# **Supplementary Materials**

## **A Further Specification of Experiments**

Following [1], we consider a 5-way 5-shot task on both the FC100 and miniImageNet datasets, where we evaluate the model's ability to discriminate 5 unseen classes, given only 5 labelled samples per class. We adopt Adam [15] as the optimizer for the meta outer-loop update, and adopt the cross-entropy loss to measure the error between the predicted and true labels.

### A.1 Introduction of FC100 and miniImageNet datasets

**FC100 dataset.** The FC100 dataset [23] is generated from CIFAR-100 [17], and consists of 100 classes with each class containing 600 images of size 32. Following recent work [23, 18], we split these 100 classes into 60 classes for meta-training, 20 classes for meta-validation, and 20 classes for meta-testing.

**miniImageNet dataset.** The miniImageNet dataset [30] consists of 100 classes randomly chosen from ImageNet [27], where each class contains 600 images of size  $84 \times 84$ . Following the repository [1], we partition these classes into 64 classes for meta-training, 16 classes for meta-validation, and 20 classes for meta-testing.

### A.2 Model Architectures and Hyper-Parameter Setting

We adopt the following four model architectures depending on the dataset and the geometry of the inner-loop loss. The hyper-parameter configuration for each architecture is also provided as follows.

Case 1: FC100 dataset, strongly-convex inner-loop loss. Following [1], we use a 4-layer CNN of four convolutional blocks, where each block sequentially consists of a  $3\times 3$  convolution with a padding of 1 and a stride of 2, batch normalization, ReLU activation, and  $2\times 2$  max pooling. Each convolutional layer has 64 filters. This model is trained with an inner-loop stepsize of 0.005, an outer-loop (meta) stepsize of 0.001, and a mini-batch size of B=32. We set the regularization parameter  $\lambda$  of the  $L^2$  regularizer to be  $\lambda=5$ .

Case 2: FC100 dataset, nonconvex inner-loop loss. We adopt a 5-layer CNN with the first four convolutional layers the same as in Case 1, followed by ReLU activation, and a full-connected layer with size of  $256 \times$  ways. This model is trained with an inner-loop stepsize of 0.04, an outer-loop (meta) stepsize of 0.003, and a mini-batch size of B = 32.

Case 3: miniImageNet dataset, strongly-convex inner-loop loss. Following [24], we use a 4-layer CNN of four convolutional blocks, where each block sequentially consists of a  $3 \times 3$  convolution with 32 filters, batch normalization, ReLU activation, and  $2 \times 2$  max pooling. We choose an inner-loop stepsize of 0.002, an outer-loop (meta) stepsize of 0.002, and a mini-batch size of B = 32, and set the regularization parameter  $\lambda$  of the  $L^2$  regularizer to be  $\lambda = 0.1$ .

Case 4: miniImageNet dataset, nonconvex inner-loop loss. We adopt a 5-layer CNN with the first four convolutional layers the same as in Case 3, followed by ReLU activation, and a full-connected layer with size of  $128 \times$  ways. We choose an inner-loop stepsize of 0.02, an outer-loop (meta) stepsize of 0.003, and a mini-batch size of B=32.

### A.3 Experiments with SGD Optimizer

The experiments in Section 4.1 and Section 4.2 adopt the Adam optimizer. In this subsection, we conduct experiments using mini-batch stochastic gradient descent (SGD) on FC100 dataset. For both the strongly-convex and nonconvex cases, we choose an inner-loop stepsize of 0.05, an outer-loop (meta) stepsize of 0.05, and a mini-batch size of B=32. The results are given in Figure 3. It can be seen that the nature of the results remains the same as those done with the Adam optimizer.

### A.4 Experiments on Comparison of ANIL and MAML

In Figure 4, we compare the computational efficiency between ANIL and MAML. For the miniImageNet dataset, we choose the inner-loop stepsize as 0.1, the outer-loop (meta) stepsize as 0.002, the



Figure 3: Convergence of ANIL with mini-batch SGD over FC100 dataset. Left plot: strongly-convex inner-loop loss; right plot: nonconvex inner-loop loss.

mini-batch size as 32, and the number of inner-loop steps as 5 for ANIL. For MAML, we choose the inner-loop stepsize as 0.5, the outer-loop stepsize as 0.003, the mini-batch size as 32, and the number of inner-loop steps as 3. For the FC100 dataset, we choose the inner-loop stepsize as 0.1, the outer-loop (meta) stepsize as 0.001, the mini-batch size as 32 for ANIL. For MAML, we choose the inner-loop stepsize as 0.5, the outer-loop stepsize as 0.001, and the mini-batch size as 32. We choose the number of inner-loop steps as 10 for ANIL and 3 for MAML. It can be seen that ANIL converges faster than MAML, as well supported by our theoretical results.



Figure 4: Computational comparison of ANIL and MAML. For each dataset, left plot: training accuracy v.s. running time; right plot: test accuracy v.s. running time.

## **B** Proof of Proposition 1

We first prove the form of the partial gradient  $\frac{\partial L_{\mathcal{D}_i}(w_{k,N}^i,\phi_k)}{\partial w_k}$ . Using the chain rule, we have

$$\frac{\partial L_{\mathcal{D}_i}(w_{k,N}^i,\phi_k)}{\partial w_k} = \frac{\partial w_{k,N}^i(w_k,\phi_k)}{\partial w_k} \nabla_w L_{\mathcal{D}_i}(w_{k,N}^i,\phi_k) + \frac{\partial \phi_k}{\partial w_k} \nabla_\phi L_{\mathcal{D}_i}(w_{k,N}^i,\phi_k) 
= \frac{\partial w_{k,N}^i(w_k,\phi_k)}{\partial w_k} \nabla_w L_{\mathcal{D}_i}(w_{k,N}^i,\phi_k),$$
(3)

where the last equality follows from the fact that  $\frac{\partial \phi_k}{\partial w_k} = 0$ . Recall that the gradient updates in Algorithm 1 are given by

$$w_{k,m+1}^{i} = w_{k,m}^{i} - \alpha \nabla_{w} L_{\mathcal{S}_{i}}(w_{k,m}^{i}, \phi_{k}), m = 0, 1, ..., N - 1,$$
(4)

where  $w_{k,0}^i = w_k$  for all i. Taking derivatives w.r.t.  $w_k$  in eq. (4) yields

$$\frac{\partial w_{k,m+1}^{i}}{\partial w_{k}} = \frac{\partial w_{k,m}^{i}}{\partial w_{k}} - \alpha \frac{\partial w_{k,m}^{i}}{\partial w_{k}} \nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{k,m}^{i}, \phi_{k}) - \underbrace{\alpha \frac{\partial \phi_{k}}{\partial w_{k}} \nabla_{\phi} \nabla_{w} L_{\mathcal{S}_{i}}(w_{k,m}^{i}, \phi_{k})}_{0}. \tag{5}$$

Telescoping eq. (5) over m from 0 to N-1 yields

$$\frac{\partial w_{k,N}^i}{\partial w_k} = \prod_{m=0}^{N-1} (I - \alpha \nabla_w^2 L_{\mathcal{S}_i}(w_{k,m}^i, \phi_k)),$$

which, in conjunction eq. (3), yields the first part in Proposition 1.

For the second part, using chain rule, we have

$$\frac{\partial L_{\mathcal{D}_i}(w_{k,N}^i, \phi_k)}{\partial \phi_k} = \frac{\partial w_{k,N}^i}{\partial \phi_k} \nabla_w L_{\mathcal{D}_i}(w_{k,N}^i, \phi_k) + \nabla_\phi L_{\mathcal{D}_i}(w_{k,N}^i, \phi_k). \tag{6}$$

Taking derivates w.r.t.  $\phi_k$  in eq. (4) yields

$$\begin{split} \frac{\partial w_{k,m+1}^{i}}{\partial \phi_{k}} &= \frac{\partial w_{k,m}^{i}}{\partial \phi_{k}} - \alpha \Big( \frac{\partial w_{k,m}^{i}}{\partial \phi_{k}} \nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{k,m}^{i}, \phi_{k}) + \nabla_{\phi} \nabla_{w} L_{\mathcal{S}_{i}}(w_{k,m}^{i}, \phi_{k}) \Big) \\ &= \frac{\partial w_{k,m}^{i}}{\partial \phi_{k}} (I - \alpha \nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{k,m}^{i}, \phi_{k})) - \alpha \nabla_{\phi} \nabla_{w} L_{\mathcal{S}_{i}}(w_{k,m}^{i}, \phi_{k}). \end{split}$$

Telescoping the above equality over m from 0 to N-1 yields

$$\begin{split} \frac{\partial w_{k,N}^i}{\partial \phi_k} &= \frac{\partial w_{k,0}^i}{\partial \phi_k} \prod_{m=0}^{N-1} (I - \alpha \nabla_w^2 L_{\mathcal{S}_i}(w_{k,m}^i, \phi_k)) \\ &- \alpha \sum_{m=0}^{N-1} \nabla_\phi \nabla_w L_{\mathcal{S}_i}(w_{k,m}^i, \phi_k) \prod_{j=m+1}^{N-1} (I - \alpha \nabla_w^2 L_{\mathcal{S}_i}(w_{k,j}^i, \phi_k)), \end{split}$$

which, in conjunction with the fact that  $\frac{\partial w_{k,0}^i}{\partial \phi_k} = \frac{\partial w_k}{\partial \phi_k} = 0$  and eq. (6), yields the second part.

### C Proof in Section 3.1: Strongly-Convex Inner Loop

### C.1 Auxiliary Lemma

The following lemma characterizes a bound on the difference between  $w_t^i(w_1,\phi_1)$  and  $w_t^i(w_2,\phi_2)$ , where  $w_t^i(w,\phi)$  corresponds to the  $t^{th}$  inner-loop iteration starting from the initialization point  $(w,\phi)$ . Lemma 1. Choose  $\alpha$  such that  $1-2\alpha\mu+\alpha^2L^2>0$ . Then, for any two points  $(w_1,\phi_1),(w_2,\phi_2)\in\mathbb{R}^n$ , we have

$$\left\| w_t^i(w_1, \phi_1) - w_t^i(w_2, \phi_2) \right\| \le (1 - 2\alpha\mu + \alpha^2 L^2)^{\frac{t}{2}} \|w_1 - w_2\| + \frac{\alpha L \|\phi_1 - \phi_2\|}{1 - \sqrt{1 - 2\alpha\mu + \alpha^2 L^2}}.$$

*Proof.* Based on the updates in eq. (2), we have

$$w_{m+1}^{i}(w_{1}, \phi_{1}) - w_{m+1}^{i}(w_{2}, \phi_{2}) = w_{m}^{i}(w_{1}, \phi_{1}) - w_{m}^{i}(w_{2}, \phi_{2})$$
$$- \alpha \left( \nabla_{w} L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{1}, \phi_{1}), \phi_{1}) - \nabla_{w} L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{2}, \phi_{2}), \phi_{1}) \right)$$
$$+ \alpha \left( \nabla_{w} L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{2}, \phi_{2}), \phi_{2}) - \nabla_{w} L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{2}, \phi_{2}), \phi_{1}) \right),$$

which, together with the triangle inequality and Assumption 1, yields

$$\|w_{m+1}^{i}(w_{1},\phi_{1}) - w_{m+1}^{i}(w_{2},\phi_{2})\| \le \underbrace{\|w_{m}^{i}(w_{1},\phi_{1}) - w_{m}^{i}(w_{2},\phi_{2}) - \alpha(\nabla_{w}L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{1},\phi_{1}),\phi_{1}) - \nabla_{w}L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{2},\phi_{2}),\phi_{1}))\|}_{P} + \alpha L\|\phi_{1} - \phi_{2}\|.$$

$$(7)$$

Our next step is to upper-bound the term P in eq. (7). Note that

$$P^{2} = \|w_{m}^{i}(w_{1}, \phi_{1}) - w_{m}^{i}(w_{2}, \phi_{2})\|^{2} + \alpha^{2} \|\nabla_{w}L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{1}, \phi_{1}), \phi_{1}) - \nabla_{w}L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{2}, \phi_{2}), \phi_{1})\|^{2}$$

$$- 2\alpha \left\langle w_{m}^{i}(w_{1}, \phi_{1}) - w_{m}^{i}(w_{2}, \phi_{2}), \nabla_{w}L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{1}, \phi_{1}), \phi_{1}) - \nabla_{w}L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{2}, \phi_{2}), \phi_{1}) \right\rangle$$

$$\leq (1 + \alpha^{2}L^{2} - 2\alpha\mu) \|w_{m}^{i}(w_{1}, \phi_{1}) - w_{m}^{i}(w_{2}, \phi_{2})\|^{2},$$

$$(8)$$

where the last inequality follows from the strong-convexity of the loss function  $L_{S_i}(\cdot, \phi)$  that for any w, w' and  $\phi$ ,

$$\langle w - w', \nabla_w L_{\mathcal{S}_i}(w, \phi) - \nabla_w L_{\mathcal{S}_i}(w', \phi) \rangle \ge \mu \|w - w'\|^2$$
.

Substituting eq. (8) into eq. (7) yields

$$||w_{m+1}^{i}(w_{1},\phi_{1}) - w_{m+1}^{i}(w_{2},\phi_{2})|| \leq \sqrt{1 + \alpha^{2}L^{2} - 2\alpha\mu} ||w_{m}^{i}(w_{1},\phi_{1}) - w_{m}^{i}(w_{2},\phi_{2})|| + \alpha L||\phi_{1} - \phi_{2}||.$$

$$(9)$$

Telescoping the above inequality over m from 0 to t-1 completes the proof.

### C.2 Proof of Proposition 2

Using an approach similar to the proof of Proposition 1, we have

$$\frac{\partial L_{\mathcal{D}_i}(w_N^i, \phi)}{\partial w} = \prod_{m=0}^{N-1} (I - \alpha \nabla_w^2 L_{\mathcal{S}_i}(w_m^i, \phi)) \nabla_w L_{\mathcal{D}_i}(w_N^i, \phi). \tag{10}$$

Let  $w_m^i(w,\phi)$  denote the  $m^{th}$  inner-loop iteration starting from  $(w,\phi)$ . Then, we have

$$\left\| \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i}, \phi)}{\partial w} \Big|_{(w_{1}, \phi_{1})} - \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i}, \phi)}{\partial w} \Big|_{(w_{2}, \phi_{2})} \right\| \\
\leq \underbrace{\left\| \prod_{m=0}^{N-1} (I - \alpha \nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{2}, \phi_{2}), \phi_{2})) \right\| \left\| \nabla_{w} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{1}, \phi_{1}), \phi_{1}) - \nabla_{w} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{2}, \phi_{2}), \phi_{2}) \right\|}_{P} \\
+ \left\| \prod_{m=0}^{N-1} (I - \alpha \nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{1}, \phi_{1}), \phi_{1})) \nabla_{w} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{1}, \phi_{1}), \phi_{1}) - \prod_{m=0}^{N-1} (I - \alpha \nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{2}, \phi_{2}), \phi_{2})) \nabla_{w} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{1}, \phi_{1}), \phi_{1}) \right\|}_{Q}, \tag{11}$$

where  $w_m^i(w,\phi)$  is obtained through the following gradient descent steps

$$w_{t+1}^{i}(w,\phi) = w_{t}^{i}(w,\phi) - \alpha \nabla_{w} L_{\mathcal{S}_{i}}(w_{t}^{i}(w,\phi),\phi), t = 0, ..., m-1 \text{ and } w_{0}^{i}(w,\phi) = w.$$
 (12)

We next upper-bound the term P in eq. (11). Based on the strongly-convexity of the function  $L_{S_i}(\cdot,\phi)$ , we have  $\|I-\alpha\nabla_w^2L_{S_i}(\cdot,\phi)\| \leq 1-\alpha\mu$ , and hence

$$P \leq (1 - \alpha \mu)^{N} \| \nabla_{w} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{1}, \phi_{1}), \phi_{1}) - \nabla_{w} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{2}, \phi_{2}), \phi_{2}) \|$$

$$\leq (1 - \alpha \mu)^{N} L (\|w_{N}^{i}(w_{1}, \phi_{1}) - w_{N}^{i}(w_{2}, \phi_{2})\| + \|\phi_{1} - \phi_{2}\|)$$

$$\leq (1 - \alpha \mu)^{N} L \left( (1 - 2\alpha \mu + \alpha^{2} L^{2})^{\frac{N}{2}} \|w_{1} - w_{2}\| + \frac{\alpha L \|\phi_{1} - \phi_{2}\|}{1 - \sqrt{1 - 2\alpha \mu + \alpha^{2} L^{2}}} + \|\phi_{1} - \phi_{2}\| \right)$$

$$\stackrel{(iii)}{\leq} (1 - \alpha \mu)^{\frac{3N}{2}} L \|w_{1} - w_{2}\| + (1 - \alpha \mu)^{N} L \left( \frac{2L}{\mu} + 1 \right) \|\phi_{1} - \phi_{2}\|, \tag{13}$$

where (i) follows from Assumption 1, (ii) follows from Lemma 1, and (iii) follows from the fact that  $\alpha\mu = \frac{\mu^2}{L^2} = \alpha^2 L^2$  and  $\sqrt{1-x} \le 1 - \frac{1}{2}x$ .

To upper-bound the term Q in eq. (11), we have

$$Q \leq M \underbrace{\left\| \prod_{m=0}^{N-1} (I - \alpha \nabla_w^2 L_{\mathcal{S}_i}(w_m^i(w_1, \phi_1), \phi_1)) - \prod_{m=0}^{N-1} (I - \alpha \nabla_w^2 L_{\mathcal{S}_i}(w_m^i(w_2, \phi_2), \phi_2)) \right\|}_{P_{N-1}}.$$
 (14)

To upper-bound  $P_{N-1}$  in eq. (14), we define a more general quantity  $P_t$  by replacing N-1 with t in eq. (14). Using the triangle inequality, we have

$$P_{t} \leq \alpha (1 - \alpha \mu)^{t} \|\nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{t}^{i}(w_{1}, \phi_{1}), \phi_{1})) - \nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{t}^{i}(w_{2}, \phi_{2}), \phi_{2}))\| + (1 - \alpha \mu)P_{t-1}$$

$$\leq (1 - \alpha \mu)P_{t-1} + \alpha \rho (1 - \alpha \mu)^{\frac{3t}{2}} \|w_{1} - w_{2}\| + (1 - \alpha \mu)^{t} \alpha \rho \left(\frac{2L}{\mu} + 1\right) \|\phi_{1} - \phi_{2}\|. \tag{15}$$

Telescoping eq. (15) over t from 1 to N-1 yields

$$P_{N-1} \le (1 - \alpha \mu)^{N-1} P_0 + \sum_{t=1}^{N-1} \alpha \rho (1 - \alpha \mu)^{\frac{3t}{2}} \|w_1 - w_2\| (1 - \alpha \mu)^{N-1-t}$$
$$+ \sum_{t=1}^{N-1} (1 - \alpha \mu)^t \alpha \rho \left(\frac{2L}{\mu} + 1\right) \|\phi_1 - \phi_2\| (1 - \alpha \mu)^{N-1-t},$$

which, in conjunction with  $P_0 \le \alpha \rho(\|w_1 - w_2\| + \|\phi_1 - \phi_2\|)$ , yields

$$P_{N-1} \leq (1 - \alpha \mu)^{N-1} \alpha \rho (\|w_1 - w_2\| + \|\phi_1 - \phi_2\|) + \alpha \rho \|w_1 - w_2\| (1 - \alpha \mu)^{N-1} \frac{\sqrt{1 - \alpha \mu}}{1 - \sqrt{1 - \alpha \mu}} + \alpha \rho \left(\frac{2L}{\mu} + 1\right) \|\phi_1 - \phi_2\| (N - 1)(1 - \alpha \mu)^{N-1}$$

$$\leq \frac{2\rho}{\mu} (1 - \alpha \mu)^{N-1} \|w_1 - w_2\| + \alpha \rho \left(\frac{2L}{\mu} + 1\right) \|\phi_1 - \phi_2\| N(1 - \alpha \mu)^{N-1},$$

which, in conjunction with eq. (14), yields

$$Q \le \frac{2\rho M}{\mu} (1 - \alpha \mu)^{N-1} \|w_1 - w_2\| + \alpha \rho M \left(\frac{2L}{\mu} + 1\right) \|\phi_1 - \phi_2\| N (1 - \alpha \mu)^{N-1}.$$
 (16)

Substituting eq. (13) and eq. (16) into eq. (11) yields

$$\left\| \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i}, \phi)}{\partial w} \right|_{(w_{1}, \phi_{1})} - \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i}, \phi)}{\partial w} \Big|_{(w_{2}, \phi_{2})} \| \\
\leq \left( (1 - \alpha \mu)^{\frac{3N}{2}} L + \frac{2\rho M}{\mu} (1 - \alpha \mu)^{N-1} \right) \|w_{1} - w_{2}\| \\
+ \left( (1 - \alpha \mu)^{N} L + \alpha \rho M N (1 - \alpha \mu)^{N-1} \right) \left( \frac{2L}{\mu} + 1 \right) \|\phi_{1} - \phi_{2}\|. \tag{17}$$

Based on the definition  $L^{meta}(w,\phi)=\mathbb{E}_iL_{\mathcal{D}_i}(w_N^i,\phi)$  and using the Jensen's inequality, we have

$$\left\| \frac{\partial L^{meta}(w,\phi)}{\partial w} \Big|_{(w_{1},\phi_{1})} - \frac{\partial L^{meta}(w,\phi)}{\partial w} \Big|_{(w_{2},\phi_{2})} \right\|$$

$$\leq \mathbb{E}_{i} \left\| \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i},\phi)}{\partial w} \Big|_{(w_{1},\phi_{1})} - \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i},\phi)}{\partial w} \Big|_{(w_{2},\phi_{2})} \right\|.$$
 (18)

Combining eq. (17) and eq. (18) completes the proof of the first item.

We next prove the Lipschitz property of the partial gradient  $\frac{\partial L_{\mathcal{D}_i}(w_N^i,\phi)}{\partial \phi}$ . For notational convenience, we define several quantities below.

$$Q_m(w,\phi) = \nabla_{\phi} \nabla_w L_{\mathcal{S}_i}(w_m^i(w,\phi),\phi), \ U_m(w,\phi) = \prod_{j=m+1}^{N-1} (I - \alpha \nabla_w^2 L_{\mathcal{S}_i}(w_j^i(w,\phi),\phi)),$$
$$V_m(w,\phi) = \nabla_w L_{\mathcal{D}_i}(w_N^i(w,\phi),\phi), \tag{19}$$

where we let  $w_m^i(w,\phi)$  denote the  $m^{th}$  inner-loop iteration starting from  $(w,\phi)$ . Using an approach similar to the proof for Proposition 1, we have

$$\frac{\partial L_{\mathcal{D}_i}(w_N^i, \phi)}{\partial \phi} = -\alpha \sum_{m=0}^{N-1} \nabla_{\phi} \nabla_w L_{\mathcal{S}_i}(w_m^i, \phi) \prod_{j=m+1}^{N-1} (I - \alpha \nabla_w^2 L_{\mathcal{S}_i}(w_j^i, \phi)) \nabla_w L_{\mathcal{D}_i}(w_N^i, \phi) + \nabla_{\phi} L_{\mathcal{D}_i}(w_N^i, \phi).$$
(20)

Then, we have

$$\left\| \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i}, \phi)}{\partial \phi} \Big|_{(w_{1}, \phi_{1})} - \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i}, \phi)}{\partial \phi} \Big|_{(w_{2}, \phi_{2})} \right\|$$

$$\leq \alpha \sum_{m=0}^{N-1} \|Q_{m}(w_{1}, \phi_{1})U_{m}(w_{1}, \phi_{1})V_{m}(w_{1}, \phi_{1}) - Q_{m}(w_{2}, \phi_{2})U_{m}(w_{2}, \phi_{2})V_{m}(w_{2}, \phi_{2}) \|$$

$$+ \|\nabla_{\phi}L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{1}, \phi_{1}), \phi_{1}) - \nabla_{\phi}L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{2}, \phi_{2}), \phi_{2}) \|. \tag{21}$$

Using the triangle inequality, we have

$$\|Q_{m}(w_{1},\phi_{1})U_{m}(w_{1},\phi_{1})V_{m}(w_{1},\phi_{1}) - Q_{m}(w_{2},\phi_{2})U_{m}(w_{2},\phi_{2})V_{m}(w_{2},\phi_{2})\|$$

$$\leq \underbrace{\|Q_{m}(w_{1},\phi_{1}) - Q_{m}(w_{2},\phi_{2})\|\|U_{m}(w_{1},\phi_{1})\|\|V_{m}(w_{1},\phi_{1})\|}_{R_{1}}$$

$$+ \underbrace{\|Q_{m}(w_{2},\phi_{2})\|\|U_{m}(w_{1},\phi_{1}) - U_{m}(w_{2},\phi_{2})\|\|V_{m}(w_{1},\phi_{1})\|}_{R_{2}}$$

$$+ \underbrace{\|Q_{m}(w_{2},\phi_{2})\|\|U_{m}(w_{2},\phi_{2})\|\|V_{m}(w_{1},\phi_{1}) - V_{m}(w_{2},\phi_{2})\|}_{R_{2}}. \tag{22}$$

Combining eq. (21) and eq. (22), we have

$$\left\| \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i}, \phi)}{\partial \phi} \Big|_{(w_{1}, \phi_{1})} - \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i}, \phi)}{\partial \phi} \Big|_{(w_{2}, \phi_{2})} \right\|$$

$$\leq \alpha \sum_{m=0}^{N-1} (R_{1} + R_{2} + R_{3}) + \|\nabla_{\phi} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{1}, \phi_{1}), \phi_{1}) - \nabla_{\phi} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{2}, \phi_{2}), \phi_{2}) \|.$$
 (23)

To upper-bound  $R_1$ , we have

$$R_{1} \leq \tau (\|w_{m}^{i}(w_{1}, \phi_{1}) - w_{m}^{i}(w_{2}, \phi_{2})\| + \|\phi_{1} - \phi_{2}\|)(1 - \alpha\mu)^{N - m - 1}M$$

$$\leq \tau M (1 - \alpha\mu)^{N - \frac{m}{2} - 1} \|w_{1} - w_{2}\| + \tau M \left(\frac{2L}{\mu} + 1\right) (1 - \alpha\mu)^{N - m - 1} \|\phi_{1} - \phi_{2}\|, \tag{24}$$

where the second inequality follows from Lemma 1.

For  $R_2$ , based on Assumptions 1 and 2, we have

$$R_2 \le LM \|U_m(w_1, \phi_1) - U_m(w_2, \phi_2)\|.$$
 (25)

Using the definitions of  $U_m(w_1, \phi_1)$  and  $U_m(w_2, \phi_2)$  in eq. (19) and using the triangle inequality, we have

$$||U_{m}(w_{1},\phi_{1}) - U_{m}(w_{2},\phi_{2})||$$

$$\leq \alpha ||\nabla_{w}^{2}L_{\mathcal{S}_{i}}(w_{m+1}^{i}(w_{1},\phi_{1}),\phi_{1}) - \nabla_{w}^{2}L_{\mathcal{S}_{i}}(w_{m+1}^{i}(w_{2},\phi_{2}),\phi_{2})|| ||U_{m+1}(w_{1},\phi_{1})||$$

$$+ ||I - \alpha \nabla_{w}^{2}L_{\mathcal{S}_{i}}(w_{m+1}^{i}(w_{1},\phi_{1}),\phi_{1})|| ||U_{m+1}(w_{1},\phi_{1}) - U_{m+1}(w_{2},\phi_{2})||$$

$$\leq \alpha \rho (1 - \alpha \mu)^{N-m-2} (||w_{m+1}^{i}(w_{1},\phi_{1}) - w_{m+1}^{i}(w_{2},\phi_{2})|| + ||\phi_{1} - \phi_{2}||)$$

$$+ (1 - \alpha \mu)||U_{m+1}(w_{1},\phi_{1}) - U_{m+1}(w_{2},\phi_{2})||$$

$$\leq \alpha \rho (1 - \alpha \mu)^{N-m-2} ((1 - \alpha \mu)^{\frac{m+1}{2}} ||w_{1} - w_{2}|| + (\frac{2L}{\mu} + 1)||\phi_{1} - \phi_{2}||)$$

$$+ (1 - \alpha \mu)||U_{m+1}(w_{1},\phi_{1}) - U_{m+1}(w_{2},\phi_{2})||,$$

where the last inequality follows from Lemma 1. Telescoping the above inequality over m yields

$$\begin{aligned} & \|U_{m}(w_{1},\phi_{1}) - U_{m}(w_{2},\phi_{2})\| \\ & \leq (1 - \alpha\mu)^{N-m-2} \|U_{N-2}(w_{1},\phi_{1}) - U_{N-2}(w_{2},\phi_{2})\| \\ & + \sum_{t=0}^{N-m-3} (1 - \alpha\mu)^{t} \alpha \rho (1 - \alpha\mu)^{N-m-t-2} \Big( (1 - \alpha\mu)^{\frac{m+t+1}{2}} \|w_{1} - w_{2}\| + \Big( \frac{2L}{\mu} + 1 \Big) \|\phi_{1} - \phi_{2}\| \Big), \end{aligned}$$

which, in conjunction with eq. (19), yields

$$||U_{m}(w_{1},\phi_{1}) - U_{m}(w_{2},\phi_{2})|| \leq \left(\frac{\alpha\rho}{1-\alpha\mu} + \frac{2\rho}{\mu}\right) (1-\alpha\mu)^{N-1-\frac{m}{2}} ||w_{1} - w_{2}|| + \alpha(N-1-m)\left(\rho + \frac{2\rho L}{\mu}\right) (1-\alpha\mu)^{N-2-m} ||\phi_{1} - \phi_{2}||.$$
(26)

Combining eq. (25) and eq. (26) yields

$$R_{2} \leq LM \left( \frac{\alpha \rho}{1 - \alpha \mu} + \frac{2\rho}{\mu} \right) (1 - \alpha \mu)^{N - 1 - \frac{m}{2}} \| w_{1} - w_{2} \|$$

$$+ \alpha LM (N - 1 - m) \left( \rho + \frac{2\rho L}{\mu} \right) (1 - \alpha \mu)^{N - 2 - m} \| \phi_{1} - \phi_{2} \|.$$
(27)

For  $R_3$ , using the triangle inequality, we have

$$R_{3} \leq L(1 - \alpha \mu)^{N - m - 1} L(\|w_{N}^{i}(w_{1}, \phi_{1}) - w_{N}^{i}(w_{2}, \phi_{2})\| + \|\phi_{1} - \phi_{2}\|)$$

$$\leq L^{2} (1 - \alpha \mu)^{\frac{3N}{2} - m - 1} \|w_{1} - w_{2}\| + L^{2} \left(\frac{2L}{\mu} + 1\right) (1 - \alpha \mu)^{N - 1 - m} \|\phi_{1} - \phi_{2}\|. \tag{28}$$

where the last inequality follows from Lemma 1.

Combine  $R_1$ ,  $R_2$  and  $R_3$  in eq. (24), eq. (27) and eq. (28), we have

$$\sum_{m=0}^{N-1} (R_1 + R_2 + R_3) \leq \frac{2\tau M}{\alpha \mu} (1 - \alpha \mu)^{\frac{N-1}{2}} \| w_1 - w_2 \| + \frac{\tau M}{\alpha \mu} \left( \frac{2L}{\mu} + 1 \right) \| \phi_1 - \phi_2 \| 
+ \frac{2LM}{\alpha \mu} \left( \frac{\alpha \rho}{1 - \alpha \mu} + \frac{2\rho}{\mu} \right) (1 - \alpha \mu)^{\frac{N-1}{2}} \| w_1 - w_2 \| + \frac{\alpha LM}{\alpha^2 \mu^2} \left( \rho + \frac{2\rho L}{\mu} \right) \| \phi_1 - \phi_2 \| 
+ \frac{L^2}{\alpha \mu} (1 - \alpha \mu)^{\frac{N}{2}} \| w_1 - w_2 \| + \frac{L^2}{\alpha \mu} \left( \frac{2L}{\mu} + 1 \right) \| \phi_1 - \phi_2 \|.$$
(29)

In addition, note that

$$\|\nabla_{\phi} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{1}, \phi_{1}), \phi_{1}) - \nabla_{\phi} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{2}, \phi_{2}), \phi_{2})\|$$

$$\leq (1 - \alpha\mu)^{\frac{N}{2}} L \|w_{1} - w_{2}\| + L\left(\frac{2L}{\mu} + 1\right) \|\phi_{1} - \phi_{2}\|. \tag{30}$$

Combining eq. (23), eq. (29), and eq. (30) yields

$$\left\| \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i}, \phi)}{\partial \phi} \right|_{(w_{1}, \phi_{1})} - \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i}, \phi)}{\partial \phi} \Big|_{(w_{2}, \phi_{2})} \right\| \\
\leq \left( L + \frac{2\tau M}{\mu} + \frac{2LM}{\mu} \left( \frac{\alpha \rho}{1 - \alpha \mu} + \frac{2\rho}{\mu} \right) + \frac{L^{2}}{\mu} \right) (1 - \alpha \mu)^{\frac{N-1}{2}} \|w_{1} - w_{2}\| \\
+ \left( L + \frac{\tau M}{\mu} + \frac{LM\rho}{\mu^{2}} + \frac{L^{2}}{\mu} \right) \left( \frac{2L}{\mu} + 1 \right) \|\phi_{1} - \phi_{2}\|, \tag{31}$$

which, using an approach similar to eq. (18), completes the proof.

#### C.3 Proof of Theorem 1

For notational convenience, we define

$$g_{w}^{i}(k) = \frac{\partial L_{\mathcal{D}_{i}}(w_{k,N}^{i}, \phi_{k})}{\partial w_{k}}, \quad g_{\phi}^{i}(k) = \frac{\partial L_{\mathcal{D}_{i}}(w_{k,N}^{i}, \phi_{k})}{\partial \phi_{k}},$$

$$L_{w} = (1 - \alpha \mu)^{\frac{3N}{2}} L + \frac{2\rho M}{\mu} (1 - \alpha \mu)^{N-1}, L_{w}' = \left(L + \alpha \rho M N\right) (1 - \alpha \mu)^{N-1} \left(\frac{2L}{\mu} + 1\right),$$

$$L_{\phi} = \left(L + \frac{2\tau M}{\mu} + \frac{2LM}{\mu} \left(\frac{\alpha \rho}{1 - \alpha \mu} + \frac{2\rho}{\mu}\right) + \frac{L^{2}}{\mu}\right) (1 - \alpha \mu)^{\frac{N-1}{2}},$$

$$L_{\phi}' = \left(L + \frac{\tau M}{\mu} + \frac{LM\rho}{\mu^{2}} + \frac{L^{2}}{\mu}\right) \left(\frac{2L}{\mu} + 1\right).$$
(32)

Then, the updates of Algorithm 1 are given by

$$w_{k+1} = w_k - \frac{\beta_w}{B} \sum_{i \in \mathcal{B}_k} g_w^i(k) \text{ and } \phi_{k+1} = \phi_k - \frac{\beta_\phi}{B} \sum_{i \in \mathcal{B}_k} g_\phi^i(k).$$
 (33)

Based on the smoothness properties established in eq. (17) and eq. (31) in the proof of Proposition 2, we have

$$L^{meta}(w_{k+1}, \phi_k) \leq L^{meta}(w_k, \phi_k) + \left\langle \frac{\partial L^{meta}(w_k, \phi_k)}{\partial w_k}, w_{k+1} - w_k \right\rangle + \frac{L_w}{2} \|w_{k+1} - w_k\|^2,$$

$$L^{meta}(w_{k+1}, \phi_{k+1}) \leq L^{meta}(w_{k+1}, \phi_k) + \left\langle \frac{\partial L^{meta}(w_{k+1}, \phi_k)}{\partial \phi_k}, \phi_{k+1} - \phi_k \right\rangle + \frac{L'_{\phi}}{2} \|\phi_{k+1} - \phi_k\|^2.$$

Adding the above two inequalities, we have

$$L^{meta}(w_{k+1}, \phi_{k+1}) \leq L^{meta}(w_k, \phi_k) + \left\langle \frac{\partial L^{meta}(w_k, \phi_k)}{\partial w_k}, w_{k+1} - w_k \right\rangle + \frac{L_w}{2} \|w_{k+1} - w_k\|^2$$

$$+ \left\langle \frac{\partial L^{meta}(w_k, \phi_k)}{\partial \phi_k}, \phi_{k+1} - \phi_k \right\rangle + \frac{L'_{\phi}}{2} \|\phi_{k+1} - \phi_k\|^2$$

$$+ \left\langle \frac{\partial L^{meta}(w_{k+1}, \phi_k)}{\partial \phi_k} - \frac{\partial L^{meta}(w_k, \phi_k)}{\partial \phi_k}, \phi_{k+1} - \phi_k \right\rangle.$$
 (34)

Based on the Cauchy-Schwarz inequality, we have

$$\left\langle \frac{\partial L^{meta}(w_{k+1}, \phi_{k})}{\partial \phi_{k}} - \frac{\partial L^{meta}(w_{k}, \phi_{k})}{\partial \phi_{k}}, \phi_{k+1} - \phi_{k} \right\rangle \\
\leq L_{\phi} \|w_{k+1} - w_{k}\| \|\phi_{k+1} - \phi_{k}\| \\
\leq \frac{L_{\phi}}{2} \|w_{k+1} - w_{k}\|^{2} + \frac{L_{\phi}}{2} \|\phi_{k+1} - \phi_{k}\|^{2}.$$
(35)

Combining eq. (34) and eq. (35), we have

$$L^{meta}(w_{k+1}, \phi_{k+1}) \leq L^{meta}(w_k, \phi_k) + \left\langle \frac{\partial L^{meta}(w_k, \phi_k)}{\partial w_k}, w_{k+1} - w_k \right\rangle + \frac{L_w + L_\phi}{2} \|w_{k+1} - w_k\|^2 + \left\langle \frac{\partial L^{meta}(w_k, \phi_k)}{\partial \phi_k}, \phi_{k+1} - \phi_k \right\rangle + \frac{L_\phi + L'_\phi}{2} \|\phi_{k+1} - \phi_k\|^2,$$

which, in conjunction with the updates in eq. (33), yields

 $L^{meta}(w_{k+1},\phi_{k+1})$ 

$$\leq L^{meta}(w_k, \phi_k) - \left\langle \frac{\partial L^{meta}(w_k, \phi_k)}{\partial w_k}, \frac{\beta_w}{B} \sum_{i \in \mathcal{B}_k} g_w^i(k) \right\rangle + \frac{L_w + L_\phi}{2} \left\| \frac{\beta_w}{B} \sum_{i \in \mathcal{B}_k} g_w^i(k) \right\|^2 - \left\langle \frac{\partial L^{meta}(w_k, \phi_k)}{\partial \phi_k}, \frac{\beta_\phi}{B} \sum_{i \in \mathcal{B}_k} g_\phi^i(k) \right\rangle + \frac{L_\phi + L'_\phi}{2} \left\| \frac{\beta_\phi}{B} \sum_{i \in \mathcal{B}_k} g_\phi^i(k) \right\|^2. \tag{36}$$

Let  $\mathbb{E}_k = \mathbb{E}(\cdot|w_k,\phi_k)$ . Then, conditioning on  $w_k,\phi_k$ , and taking expectation over eq. (36), we have

$$\mathbb{E}_{k}L^{meta}(w_{k+1},\phi_{k+1}) \stackrel{(i)}{\leq} L^{meta}(w_{k},\phi_{k}) - \beta_{w} \left\| \frac{\partial L^{meta}(w_{k},\phi_{k})}{\partial w_{k}} \right\|^{2} + \frac{L_{w} + L_{\phi}}{2} \mathbb{E}_{k} \left\| \frac{\beta_{w}}{B} \sum_{i \in \mathcal{B}_{k}} g_{w}^{i}(k) \right\|^{2} \\
- \beta_{\phi} \left\| \frac{\partial L^{meta}(w_{k},\phi_{k})}{\partial \phi_{k}} \right\| + \frac{L_{\phi} + L'_{\phi}}{2} \mathbb{E}_{k} \left\| \frac{\beta_{\phi}}{B} \sum_{i \in \mathcal{B}_{k}} g_{\phi}^{i}(k) \right\|^{2} \\
\leq L^{meta}(w_{k},\phi_{k}) - \beta_{w} \left\| \frac{\partial L^{meta}(w_{k},\phi_{k})}{\partial w_{k}} \right\|^{2} + \frac{(L_{w} + L_{\phi})\beta_{w}^{2}}{2B} \mathbb{E}_{k} \left\| g_{w}^{i}(k) \right\|^{2} \\
+ \frac{L_{\phi} + L_{w}}{2} \beta_{w}^{2} \left\| \frac{\partial L^{meta}(w_{k},\phi_{k})}{\partial w_{k}} \right\|^{2} - \beta_{\phi} \left\| \frac{\partial L^{meta}(w_{k},\phi_{k})}{\partial \phi_{k}} \right\|^{2} \\
+ \frac{L_{\phi} + L'_{\phi}}{2} \left( \frac{\beta_{\phi}^{2}}{B} \mathbb{E}_{k} \left\| g_{\phi}^{i}(k) \right\|^{2} + \beta_{\phi}^{2} \right\| \frac{\partial L^{meta}(w_{k},\phi_{k})}{\partial \phi_{k}} \right\|^{2} \right), \tag{37}$$

where (i) follows from the fact that  $\mathbb{E}_k g_w^i(k) = \frac{\partial L^{meta}(w_k, \phi_k)}{\partial w_k}$  and  $\mathbb{E}_k g_\phi^i(k) = \frac{\partial L^{meta}(w_k, \phi_k)}{\partial \phi_k}$ .

Our next step is to upper-bound  $\mathbb{E}_k \|g_w^i(k)\|^2$  and  $\mathbb{E}_k \|g_\phi^i(k)\|^2$  in eq. (37). Based on the definitions of  $g_w^i(k)$  in eq. (32) and using the explicit forms of the meta gradients in Proposition 1, we have

$$\mathbb{E}_{k} \|g_{w}^{i}(k)\|^{2} \leq \mathbb{E}_{k} \| \prod_{m=0}^{N-1} (I - \alpha \nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{k,m}^{i}, \phi_{k})) \nabla_{w} L_{\mathcal{D}_{i}}(w_{k,N}^{i}, \phi_{k}) \|^{2}$$

$$\leq (1 - \alpha \mu)^{2N} M^{2}.$$
(38)

Using an approach similar to eq. (38), we have

$$\mathbb{E}_{k} \|g_{\phi}^{i}(k)\|^{2} \leq 2\mathbb{E}_{k} \|\alpha \sum_{m=0}^{N-1} \nabla_{\phi} \nabla_{w} L_{\mathcal{S}_{i}}(w_{k,m}^{i}, \phi_{k}) \prod_{j=m+1}^{N-1} (I - \alpha \nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{k,j}^{i}, \phi_{k})) \nabla_{w} L_{\mathcal{D}_{i}}(w_{k,N}^{i}, \phi_{k}) \|^{2} 
+ 2 \|\nabla_{\phi} L_{\mathcal{D}_{i}}(w_{k,N}^{i}, \phi_{k})\|^{2} 
\leq 2\alpha^{2} L^{2} M^{2} \mathbb{E}_{k} \left( \sum_{m=0}^{N-1} (1 - \alpha \mu)^{N-1-m} \right)^{2} + 2M^{2} 
< \frac{2L^{2} M^{2}}{\mu^{2}} + 2M^{2} < 2M^{2} \left( \frac{L^{2}}{\mu^{2}} + 1 \right).$$
(39)

Substituting eq. (38) and eq. (39) into eq. (37) yields

$$\mathbb{E}_{k}L^{meta}(w_{k+1},\phi_{k+1}) \leq L^{meta}(w_{k},\phi_{k}) - \left(\beta_{w} - \frac{L_{w} + L_{\phi}}{2}\beta_{w}^{2}\right) \left\| \frac{\partial L^{meta}(w_{k},\phi_{k})}{\partial w_{k}} \right\|^{2} + \frac{(L_{w} + L_{\phi})\beta_{w}^{2}}{2B} (1 - \alpha\mu)^{2N}M^{2} - \left(\beta_{\phi} - \frac{L_{\phi} + L_{\phi}'}{2}\beta_{\phi}^{2}\right) \left\| \frac{\partial L^{meta}(w_{k},\phi_{k})}{\partial \phi_{k}} \right\|^{2} + \frac{(L_{\phi} + L_{\phi}')\beta_{\phi}^{2}}{B}M^{2} \left(\frac{L^{2}}{\mu^{2}} + 1\right).$$
(40)

Let  $\beta_w = \frac{1}{L_w + L_\phi}$  and  $\beta_\phi = \frac{1}{L_\phi + L'_\phi}$ . Then, unconditioning on  $w_k$  and  $\phi_k$  and telescoping eq. (40) over k from 0 to K-1 yield

$$\frac{\beta_{w}}{2} \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \left\| \frac{\partial L^{meta}(w_{k}, \phi_{k})}{\partial w_{k}} \right\|^{2} + \frac{\beta_{\phi}}{2} \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \left\| \frac{\partial L^{meta}(w_{k}, \phi_{k})}{\partial \phi_{k}} \right\|^{2} \\
\leq \frac{L^{meta}(w_{0}, \phi_{0}) - \min_{w, \phi} L^{meta}(w, \phi)}{K} + \frac{\beta_{w}}{2B} (1 - \alpha \mu)^{2N} M^{2} + \frac{\beta_{\phi}}{B} M^{2} \left( \frac{L^{2}}{\mu^{2}} + 1 \right). \tag{41}$$

Let  $\Delta = L^{meta}(w_0, \phi_0) - \min_{w, \phi} L^{meta}(w, \phi)$  and let  $\xi$  be chosen from  $\{0, ..., K-1\}$  uniformly at random. Then, we have

$$\mathbb{E} \left\| \frac{\partial L^{meta}(w_{\xi}, \phi_{\xi})}{\partial w_{\xi}} \right\|^{2} \leq \frac{2\Delta(L_{w} + L_{\phi})}{K} + \frac{(1 - \alpha\mu)^{2N}M^{2}}{B} + \frac{L_{w} + L_{\phi}}{L_{\phi} + L'_{\phi}} \frac{2}{B}M^{2} \left(\frac{L^{2}}{\mu^{2}} + 1\right),$$

$$\mathbb{E} \left\| \frac{\partial L^{meta}(w_{\xi}, \phi_{\xi})}{\partial \phi_{\xi}} \right\|^{2} \leq \frac{2\Delta(L_{\phi} + L'_{\phi})}{K} + \frac{L_{\phi} + L'_{\phi}}{L_{w} + L_{\phi}} \frac{1}{B} (1 - \alpha\mu)^{2N}M^{2} + \frac{2}{B}M^{2} \left(\frac{L^{2}}{\mu^{2}} + 1\right),$$

which, in conjunction with the definitions of  $L_{\phi}$ ,  $L'_{\phi}$  and  $L_{w}$  in eq. (32) and  $\alpha = \frac{\mu}{L^{2}}$ , yields

$$\mathbb{E} \left\| \frac{\partial L^{meta}(w_{\xi}, \phi_{\xi})}{\partial w_{\xi}} \right\|^{2} \leq \mathcal{O} \left( \frac{\frac{1}{\mu^{2}} \left( 1 - \frac{\mu^{2}}{L^{2}} \right)^{\frac{N}{2}}}{K} + \frac{\frac{1}{\mu} \left( 1 - \frac{\mu^{2}}{L^{2}} \right)^{\frac{N}{2}}}{B} \right),$$

$$\mathbb{E} \left\| \frac{\partial L^{meta}(w_{\xi}, \phi_{\xi})}{\partial \phi_{\xi}} \right\|^{2} \leq \mathcal{O} \left( \frac{\frac{1}{\mu^{2}} \left( 1 - \frac{\mu^{2}}{L^{2}} \right)^{\frac{N}{2}} + \frac{1}{\mu^{3}}}{K} + \frac{\frac{1}{\mu} \left( 1 - \frac{\mu^{2}}{L^{2}} \right)^{\frac{3N}{2}} + \frac{1}{\mu^{2}}}{B} \right).$$

To achieve an  $\epsilon$ -stationary point, i.e.,  $\mathbb{E}\left\|\frac{\partial L^{meta}(w,\phi)}{\partial w}\right\|^2 < \epsilon, \mathbb{E}\left\|\frac{\partial L^{meta}(w,\phi)}{\partial w}\right\|^2 < \epsilon$ , ANIL requires at most

$$KBN = \mathcal{O}\left(\frac{L^2}{\mu^2} \left(1 - \frac{\mu^2}{L^2}\right)^{\frac{N}{2}} + \frac{L^3}{\mu^3}\right) \left(\frac{L}{\mu} \left(1 - \frac{\mu^2}{L^2}\right)^{\frac{3N}{2}} + \frac{L^2}{\mu^2}\right) N\epsilon^{-2}$$

$$\leq \mathcal{O}\left(\frac{N}{\mu^4} \left(1 - \frac{\mu^2}{L^2}\right)^{\frac{N}{2}} + \frac{N}{\mu^5}\right) \epsilon^{-2}$$

gradient evaluations in w,  $KB = \mathcal{O}\Big(\mu^{-4}\left(1-\frac{\mu^2}{L^2}\right)^{N/2} + \mu^{-5}\Big)\epsilon^{-2}$  gradient evaluations in  $\phi$ , and  $KBN = \mathcal{O}\Big(\frac{N}{\mu^4}\left(1-\frac{\mu^2}{L^2}\right)^{N/2} + \frac{N}{\mu^5}\Big)\epsilon^{-2}$  evaluations of second-order derivatives.

## D Proof in Section 3.2: Nonconvex Inner Loop

### D.1 Proof of Proposition 3

Based on the explicit forms of the meta gradient in eq. (10) and using an approach similar to eq. (11), we have

$$\left\| \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i}, \phi)}{\partial w} \Big|_{(w_{1}, \phi_{1})} - \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i}, \phi)}{\partial w} \Big|_{(w_{2}, \phi_{2})} \right\| \\
= \left\| \prod_{m=0}^{N-1} (I - \alpha \nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{1}, \phi_{1}), \phi_{1})) \nabla_{w} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{1}, \phi_{1}), \phi_{1}) - \prod_{m=0}^{N-1} (I - \alpha \nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{2}, \phi_{2}), \phi_{2})) \nabla_{w} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{2}, \phi_{2}), \phi_{2}) \right\|, \tag{42}$$

where  $w_m^i(w,\phi)$  is obtained through the gradient descent steps in eq. (12).

Using the triangle inequality in eq. (42) yields

$$\left\| \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i}, \phi)}{\partial w} \Big|_{(w_{1}, \phi_{1})} - \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i}, \phi)}{\partial w} \Big|_{(w_{2}, \phi_{2})} \right\| \\
\leq \left\| \prod_{m=0}^{N-1} (I - \alpha \nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{2}, \phi_{2}), \phi_{2})) \right\| \left\| \nabla_{w} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{1}, \phi_{1}), \phi_{1}) - \nabla_{w} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{2}, \phi_{2}), \phi_{2}) \right\| \\
+ \left\| \prod_{m=0}^{N-1} (I - \alpha \nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{1}, \phi_{1}), \phi_{1})) \nabla_{w} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{1}, \phi_{1}), \phi_{1}) - \prod_{m=0}^{N-1} (I - \alpha \nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{2}, \phi_{2}), \phi_{2})) \nabla_{w} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{1}, \phi_{1}), \phi_{1}) \right\|. \tag{43}$$

Our next two steps are to upper-bound the two terms at the right hand side of eq. (43), respectively. Step 1: Upper-bound the first term at the right hand side of eq. (43).

$$\left\| \prod_{m=0}^{N-1} (I - \alpha \nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{2}, \phi_{2}), \phi_{2})) \right\| \left\| \nabla_{w} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{1}, \phi_{1}), \phi_{1}) - \nabla_{w} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{2}, \phi_{2}), \phi_{2}) \right\|$$

$$\stackrel{(i)}{\leq} (1 + \alpha L)^{N} \left\| \nabla_{w} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{1}, \phi_{1}), \phi_{1}) - \nabla_{w} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{2}, \phi_{2}), \phi_{2}) \right\|$$

$$\stackrel{(ii)}{\leq} (1 + \alpha L)^{N} L(\|w_{N}^{i}(w_{1}, \phi_{1}) - w_{N}^{i}(w_{2}, \phi_{2})\| + \|\phi_{1} - \phi_{2}\|),$$

$$\stackrel{(ii)}{\leq} (1 + \alpha L)^{N} L(\|w_{N}^{i}(w_{1}, \phi_{1}) - w_{N}^{i}(w_{2}, \phi_{2})\| + \|\phi_{1} - \phi_{2}\|),$$

$$\stackrel{(ii)}{\leq} (1 + \alpha L)^{N} L(\|w_{N}^{i}(w_{1}, \phi_{1}) - w_{N}^{i}(w_{2}, \phi_{2})\| + \|\phi_{1} - \phi_{2}\|),$$

$$\stackrel{(ii)}{\leq} (1 + \alpha L)^{N} L(\|w_{N}^{i}(w_{1}, \phi_{1}) - w_{N}^{i}(w_{2}, \phi_{2})\| + \|\phi_{1} - \phi_{2}\|),$$

$$\stackrel{(ii)}{\leq} (1 + \alpha L)^{N} L(\|w_{N}^{i}(w_{1}, \phi_{1}) - w_{N}^{i}(w_{2}, \phi_{2})\| + \|\phi_{1} - \phi_{2}\|),$$

$$\stackrel{(ii)}{\leq} (1 + \alpha L)^{N} L(\|w_{N}^{i}(w_{1}, \phi_{1}) - w_{N}^{i}(w_{2}, \phi_{2})\| + \|\phi_{1} - \phi_{2}\|),$$

$$\stackrel{(ii)}{\leq} (1 + \alpha L)^{N} L(\|w_{N}^{i}(w_{1}, \phi_{1}) - w_{N}^{i}(w_{2}, \phi_{2})\| + \|\phi_{1} - \phi_{2}\|),$$

$$\stackrel{(ii)}{\leq} (1 + \alpha L)^{N} L(\|w_{N}^{i}(w_{1}, \phi_{1}) - w_{N}^{i}(w_{2}, \phi_{2})\| + \|\phi_{1} - \phi_{2}\|),$$

where (i) follows from the fact that  $\|\nabla_w^2 L_{\mathcal{S}_i}(w_m^i(w_2,\phi_2),\phi_2)\| \leq L$ , and (ii) follows from Assumption 1. Based on the gradient descent steps in eq. (12), we have, for any  $0 \leq m \leq N-1$ ,

$$w_{m+1}^{i}(w_{1},\phi_{1}) - w_{m+1}^{i}(w_{2},\phi_{2})$$

$$= w_{m}^{i}(w_{1},\phi_{1}) - w_{m}^{i}(w_{2},\phi_{2}) - \alpha \left(\nabla_{w}L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{1},\phi_{1}),\phi_{1}) - \nabla_{w}L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{2},\phi_{2}),\phi_{2})\right).$$

Based on the above equality, we further obtain

$$\begin{aligned} \|w_{m+1}^{i}(w_{1},\phi_{1}) - w_{m+1}^{i}(w_{2},\phi_{2})\| &\leq \|w_{m}^{i}(w_{1},\phi_{1}) - w_{m}^{i}(w_{2},\phi_{2})\| \\ &+ \alpha \|\nabla_{w}L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{1},\phi_{1}),\phi_{1}) - \nabla_{w}L_{\mathcal{S}_{i}}(w_{m}^{i}(w_{2},\phi_{2}),\phi_{2})\| \\ &\leq (1 + \alpha L)\|w_{m}^{i}(w_{1},\phi_{1}) - w_{m}^{i}(w_{2},\phi_{2})\| + \alpha L\|\phi_{1} - \phi_{2}\|, \end{aligned}$$

where the last inequality follows from Assumption 1. Telescoping the above inequality over m from 0 to N-1 yields

$$||w_N^i(w_1,\phi_1) - w_N^i(w_2,\phi_2)|| \le (1+\alpha L)^N ||w_1 - w_2|| + ((1+\alpha L)^N - 1)||\phi_1 - \phi_2||.$$
 (45)

Combining eq. (44) and eq. (45) yields

$$\left\| \prod_{m=0}^{N-1} (I - \alpha \nabla_w^2 L_{\mathcal{S}_i}(w_m^i(w_2, \phi_2), \phi_2)) \right\| \left\| \nabla_w L_{\mathcal{D}_i}(w_N^i(w_1, \phi_1), \phi_1) - \nabla_w L_{\mathcal{D}_i}(w_N^i(w_2, \phi_2), \phi_2) \right\|$$

$$\leq (1 + \alpha L)^{2N} L(\|w_1 - w_2\| + \|\phi_1 - \phi_2\|).$$
(46)

Step 2: Upper-bound the second term at the right hand side of eq. (43).

Based on item 2 in Assumption 1, we have that  $\|\nabla_w L_{\mathcal{D}_i}(\cdot,\cdot)\| \leq M$ . Then, the second term at the right hand side of eq. (43) is further upper-bounded by

$$M \underbrace{\left\| \prod_{m=0}^{N-1} (I - \alpha \nabla_w^2 L_{\mathcal{S}_i}(w_m^i(w_1, \phi_1), \phi_1)) - \prod_{m=0}^{N-1} (I - \alpha \nabla_w^2 L_{\mathcal{S}_i}(w_m^i(w_2, \phi_2), \phi_2)) \right\|}_{P_{N-1}}. \tag{47}$$

In order to upper-bound  $P_{N-1}$  in eq. (47), we define a more general quantity  $P_t$  by replacing N-1 with t in eq. (47). Based on the triangle inequality, we have

$$P_{t} \leq \alpha \left\| \prod_{m=0}^{t-1} \left( I - \alpha \nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{m}^{i}, \phi_{1}) \right) \right\| \left\| \nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{t}^{i}(w_{1}, \phi_{1}), \phi_{1}) - \nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{t}^{i}(w_{2}, \phi_{2}), \phi_{2}) \right\|$$

$$+ P_{t-1} \left\| I - \alpha \nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{t}^{i}(w_{2}, \phi_{2}), \phi_{2}) \right\|$$

$$\leq \alpha (1 + \alpha L)^{t} \rho (\|w_{t}^{i}(w_{1}, \phi_{1}) - w_{t}^{i}(w_{2}, \phi_{2})\| + \|\phi_{1} - \phi_{2}\|) + (1 + \alpha L) P_{t-1}$$

$$\stackrel{(i)}{\leq} \alpha \rho (1 + \alpha L)^{2t} (\|w_{1} - w_{2}\| + \|\phi_{1} - \phi_{2}\|) + (1 + \alpha L) P_{t-1},$$

where (i) follows from eq. (45). Rearranging the above inequality, we have

$$P_{t} - \frac{\rho}{L} (1 + \alpha L)^{2t+1} (\|w_{1} - w_{2}\| + \|\phi_{1} - \phi_{2}\|)$$

$$\leq (1 + \alpha L) (P_{t-1} - \frac{\rho}{L} (1 + \alpha L)^{2t-1} (\|w_{1} - w_{2}\| + \|\phi_{1} - \phi_{2}\|)). \tag{48}$$

Telescoping eq. (48) over t from 1 to N-1 yields

$$P_{N-1} - \frac{\rho}{L} (1 + \alpha L)^{2N-1} (\|w_1 - w_2\| + \|\phi_1 - \phi_2\|)$$

$$\leq (1 + \alpha L)^N \left( P_0 - \frac{\rho}{L} (1 + \alpha L) (\|w_1 - w_2\| + \|\phi_1 - \phi_2\|) \right)$$

which, in conjunction with  $P_0 = \alpha \|\nabla_w^2 L_{\mathcal{S}_i}(w_1, \phi_1) - \nabla_w^2 L_{\mathcal{S}_i}(w_2, \phi_2)\| \le \alpha \rho(\|w_1 - w_2\| + \|\phi_1 - \phi_2\|)$ , yields

$$P_{N-1} - \frac{\rho}{L} (1 + \alpha L)^{2N-1} (\|w_1 - w_2\| + \|\phi_1 - \phi_2\|)$$

$$\leq (1 + \alpha L)^N \left(\frac{\rho}{L} (\|w_1 - w_2\| + \|\phi_1 - \phi_2\|)\right)$$

$$\leq \frac{\rho}{L} (1 + \alpha L)^{2N-1} (\|w_1 - w_2\| + \|\phi_1 - \phi_2\|), \tag{49}$$

where the last inequality follows because  $N \ge 1$ . Combining eq. (47), and eq. (49), we have that the second term at the right hand side of eq. (43) is upper-bounded by

$$\frac{2M\rho}{L}(1+\alpha L)^{2N-1}(\|w_1-w_2\|+\|\phi_1-\phi_2\|). \tag{50}$$

Step 3: Combine two bounds in Steps 1 and 2.

Combining eq. (46), eq. (50), and using  $\alpha < \mathcal{O}(\frac{1}{N})$ , we have

$$\begin{split} \left\| \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i}, \phi)}{\partial w} \right|_{(w_{1}, \phi_{1})} - \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i}, \phi)}{\partial w} \Big|_{(w_{2}, \phi_{2})} \right\| \\ & \leq \left( 1 + \alpha L + \frac{2M\rho}{L} \right) (1 + \alpha L)^{2N-1} L(\|w_{1} - w_{2}\| + \|\phi_{1} - \phi_{2}\|) \\ & \leq \text{poly}(M, \rho, \alpha, L) N(\|w_{1} - w_{2}\| + \|\phi_{1} - \phi_{2}\|), \end{split}$$
(51)

which, using an approach similar to eq. (18), completes the proof of the first item in Proposition 3.

We next prove the Lipschitz property of the partial gradient  $\frac{\partial L_{\mathcal{D}_i}(w_N^i,\phi)}{\partial \phi}$ . Using an approach similar to eq. (21) and eq. (22), we have

$$\left\| \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i}, \phi)}{\partial \phi} \Big|_{(w_{1}, \phi_{1})} - \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i}, \phi)}{\partial \phi} \Big|_{(w_{2}, \phi_{2})} \right\|$$

$$\leq \alpha \sum_{m=0}^{N-1} (R_{1} + R_{2} + R_{3}) + \|\nabla_{\phi} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{1}, \phi_{1}), \phi_{1}) - \nabla_{\phi} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{2}, \phi_{2}), \phi_{2}) \|, \quad (52)$$

where  $R_1$ ,  $R_2$  and  $R_3$  are defined in eq. (22).

To upper-bound  $R_1$  in the above inequality, we have

$$R_{1} \stackrel{(i)}{\leq} \tau (\|w_{m}^{i}(w_{1}, \phi_{1}) - w_{m}^{i}(w_{2}, \phi_{2})\| + \|\phi_{1} - \phi_{2}\|) (1 + \alpha L)^{N-m-1} M$$

$$\stackrel{(ii)}{\leq} \tau M (1 + \alpha L)^{N-1} (\|w_{1} - w_{2}\| + \|\phi_{1} - \phi_{2}\|), \tag{53}$$

where (i) follows from Assumptions 1 and 2 and (ii) follows from eq. (45).

For  $R_2$ , using the triangle inequality, we have

$$||U_{m}(w_{1},\phi_{1}) - U_{m}(w_{2},\phi_{2})||$$

$$\leq \alpha ||\nabla_{w}^{2}L_{\mathcal{S}_{i}}(w_{m+1}^{i}(w_{1},\phi_{1}),\phi_{1}) - \nabla_{w}^{2}L_{\mathcal{S}_{i}}(w_{m+1}^{i}(w_{2},\phi_{2}),\phi_{2})|| ||U_{m+1}(w_{1},\phi_{1})||$$

$$+ ||I - \alpha \nabla_{w}^{2}L_{\mathcal{S}_{i}}(w_{m+1}^{i}(w_{1},\phi_{1}),\phi_{1})|| ||U_{m+1}(w_{1},\phi_{1}) - U_{m+1}(w_{2},\phi_{2})||$$

$$\leq \alpha \rho (1 + \alpha L)^{N-m-2} (||w_{m+1}^{i}(w_{1},\phi_{1}) - w_{m+1}^{i}(w_{2},\phi_{2})|| + ||\phi_{1} - \phi_{2}||)$$

$$+ (1 + \alpha L)||U_{m+1}(w_{1},\phi_{1}) - U_{m+1}(w_{2},\phi_{2})||$$

$$\leq \alpha \rho (1 + \alpha L)^{N-1} (||w_{1} - w_{2}|| + ||\phi_{1} - \phi_{2}||)$$

$$+ (1 + \alpha L)||U_{m+1}(w_{1},\phi_{1}) - U_{m+1}(w_{2},\phi_{2})||.$$
(54)

Telescoping the above inequality over m yields

$$||U_{m}(w_{1},\phi_{1}) - U_{m}(w_{2},\phi_{2})|| + \frac{\rho}{L}(1+\alpha L)^{N-1}(||w_{1} - w_{2}|| + ||\phi_{1} - \phi_{2}||)$$

$$\leq (1+\alpha L)^{N-m-2} \Big(||U_{N-2}(w_{1},\phi_{1}) - U_{N-2}(w_{2},\phi_{2})|| + \frac{\rho}{L}(1+\alpha L)^{N-1}(||w_{1} - w_{2}|| + ||\phi_{1} - \phi_{2}||)\Big),$$

which, in conjunction with

$$||U_{N-2}(w_1,\phi_1) - U_{N-2}(w_2,\phi_2)|| = \alpha ||\nabla_w^2 L_{\mathcal{S}_i}(w_{N-1}^i(w_1,\phi_1),\phi_1) - \nabla_w^2 L_{\mathcal{S}_i}(w_{N-1}^i(w_2,\phi_2),\phi_2)||$$
  
$$\leq \alpha \rho (1 + \alpha L)^{N-1} (||w_1 - w_2|| + ||\phi_1 - \phi_2||),$$

yields that

$$||U_{m}(w_{1},\phi_{1}) - U_{m}(w_{2},\phi_{2})|| \leq (\alpha\rho + \frac{\rho}{L})(1+\alpha L)^{2N-m-3}(||w_{1} - w_{2}|| + ||\phi_{1} - \phi_{2}||)$$
$$-\frac{\rho}{L}(1+\alpha L)^{N-1}(||w_{1} - w_{2}|| + ||\phi_{1} - \phi_{2}||). \tag{55}$$

Based on Assumption 1, we have  $||Q_m(w_2, \phi_2)|| \le L$  and  $||V_m(w_1, \phi_1)|| \le M$ , which, combined with eq. (55) and the definition of  $R_2$  in eq. (22), yields

$$R_{2} \leq ML\left(\alpha\rho + \frac{\rho}{L}\right)(1 + \alpha L)^{2N - m - 3}(\|w_{1} - w_{2}\| + \|\phi_{1} - \phi_{2}\|) - M\rho(1 + \alpha L)^{N - 1}(\|w_{1} - w_{2}\| + \|\phi_{1} - \phi_{2}\|).$$
(56)

For  $R_3$ , using Assumption 1, we have

$$R_{3} \leq L(1+\alpha L)^{N-m-1} \|\nabla_{w} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{1},\phi_{1}),\phi_{1}) - \nabla_{w} L_{\mathcal{D}_{i}}(w_{N}^{i}(w_{2},\phi_{2}),\phi_{2})\|$$

$$\leq L^{2}(1+\alpha L)^{2N-m-1}(\|w_{1}-w_{2}\|+\|\phi_{1}-\phi_{2}\|),$$
(57)

where the last inequality follows from eq. (45). Combining eq. (53), eq. (56) and eq. (57) yields

$$R_{1} + R_{2} + R_{3} \leq M(\tau - \rho)(1 + \alpha L)^{N-1}(\|w_{1} - w_{2}\| + \|\phi_{1} - \phi_{2}\|)$$

$$+ M\rho(1 + \alpha L)^{2N-m-2}(\|w_{1} - w_{2}\| + \|\phi_{1} - \phi_{2}\|)$$

$$+ L^{2}(1 + \alpha L)^{2N-m-1}(\|w_{1} - w_{2}\| + \|\phi_{1} - \phi_{2}\|).$$

$$(58)$$

Combining eq. (52), eq. (58), and using eq. (45) and  $\alpha < \mathcal{O}(\frac{1}{N})$ , we have

$$\left\| \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i}, \phi)}{\partial \phi} \right|_{(w_{1}, \phi_{1})} - \frac{\partial L_{\mathcal{D}_{i}}(w_{N}^{i}, \phi)}{\partial \phi} \Big|_{(w_{2}, \phi_{2})} \| \\
\leq \left( \alpha M(\tau - \rho) N(1 + \alpha L)^{N-1} + \left( L + \frac{\rho M}{L} \right) (1 + \alpha L)^{2N} \right) (\|w_{1} - w_{2}\| + \|\phi_{1} - \phi_{2}\|) \\
\leq \operatorname{poly}(M, \rho, \tau, \alpha, L) N(\|w_{1} - w_{2}\| + \|\phi_{1} - \phi_{2}\|), \tag{59}$$

which, using an approach similar to eq. (18), finishes the proof of the second item in Proposition 3.

### D.2 Proof of Theorem 2

For notational convenience, we define

$$g_w^i(k) = \frac{\partial L_{\mathcal{D}_i}(w_{k,N}^i, \phi_k)}{\partial w_k}, \quad g_\phi^i(k) = \frac{\partial L_{\mathcal{D}_i}(w_{k,N}^i, \phi_k)}{\partial \phi_k},$$

$$L_w = \left(L + \alpha L^2 + 2M\rho\right)(1 + \alpha L)^{2N-1},$$

$$L_\phi = \alpha M(\tau - \rho)N(1 + \alpha L)^{N-1} + \left(L + \frac{\rho M}{L}\right)(1 + \alpha L)^{2N}.$$
(60)

Based on the smoothness properties established in eq. (51) and eq. (59) in the proof of Proposition 3, we have

$$L^{meta}(w_{k+1}, \phi_k) \leq L^{meta}(w_k, \phi_k) + \left\langle \frac{\partial L^{meta}(w_k, \phi_k)}{\partial w_k}, w_{k+1} - w_k \right\rangle + \frac{L_w}{2} \|w_{k+1} - w_k\|^2,$$

$$L^{meta}(w_{k+1}, \phi_{k+1}) \leq L^{meta}(w_{k+1}, \phi_k) + \left\langle \frac{\partial L^{meta}(w_{k+1}, \phi_k)}{\partial \phi_k}, \phi_{k+1} - \phi_k \right\rangle + \frac{L_\phi}{2} \|\phi_{k+1} - \phi_k\|^2.$$

Adding the above two inequalities, and using an approach similar to eq. (36), we have

$$\frac{d^{meta}(w_{k+1}, \phi_{k+1})}{\leq L^{meta}(w_k, \phi_k) - \left\langle \frac{\partial L^{meta}(w_k, \phi_k)}{\partial w_k}, \frac{\beta_w}{B} \sum_{i \in \mathcal{B}_k} g_w^i(k) \right\rangle + \frac{L_w + L_\phi}{2} \left\| \frac{\beta_w}{B} \sum_{i \in \mathcal{B}_k} g_w^i(k) \right\|^2 - \left\langle \frac{\partial L^{meta}(w_k, \phi_k)}{\partial \phi_k}, \frac{\beta_\phi}{B} \sum_{i \in \mathcal{B}_k} g_\phi^i(k) \right\rangle + L_\phi \left\| \frac{\beta_\phi}{B} \sum_{i \in \mathcal{B}_k} g_\phi^i(k) \right\|^2.$$
(61)

Let  $\mathbb{E}_k = \mathbb{E}(\cdot|w_k, \phi_k)$ . Then, conditioning on  $w_k, \phi_k$ , taking expectation over eq. (61) and using an approach similar to eq. (37), we have

$$\mathbb{E}_{k}L^{meta}(w_{k+1}, \phi_{k+1}) \leq L^{meta}(w_{k}, \phi_{k}) - \beta_{w} \left\| \frac{\partial L^{meta}(w_{k}, \phi_{k})}{\partial w_{k}} \right\|^{2} + \frac{(L_{w} + L_{\phi})\beta_{w}^{2}}{2B} \mathbb{E}_{k} \left\| g_{w}^{i}(k) \right\|^{2} 
+ \frac{L_{\phi} + L_{w}}{2} \beta_{w}^{2} \left\| \frac{\partial L^{meta}(w_{k}, \phi_{k})}{\partial w_{k}} \right\|^{2} - \beta_{\phi} \left\| \frac{\partial L^{meta}(w_{k}, \phi_{k})}{\partial \phi_{k}} \right\|^{2} 
+ L_{\phi} \left( \frac{\beta_{\phi}^{2}}{B} \mathbb{E}_{k} \left\| g_{\phi}^{i}(k) \right\|^{2} + \beta_{\phi}^{2} \left\| \frac{\partial L^{meta}(w_{k}, \phi_{k})}{\partial \phi_{k}} \right\|^{2} \right).$$
(62)

Our next step is to upper-bound  $\mathbb{E}_k \|g_w^i(k)\|^2$  and  $\mathbb{E}_k \|g_\phi^i(k)\|^2$  in eq. (62). Based on the definitions of  $g_w^i(k)$  in eq. (60) and Proposition 1, we have

$$\mathbb{E}_{k} \left\| g_{w}^{i}(k) \right\|^{2} \leq \mathbb{E}_{k} \left\| \frac{\partial L_{\mathcal{D}_{i}}(w_{k,N}^{i}, \phi_{k})}{\partial w_{k}} \right\|^{2} = \mathbb{E}_{k} \left\| \prod_{m=0}^{N-1} (I - \alpha \nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{k,m}^{i}, \phi_{k})) \nabla_{w} L_{\mathcal{D}_{i}}(w_{k,N}^{i}, \phi_{k}) \right\|^{2} \\
\leq \mathbb{E}_{k} (1 + \alpha L)^{2N} M^{2} = (1 + \alpha L)^{2N} M^{2}.$$
(63)

Using an approach similar to eq. (63), we have

$$\mathbb{E}_{k} \|g_{\phi}^{i}(k)\|^{2} \leq 2\mathbb{E}_{k} \|\alpha \sum_{m=0}^{N-1} \nabla_{\phi} \nabla_{w} L_{\mathcal{S}_{i}}(w_{k,m}^{i}, \phi_{k}) \prod_{j=m+1}^{N-1} (I - \alpha \nabla_{w}^{2} L_{\mathcal{S}_{i}}(w_{k,j}^{i}, \phi_{k})) \nabla_{w} L_{\mathcal{D}_{i}}(w_{k,N}^{i}, \phi_{k}) \|^{2} 
+ 2 \|\nabla_{\phi} L_{\mathcal{D}_{i}}(w_{k,N}^{i}, \phi_{k})\|^{2} 
\leq 2\alpha^{2} L^{2} M^{2} \mathbb{E}_{k} \Big( \sum_{m=0}^{N-1} (1 + \alpha L)^{N-1-m} \Big)^{2} + 2M^{2} 
< 2M^{2} (1 + \alpha L)^{N} - 1)^{2} + 2M^{2} < 2M^{2} (1 + \alpha L)^{2N}.$$
(64)

Substituting eq. (63) and eq. (64) into eq. (62), we have

$$\mathbb{E}_{k}L^{meta}(w_{k+1}, \phi_{k+1}) \leq L^{meta}(w_{k}, \phi_{k}) - \left(\beta_{w} - \frac{L_{w} + L_{\phi}}{2}\beta_{w}^{2}\right) \left\| \frac{\partial L^{meta}(w_{k}, \phi_{k})}{\partial w_{k}} \right\|^{2} \\
+ \frac{(L_{w} + L_{\phi})\beta_{w}^{2}}{2B} (1 + \alpha L)^{2N} M^{2} - \left(\beta_{\phi} - L_{\phi}\beta_{\phi}^{2}\right) \left\| \frac{\partial L^{meta}(w_{k}, \phi_{k})}{\partial \phi_{k}} \right\|^{2} \\
+ \frac{2L_{\phi}\beta_{\phi}^{2}}{B} (1 + \alpha L)^{2N} M^{2}.$$
(65)

Set  $\beta_w = \frac{1}{L_w + L_\phi}$  and  $\beta_\phi = \frac{1}{2L_\phi}$ . Then, unconditioning on  $w_k, \phi_k$  in eq. (65), we have

$$\mathbb{E}L^{meta}(w_{k+1}, \phi_{k+1}) \leq \mathbb{E}L^{meta}(w_k, \phi_k) - \frac{\beta_w}{2} \mathbb{E} \left\| \frac{\partial L^{meta}(w_k, \phi_k)}{\partial w_k} \right\|^2 + \frac{\beta_w}{2B} (1 + \alpha L)^{2N} M^2 - \frac{\beta_\phi}{2} \mathbb{E} \left\| \frac{\partial L^{meta}(w_k, \phi_k)}{\partial \phi_k} \right\|^2 + \frac{\beta_\phi}{B} (1 + \alpha L)^{2N} M^2.$$

Telescoping the above equality over k from 0 to K-1 yields

$$\frac{\beta_w}{2} \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \left\| \frac{\partial L^{meta}(w_k, \phi_k)}{\partial w_k} \right\|^2 + \frac{\beta_\phi}{2} \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \left\| \frac{\partial L^{meta}(w_k, \phi_k)}{\partial \phi_k} \right\|^2 \\
\leq \frac{L^{meta}(w_0, \phi_0) - \min_{w, \phi} L^{meta}(w, \phi)}{K} + \frac{\beta_w + 2\beta_\phi}{2B} (1 + \alpha L)^{2N} M^2.$$
(66)

Let  $\Delta=L^{meta}(w_0,\phi_0)-\min_{w,\phi}L^{meta}(w,\phi)>0$  and let  $\xi$  be chosen from  $\{0,...,K-1\}$  uniformly at random. Then, eq. (66) further yields

$$\mathbb{E} \left\| \frac{\partial L^{meta}(w_{\xi}, \phi_{\xi})}{\partial w_{\xi}} \right\|^{2} \leq \frac{2\Delta(L_{w} + L_{\phi})}{K} + \frac{1 + \frac{L_{w} + L_{\phi}}{L_{\phi}}}{B} (1 + \alpha L)^{2N} M^{2}$$

$$\mathbb{E} \left\| \frac{\partial L^{meta}(w_{\xi}, \phi_{\xi})}{\partial \phi_{\xi}} \right\|^{2} \leq \frac{4\Delta L_{\phi}}{K} + \frac{2 + \frac{2L_{\phi}}{L_{w} + L_{\phi}}}{B} (1 + \alpha L)^{2N} M^{2},$$

which, in conjunction with the definitions of  $L_w$  and  $L_\phi$  in eq. (60) and using  $\alpha < \mathcal{O}(\frac{1}{N})$ , yields

$$\mathbb{E} \left\| \frac{\partial L^{meta}(w_{\xi}, \phi_{\xi})}{\partial w_{\xi}} \right\|^{2} \leq \mathcal{O}\left(\frac{N}{K} + \frac{N}{B}\right),$$

$$\mathbb{E} \left\| \frac{\partial L^{meta}(w_{\xi}, \phi_{\xi})}{\partial \phi_{\xi}} \right\|^{2} \leq \mathcal{O}\left(\frac{N}{K} + \frac{N}{B}\right). \tag{67}$$

To achieve an  $\epsilon$ -stationary point, i.e.,  $\mathbb{E}\left\|\frac{\partial L^{meta}(w,\phi)}{\partial w}\right\|^2 < \epsilon$ ,  $\mathbb{E}\left\|\frac{\partial L^{meta}(w,\phi)}{\partial w}\right\|^2 < \epsilon$ , K and B need to be at most  $\mathcal{O}(N\epsilon^{-2})$ , which, in conjunction with the gradient forms in Proposition 1, completes the complexity results.