...,1).

5: \ < max-eigenvalue(diag(@) /2 Mdiag(a)~'/?) and u € R™ be its eigenvector.

6: v+ /n - diag(a) = %u, y t%(ty + Aa), X H%(tX +ovl).

7 if ||v]|ooc <1+ or max; X;; <146 then, do early stop and return appropriate
values.

8: Update Vi € [n], a(i) + (i) exp (%(v(i)2 — 1)), and renormalize s.t. Y., a(i) =
n.

9: if upbd,;, > nA, then set upbd, ;, = nA and Yuybmin = AG.

10: Output upbd,;,, dual solution yybmin, and primal candidate X.

Recall that from (8) an estimate of the the co — 1 norm immediately translates to an
estimate of the co — 2 norm. In the above algorithm, there are weights given by « for n
different constraints of the form X;; < 1. At each iteration, the algorithm maximizes the
objective subject to one constraint of the form ZZ a; X;; < n, where & involves a small
correction to « that is crucial to ensure the run-time guarantees. The maximization is done
using a maximum eigenvalue/eigenvector computation. The weights « are then updated
using a multiplicative update based on the violation of the solution found in the current
iterate. The damping factor p determines the rate of progress of the iterations — the smaller
the value of p the faster the progress, but a very small value may lead to oscillations. A more
aggressive choice of p compared to the one in Theorem 3.1 seems to work well in practice.
Finally, we remark that for every choice of o and p we get a valid upper bound (due to dual
feasibility). We show the following guarantee for our algorithm for problem (9).

Theorem 3.1. Suppose § > 0, and M be any symmetric matriz with M;; > 0 Vi € [n]. For
any o € R%, with 371 ai) =1, if A = Amax ((diag(a)’1/2Mdiag(oz)’1/2)), then y = A

is feasible for the dual SDP and gives a valid upper bound of nA on the objective value for the
SDP relazation to (9). Moreover Algorithm 2 on input M, with parameters 6 and p = O(n/d)

after T = O(nlogn/§3) iterations finds a feasible SDP solution X = 0 and a feasible dual
solution y € R™ that both sandwich the optimal SDP value within a 1+ 0 factor.

(See Prop D.1 and Theorem D.2 in Appendix D.1 for formal statements along with proofs. )
Each iteration only involves a single maximum eigenvalue computation, which can be done
up to (14 9) accuracy in Te;y = O(m/§) time where m is the number of non-zeros in M (see

g., [26]). To the best of our knowledge, this gives significant improvements over the prior
best bound of O(n'5m/§2®) runtime for solving the above SDP [19, 20]. Our algorithm and
analysis differs from the general MWU framework [20] by treating the objective differently
from the constraints so that the “width parameter” does not depend on the objective. A
crucial step in our algorithm and proof is to add a correction term of O(¢) to the weights
in each step that ensures that the potential violation of each constraint in an iteration is
bounded. In addition our algorithm is more scalable than existing off-the-shelf methods. See
Appendix D.1 and F for details and comparisons.

4 Training Certified /., Robust Networks in Natural
Representations.

Building upon our theoretical results from the previous section we now demonstrate that for
natural representations, one can indeed achieve better certified robustness to £, perturbations



by translating guarantees from certified ¢5 robustness. We focus on image data, and study
the representation of images in the DCT basis. Before we describe the details of our training
and certification procedure for /., robustness, we provide further empirical evidence that
imperceptibility in natural representations such as the DCT basis is a desirable property.
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Figure 3: Original images (leftmost) from the CIFAR-10 dataset and their perturbed
versions when sparse random perturbations are added in the DCT basis with sparsity k.
Large perturbations in the DCT basis (e.g., k = 1 ) lead to perceptible changes in the pixel
space though they are ¢, perturbations of ¢ < 0.09. As k increases the imperceptibility of

the perturbed images improves.

Study of imperceptibility in DCT basis. We argue that for adversarial perturbations
to be imperceptible to humans they should be of small magnitude in the DCT represen-
tation (perhaps in addition to being small in the pixel basis). We take images from the
CIFAR-10 dataset in its DCT representation and add sparse random perturbations to them.
In particular, for a sparsity parameter k, we pick k coordinates in the DCT basis at random
and add a random perturbation with £, norm of ¢/ Vk where ¢k & &4/n is chosen such
that the perturbed images are ¢ < 0.09 away from the unperturbed images in the pixel
space. Notice that for small values of k, a perturbation of large ¢, norm is added. Figure 3
visualizes the perturbed images for different values of k. As seen, large perturbations in the
DCT basis lead to visually perceptible changes, even if they are (¢ < 0.09)-close in the pixel
basis. For comparison we also include in Appendix E imperceptible adversarial examples for
these images that were generated via the PGD based method of [6] on a ResNet-32 network
trained on the CIFAR-10 dataset for robustness to ¢, perturbations of magnitude ¢ = 0.09.
This further motivates studying robustness in natural data representations.

Training certified ¢/, robust networks in the DCT basis. The methods developed in
Section 3 and 2 together give algorithms for training classifiers with certified /., robustness.
However while we want ¢, robustness in a different representation I (e.g., in the DCT basis),
it may still be more convenient to use off-the-shelf methods for performing the training in
the original representation X C R™ (e.g., pixel representation). Let the orthogonal matrix
O € R™ "™ represent the DCT transformation. Consider an input z € X and let u = Oz € U
be its DCT representation, where U is the space of images in the DCT basis. It is easy to see
that functions f : X — Y and g : U — Y given by g(u) := f(O~'u) = f(x) have the same
certified accuracy to £o perturbations. Moreover if the classifier g satisfies g(u) = g(ITu) for
some projection II, the robust accuracy of g to ¢, perturbations in the representation U



satisfies (see Proposition C.3 in appendix)

accg‘”)(g) > accl?)(f), for any € > 0,0 < &’ < /||| so_s2- (10)
CIFAR 10 Dataset CIFAR 100 Dataset

[

eps=0.25

| Hl eps=0.25
B eps=0.50 05- B eps=0.50
08 B eps=0.75 BN eps=0.75
I eps=1.00 04~ E eps=1.00
--- [SYL+19] --- [SYL+19]

Our Method Our Method

certified accuracy
certified accuracy
o

0.1-

bl l [ - P T I i 2l T - T E—
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
radius radius

Figure 4: A comparison of certified ¢, accuracy (y-axis) in the DCT basis of our method
to that of [12], for different values of ¢ and with different certified radii on the x-axis, for
A = 0.5. The left and right plots describe results for CIFAR-10 and CIFAR-100 datasets.

Experimental Data. We evaluate our approach on the CIFAR-10 and CIFAR-100 datasets.
From (10), it is sufficient to train a classifier in the original pixel space with an appropriate
projection I’ = OII. Hence, we train a smoothed classifier as defined in (2) using Algorithm 1.
To obtain the required II, we first use the sparse PCA based heuristic (Algorithm 3) to
find a projection matrix of rank 200 for the three image channels separately. We then use
Algorithm 2 to compute upper bounds on the oo — 2 operator norm of the projections
matrices. Finally, we combine the obtained projection matrices from each channel to obtain
a projection II. Table 1 shows the values of the operator norms certified by our algorithm for
each image channel and for the combined projection matrix. Notice the obtained subspaces
have operator norm values significantly smaller than /n = 55.42. The reconstruction error
in each case, when projected onto II is at most 0.0345.

After training, on an input x we obtain a

certified radius for /., perturbations in the Datasct R G B I
DCT basis by obtaining a certified ¢5 radius CIFAR-10 | 1745 [ 1751 | 17.39 | 30.22
via randomized smoothing and then divid- —FFAR-I00 [17.22 | 1733 | 17.37 | 29.97
ing the obtained value by ||II||so—2. We com-
pare with the approach of [12] for training Table 1: The table shows bounds on co — 2
a smoothed classifier without projections. norm for projection matrices obtained by Algo-
Since the classifier of [12] does not involve rithm 2 on CIFAR-10 and CIFAR-100 training
projections, we translate the resulting ¢ sets.

robustness guarantee into an ¢, guarantee by dividing with \/n = 55.42 as done in [12].
Figure 4 shows that across a range of training parameters, our proposed approach leads to
significantly higher certified accuracy to £, perturbations in the DCT basis.

5 Conclusion

In this paper, we have shown significant benefits in leveraging natural structure that exists
in real-world data e.g., low-rank or sparse representations, for obtaining certified robustness
guarantees under both /5 perturbations and ¢, perturbations in natural data representations.
Our experiments involving imperceptibility in the DCT basis for images suggest that further
study of £, robustness for other natural basis (apart from the co-ordinate basis) would be
useful for different data domains like images, audio etc. We also gave faster algorithms for
approximately solving semi-definite programs for quadratic programming (with provable
guarantees that improve the state-of-the-art), to obtain certified ¢, robustness guarantees.
Such problem-specific fast approximate algorithms for powerful algorithmic techniques like
SDPs and other convex relaxations may lead to more scalable certification procedures with
better guarantees. Finally it would be interesting to see if our ideas and techniques involving
the co — 2 operator norm can be adapted into the training phase, in order to achieve better
certified ¢, robustness in any desired basis without compromising much on natural accuracy.



Broader Impact

Our work provides efficient algorithms for training neural networks with certified robustness
guarantees. This can have significant positive societal impact considering the importance of
protecting Al systems against malicious adversaries. A classifier with certified robustness
guarantees can give a sense of security to the end user. On the other hand, our methods
achieve robustness at the expense of a small loss in natural test accuracy as compared to non-
adversarial training. It is unclear how this loss in accuracy is distributed across the population.
This could have a negative societal impact if the loss in accuracy is disproportionately on
data points/individuals belonging to a specific demographic group based on say race or
gender. That said, robustness to perturbations also corresponds to a natural notion of
individual fairness since data points with similar features need to be treated similarly by a
robust classifier. Hence, a careful study must be done to understand these effects before a
large scale practical deployment of systems based on our work.
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