Supplementary Materials

A Further Specification of Experiments

Following [1], we consider a 5-way 5-shot task on both the FC100 and minilmageNet datasets,
where we evaluate the model’s ability to discriminate 5 unseen classes, given only 5 labelled samples
per class. We adopt Adam [15] as the optimizer for the meta outer-loop update, and adopt the
cross-entropy loss to measure the error between the predicted and true labels.

A.1 Introduction of FC100 and minilmageNet datasets

FC100 dataset. The FC100 dataset [23] is generated from CIFAR-100 [17], and consists of 100
classes with each class containing 600 images of size 32. Following recent work [23, 18], we split
these 100 classes into 60 classes for meta-training, 20 classes for meta-validation, and 20 classes for
meta-testing.

minilmageNet dataset. The minilmageNet dataset [30] consists of 100 classes randomly chosen
from ImageNet [27], where each class contains 600 images of size 84 x 84. Following the reposi-
tory [1], we partition these classes into 64 classes for meta-training, 16 classes for meta-validation,
and 20 classes for meta-testing.

A.2 Model Architectures and Hyper-Parameter Setting

We adopt the following four model architectures depending on the dataset and the geometry of the
inner-loop loss. The hyper-parameter configuration for each architecture is also provided as follows.

Case 1: FC100 dataset, strongly-convex inner-loop loss. Following [1], we use a 4-layer CNN
of four convolutional blocks, where each block sequentially consists of a 3 x 3 convolution with a
padding of 1 and a stride of 2, batch normalization, ReLU activation, and 2 x 2 max pooling. Each
convolutional layer has 64 filters. This model is trained with an inner-loop stepsize of 0.005, an
outer-loop (meta) stepsize of 0.001, and a mini-batch size of B = 32. We set the regularization
parameter \ of the L? regularizer to be A\ = 5.

Case 2: FC100 dataset, nonconvex inner-loop loss. We adopt a 5-layer CNN with the first four
convolutional layers the same as in Case 1, followed by ReLLU activation, and a full-connected layer
with size of 256 x ways. This model is trained with an inner-loop stepsize of 0.04, an outer-loop
(meta) stepsize of 0.003, and a mini-batch size of B = 32.

Case 3: minilmageNet dataset, strongly-convex inner-loop loss. Following [24], we use a 4-layer
CNN of four convolutional blocks, where each block sequentially consists of a 3 x 3 convolution with
32 filters, batch normalization, ReLU activation, and 2 x 2 max pooling. We choose an inner-loop
stepsize of 0.002, an outer-loop (meta) stepsize of 0.002, and a mini-batch size of B = 32, and set
the regularization parameter \ of the L? regularizer to be A = 0.1.

Case 4: minilmageNet dataset, nonconvex inner-loop loss. We adopt a 5-layer CNN with the first
four convolutional layers the same as in Case 3, followed by ReLLU activation, and a full-connected
layer with size of 128 x ways. We choose an inner-loop stepsize of 0.02, an outer-loop (meta) stepsize
of 0.003, and a mini-batch size of B = 32.

A.3 Experiments with SGD Optimizer

The experiments in Section 4.1 and Section 4.2 adopt the Adam optimizer. In this subsection, we
conduct experiments using mini-batch stochastic gradient descent (SGD) on FC100 dataset. For both
the strongly-convex and nonconvex cases, we choose an inner-loop stepsize of 0.05, an outer-loop
(meta) stepsize of 0.05, and a mini-batch size of B = 32. The results are given in Figure 3. It can be
seen that the nature of the results remains the same as those done with the Adam optimizer.

A.4 Experiments on Comparison of ANIL and MAML

In Figure 4, we compare the computational efficiency between ANIL and MAML. For the minilma-
geNet dataset, we choose the inner-loop stepsize as 0.1, the outer-loop (meta) stepsize as 0.002, the
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Figure 3: Convergence of ANIL with mini-batch SGD over FC100 dataset. Left plot: strongly-convex
inner-loop loss; right plot: nonconvex inner-loop loss.

mini-batch size as 32, and the number of inner-loop steps as 5 for ANIL. For MAML, we choose
the inner-loop stepsize as 0.5, the outer-loop stepsize as 0.003, the mini-batch size as 32, and the
number of inner-loop steps as 3. For the FC100 dataset, we choose the inner-loop stepsize as 0.1, the
outer-loop (meta) stepsize as 0.001, the mini-batch size as 32 for ANIL. For MAML, we choose the
inner-loop stepsize as 0.5, the outer-loop stepsize as 0.001, and the mini-batch size as 32. We choose
the number of inner-loop steps as 10 for ANIL and 3 for MAML. It can be seen that ANIL converges
faster than MAML, as well supported by our theoretical results.
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Figure 4: Computational comparison of ANIL and MAML. For each dataset, left plot: training
accuracy v.s. running time; right plot: test accuracy v.s. running time.

B Proof of Proposition 1

We first prove the form of the partial gradient L, ((;:Z“I;N oP5) Using the chain rule, we have
OLp, (Wi, n,¢x)  Ow (Wi, di) ; o9y, :
8w1; = : Duon VLo, (Wi s ¢k) + kavaﬁLDi (Wk, N> Pr)
Owy, y (W, Pk) ;
=Vl (Wi ) 3)

where the last equality follows from the fact that % = 0. Recall that the gradient updates
in Algorithm 1 are given by

w;;c,m-i-l = wi,m - avaSi (w}i‘,m? ¢k)7 m = 07 1a ceey N - 17 (4)
where w};’o = wy, for all 7. Taking derivatives w.r.t. wy, in eq. (4) yields
owy .y Owy, ow?, , b ,
T =T V2 Ls, (W drp) — a——VyVuLs, (W o). 5
Owy, Owy, «a Owy, wiS; (wk:,m ¢k7) aawk ¢ Si (wk,m ¢k) &)

0
Telescoping eq. (5) over m from 0 to N — 1 yields

81[}7" N—-1 .
TN TT (1 = aV2 Ls, (w), s 1),

m=0
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which, in conjunction eq. (3), yields the first part in Proposition 1.

For the second part, using chain rule, we have

6L7_)i (wl 7¢k> le . .
BT = SN, Ly, () s 6k) + VLo, (W), 6. 6)
0y, 0y,

Taking derivates w.r.t. ¢ in eq. (4) yields

oWy g1 0wy, owy, . 9 , ‘
2 — 2 _ 1) L ) K3 wL ‘ 7 ’
8¢k 8¢]€ ( 8¢k Vu) S; (wk,nm ¢k) + VQBV S (wkml ¢k))
Ow,’;_’m

- a¢k (I - OéquuLSi, (w}if,ma d)k)) - av‘{bvaSi (w;f,ma ¢k)

Telescoping the above equality over m from 0 to N — 1 yields

i i N-1
8wk7N B 8wk70

8¢k - a¢k H (I - avi}LSi (wi,m, ¢k))

m=0
N—-1 ) N—-1 A

—a Y VyVuLs, (Wi, 0r) [[ I —aViLs,(w] . é)),
m=0 j=m+1

8w£,0 — a’wk —
Ody O

which, in conjunction with the fact that 0 and eq. (6), yields the second part.

C Proof in Section 3.1: Strongly-Convex Inner Loop

C.1 Auxiliary Lemma

The following lemma characterizes a bound on the difference between w} (w1, ¢1) and w? (w2, ¢2),
where w!(w, ¢) corresponds to the t*" inner-loop iteration starting from the initialization point (w, ¢).

Lemma 1. Choose o such that 1 — 2o+ o> L? > 0. Then, for any two points (w1, ¢1), (wa, ¢2) €
R"™, we have

aLll¢r — éa|
1—+/1—2au+ a?L?

[[w} (wy, é1) — wi(wa, ¢a)|| < (1= 20 + a”L?)? wy — wal| +

Proof. Based on the updates in eq. (2), we have
W1 (W1, 01) =W 41 (W2, P2) = wy, (w1, $1) — wy, (w2, o)
— a(VwLs, (), (w1, 1), $1) — Vi Ls, (wh, (w2, ¢2), ¢1))
+ a(VwLs, (wh, (w2, ¢2), ¢2) — Vi Ls, (wh, (w2, d2), 1)),
which, together with the triangle inequality and Assumption 1, yields
[Whg1 (w1, d1) = Wiy g (w2, G2) |
< wa”(wl, ¢1) — why (wa, ¢2) — (Vi Ls, (wl, (w1, ¢1), ¢1) — Vi Ls, (wh, (w2, d2), $1)) H
P
+aLll¢1 — ¢z (7
Our next step is to upper-bound the term P in eq. (7). Note that
P2 =[|wp, (wi, ¢1) — wy, (w2, 2)I” + 2| Vi Ls, (w), (wr, 1), 61) = Vi Ls, (wy, (w2, ¢2), ¢1)|1?
— 20w, (wr, 61) = W (w, 62), VL, (Wi, (w1, 61), 61) = Vi L, (why (w2, 62),61) )
<(1+a?L? = 2ap)|[wy, (wi, ¢1) — wy, (w2, $2)|1%, )

where the last inequality follows from the strong-convexity of the loss function Lg, (-, ¢) that for any
w,w’ and @,

(w—w', VyLs, (w,¢) — VuLs, (W', ¢)) > pllw —w'||?.
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Substituting eq. (8) into eq. (7) yields
Hw:n—i-l(wla ¢1) - win+1(w27 ¢2)H < V 1+ a?l? — QO‘ﬂszn(wlv ¢1) - win(wQ’ ¢2)H
+aLll¢1 — ¢2||. )
Telescoping the above inequality over m from 0 to ¢ — 1 completes the proof. [

C.2 Proof of Proposition 2

Using an approach similar to the proof of Proposition 1, we have

OLp. (w' gl ) .
%N’@ ZmHO(I - av?uLSL (w:n?¢>)vaD1 (w}’\ﬁ(b) (10)

Let w?, (w, gb) denote the m? 1nner-100p iteration starting from (w, ¢). Then, we have

Ow (w1,01) ow (w2,2)

<| TL0 - V2 L ). 02)) |||V L, (wi (w1, 61), 61) = Vi L, (wy (w2, 62), 62)|
=0

P

N—-1
+ || TL (1 - a2 L, (i, (w1, 61), 61)) Vs Lop, (wh (w1, 61), 61)

m=0
N-1

- H (I - aviLSi (wfn(w% ¢2); ¢)2))VwLD7; (U}?V(wla ¢1)7 ¢1)' ;

m=0

(1)

Q
where w! (w, ¢) is obtained through the following gradient descent steps
wz_H(w, ¢) = wi(w, p) — aVy,Ls, (wi(w, @), ¢), t = 0,....,m — 1 and w)(w, p) = w.  (12)
We next upper-bound the term P in eq. (11). Based on the strongly-convexity of the function
Ls,(-,¢), we have || — aVZ2 Ls,(-,¢)|| <1 — au, and hence
P <(1-ap) NvaLDi(wN(w17¢1)’¢1) — Vu Lp, (wi (w3, $2), ¢

(1) . .
<(1— ap)NVL(why (w1, ¢1) — wiy (wa, ¢2) || + o1 — ¢2])

(“) x aL|pr — o2l )
(1-« (1 —2ap + a?L?) 2 |lw; — wol| + + —
L (1= 20+ 0222 F s — ol + T )
(zu) 2L
L o FLlwr w4 (1 — o)L (N n 1) 161 — bl (13)

where (i) follows from Assumption 1, (ii) follows from Lemma 1, and (¢i¢) follows from the fact
2

that ap = £ 2—oz and\/l—x§1—§x.

To upper-bound the term () in eq. (11), we have

N-—-1
Q< M| [T - a¥aLs, (wha(un,on).00) = [] (1~ Vil whlwn o). a9
m=0
PNy

To upper-bound Py _; in eq. (14), we define a more general quantity P; by replacing N — 1 with ¢
in eq. (14). Using the triangle inequality, we have

P, < a(1 — ap)'||Vi,Ls,(wi(wy, ¢1), ¢1)) — Vo Ls, (wi (w2, ¢2), ¢2))|| + (1 — ap) Py

¢ 2L
<= )P+ ap(1 = a0 ¥ ur — ] + (= an'ap (24 1) lor = aall. 19
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Telescoping eq. (15) over t from 1 to N — 1 yields
N-1

— 3t —1—
Pyoy <0 —ap)" 'R+ Y ap(l— ) uwy —wa| (1 = ap)¥ 7
t=1
N-1

— 2L 1
+ 3 -anap (241 o - aall1 - )V
t=1
which, in conjunction with Py < ap(||lwy — wal| + [|¢1 — ¢2]|), yields

1 Vi—oap
1—+v1—-au

Py_1 <(1—ap)N ap(|jwr — wa| + [|¢1 — d2|) + apllwr — wal|(1 — ap)
+ap (if ; 1) 161 — dall(N = 1)(1 — ap)™~?

2 _ 2L _
<2200 = ) — | +ap (3 1) on = 621 - )V
which, in conjunction with eq. (14), yields
2pM _ 2L _
@< 2201 ag s = wnl + apM (25 +1) 61 - all NG - a2 16)

Substituting eq. (13) and eq. (16) into eq. (11) yields
HM’ _ M’
ow (w1,61) ow (w2,$2)

20M
<(0-am*r+ ”7@ —ap)V ) fun — ws|

+ (1= amV L+ apMN(1 - ap)V 1) (if + 1) o1 — éall. (A7)

Based on the definition L™ (w, ¢) = E; Lp, (wl, ¢) and using the Jensen’s inequality, we have
oLt OL" ! (,0)

ow ’(wh‘z’l) ow |(w27¢2)
OLp, (wh, ¢) ‘ _ OLp, (wiy, 9) ‘

ow (w1,61) ow (wa,g2) Il
Combining eq. (17) and eq. (18) completes the proof of the first item.

<E;

(18)

We next prove the Lipschitz property of the partial gradient 9L, (wi.9) gor notational convenience,

we define several quantities below. v
N-1
Qm(w,$) = VyVuLs, (wh,(w, ¢),6), Un(w,¢) = [[ (I —aViLs,(w)(w,¢),9)),
j=m-+1
Vin(w, 8) =V Lp, (wi (w, ¢), 9), (19)

where we let w? (w, ¢) denote the m!” inner-loop iteration starting from (w, ¢). Using an approach
similar to the proof for Proposition 1, we have

OLp, (i, 9) - o | |
m=0 j=m+1
+ V¢LDi (wﬁ\h QS) (20)

Then, we have
09 (w1,91) ¢ (w2,¢2)

N—-1
<o Y Qm(w, $1)Un(wy, 1) Vin (wr, 1) — Qun (w2, $2) U (w2, ¢2) Vi (w2, 62|
m=0
+ |V Lp, (wh(wr,¢1), $1) — Ve Lp, (wh (w2, 2), ¢2)||. 2n
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Using the triangle inequality, we have

|Qm (w1,01)Upn (w1, ¢1) Vi (w1, $1) — Qi (w2, ¢2)Up, (w2, d2)Vin (w2, ¢2) ||
< Qm(wr, 1) — Qun (w2, $2)|[|Unn (w1, 1) ||| Vin (w1, ¢1) |

Ry
+ [|Qm (w2, p2) [[[ U (w1, 1) — U (w2, $2)|[[|Vin (w1, ¢1) ||
R2
+ |Qm (wa, ¢2) [[[Unn (w2, $2) [[[|Vin (w1, ¢1) — Vin(wa, ¢2) || - (22)
R3
Combining eq. (21) and eq. (22), we have
H dLp, (wév,qb)‘ _ OLp, (wév»aﬁ)‘
(w1,01) 8(;5 (w2,¢2)

¢
<a ) (Ri+ Ry+ R3)+ ||VgLp, (wy(wi, 1), ¢1) — VeLp, (Wi (wa, d2), ¢2)||.  (23)

m=0

To upper-bound R;, we have
Ry <7 ([[wp, (wr, ¢1) = wy, (wa, @a) || + (|61 — o) (1 — ap)™ "1 M

2L
STM (L= )N F oy — w4 M (E 4 1) (= 0™ gy~ gl 24

where the second inequality follows from Lemma 1.

For Ry, based on Assumptions 1 and 2, we have
Ry < LM ||Upy (w1, 1) — U (w2, ¢2) |- (25)

Using the definitions of U, (w1, ¢1) and Uy, (w2, ¢2) in eq. (19) and using the triangle inequality,
we have

U (w1, ¢1) — U (w2, ¢2) ||

<al|Vi Ls, (Wi, 41 (w1, 61), 1) — Vo, Lis, (W, 41 (w2, ¢2), ¢2) || U1 (w1, ¢1)|

+ I = aV3 Ls, (wy, 1 (w1, 61), o) [[[|Ungr (w1, 61) = Uy (w2, ¢
<ap(l — ap)N T2 ([|w)y o (w, ¢1) — why 4y (w2, ¢2) | + |61 — B21))

+ (1 = ap)|Uns1(wy, ¢1) = Ung1(wa, ¢2)||

Nem—2 m41 2L
<ap(l — ap) ((1—(1#) 2 [|wy — wa| + (7+1)||¢1 —¢2H)
+ (1 = o) U1 (w1, ¢1) — Upng1 (w2, ¢2) ][

where the last inequality follows from Lemma 1. Telescoping the above inequality over m yields

HUm(w17 ¢1) - Um(w27 ¢2)H
< (1 —ap)N"" 72| Un—o(wr, ¢1) — Un—2(wa, ¢2) ||

N—-—m—3
m4t41

L
£ 3 (= afap(t = o (1= o) =]+ (3 + 1) or = oal).
t=0

which, in conjunction with eq. (19), yields

2 m
Ui 00) = U )1 < (22 + 22 ) (0= )% oy = ]

ral¥ =1 m) (p+ 22 ) (1= a2 o - gal. 9
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Combining eq. (25) and eq. (26) yields

2 m
Ry <LM ( v, p) (1= )™= % [y — s
l—ap p

2pL
+aLMUVlnw(p+jZ>(1amNQ’ﬂwl¢ﬁ- 27)

For R3, using the triangle inequality, we have

Ry <L(1 — ap)N =" L([|wiy (w1, ¢1) — wiy (wa, ¢2)|| + llé1 — o))

2L
<L 0 o el 422 (2F 4 1) (- Yo - el 29)

where the last inequality follows from Lemma 1.

Combine R;, Ry and R3 in eq. (24), eq. (27) and eq. (28), we have

N-1

2t M ™M (2L
D (Rt Rot Ry) < = m(1—ap) ™5 ||w1—w2||+7(f+1)||¢1 oo
m=0

2LM « 2 1 oL M 2pL
+ 200 (20 2 (1 o) T s~ el + 255 (0 225 ) on - gl
afl l—ap  p L

L2 L? /2L
20 ¥ oyl + 2 (H) 161 = dall. 29)
ap ap \ p

In addition, note that
Hvd)LDi (wé\/(wlv ¢1)7¢1) - V¢LD1‘ (wéV(WZv ¢2)> (;52) H

2L
<o ¥ Lo -l + L (2E 1) o - aal G0)
Combining eq. (23), eq. (29), and eq. (30) yields
0o (w1,91) ¢ (w2,92)
2rM  2LM 2 L?
< (24 20 (2 2 ) 1 ) T s -
% po\l—ap p %
™ LM L? 2L
+<L++ 2p+> ( >|¢1 P2l (31)
I I I I

which, using an approach similar to eq. (18), completes the proof.

C.3 Proof of Theorem 1

For notational convenience, we define

i OLp, (wi 7¢k) i OLp, (wi a¢k)

: 2pM 2L
L,=(1- au)%L—i- pT(l —a)N"H L = (L+apMN>(1 —ap)Nt (H + 1) ,

2rM  2LM 2 I? _
e (o BB () )

p po \l—ap p
™ LM L? 2L
o= ( LrE) (E4). (32)
2 p? H H
Then, the updates of Algorithm 1 are given by
wa = we— 0 S gl (k) and G = 6k — 22 3 gh (k) (33)
lEBk 1€By
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Based on the smoothness properties established in eq. (17) and eq. (31) in the proof of Proposition 2,
we have

aLm,eta W,
L"LEta(Wk+1,¢k) SL"LEta(wk7¢k) +< ( k ¢k)

8wk

OL™"* (W1, Pk )
Oy,

L
y Wi41 — wk> + 7w||w1c+1 - wk:||27

L/
L7 (wpgr, Prg1) <L (wpyr, dr) + < s Pry1 — ¢k> + 7¢H¢>k+1 — il?

Adding the above two inequalities, we have

aLmeta(wk7 (bk)
8wk

Ly 2
s Pkl — Ok ) + 7||¢k+1 — okl

L7 (wpyq, prrr) <L (wy, or) + <

n <8Lmet“(wk, Or)

L
y Wi41 — wk> + 7w||wk+1 - wk:||2

ofan
aLmeta(warl’ ¢k> 8Lmeta(wk’ (bk)
— — . 34
+< Don Bon s P11 — P (34)
Based on the Cauchy-Schwarz inequality, we have
aLmeta (wk+1, ¢k) 8Lmeta(w]gj d)k)
< - s Prt1 — ¢k>
0Py, 0Py,
< Ly llwryr — wil|l|¢rv1 — éxll
L L
< S llwnr = wll? + 2 drr — gl (35)
Combining eq. (34) and eq. (35), we have
OL™eta (wy,, Ly,+ L
L™ (w1, Prg1) SL™ (wy, k) + <M7wk+l - wk> + T¢||wk+1 — wg||?

QL™ (wy,, ¢y,)
- < Oy

which, in conjunction with the updates in eq. (33), yields

L7 (wyey1, Prt1)

L¢+L/
s Q1 — ¢k> + T¢||¢k+1 — o’

meta
SL™ (wy, dr) — <8L aij:k’(bk) ’ %U ' gfu(k?)> + Lutle H@ Z gfv(k)HZ
i€By i€By
oL (wy, ¢) ﬁd) Z gi(k L¢+L¢Hﬁ¢ Z AL H2 (36)
8¢k ZEBk 1€By

Let B, = E(-|wg, ¢k ). Then, conditioning on wyg, ¢y, and taking expectation over eq. (36), we have

aLmeta (wk , d)k)

(i) S A » 2
By L7 (w1, Or) < L7 (., 1) = B R ST

awk 1€By N
QL™ (wy,, i) L¢ +L By
N el 3= abow]
meta L™ (wy, i) 4 L + Ly)Bs, 2
<) — g |20 00) | (et L g
L¢+L w g2 OL™" (wi, Pk ) 2—5 OL™< (wy,, gy,) ||
owy, ¢ Oy,
Ly + L, L™ (wy, i)

T <§Ek||g¢(k>||2 + 63 560 ) . 6D

where (i) follows from the fact that E; g’ (k) = %M and Ey.g, (k) = W
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Our next step is to upper-bound Ey | g2, (k) H2 and E; ||g(’b(k) ||2 in eq. (37). Based on the definitions
of g¢,(k) in eq. (32) and using the explicit forms of the meta gradients in Proposition 1, we have

N-—-1
Bl (0 <B| T (T~ aV2 L (0, 600V Lov, ., 60) |
m=0

<(1 —ap)*M M2 (38)

Using an approach similar to eq. (38), we have

N—-1 N-—1 2
i 2 i i i
Ex||gh(k)||” <2B|ja > VoVuLs, (Wi ér) [[ (I —aViLs,(w};,68) VLo, (Wi x ék)
m=0 j=m+1
+2HV¢LD1'(U};@,N7¢I€)H2
N-—-1 2
§2a2L2M2Ek( Y- au)N**m) + 202
m=0
202> L?
< 2 +2M? < 2M? (;PH)' (39)

Substituting eq. (38) and eq. (39) into eq. (37) yields

Ly+1L OL™1 (wy,,
Ep L™ (wy1,0k41) < L™ (wy, ¢p) — (ﬁw - 5 ¢52> H(wkm) ‘

n (L +L¢)512U(1 —ap)®N M2 — <5¢ L¢> + Ly > H Lmet; wi, o) ||°

2B D
Ly+ L' L2
+ M M2 < + 1) (40)
B p?
Let 8, = I + I; and By = Ld’i 7 Then, unconditioning on wy, and ¢, and telescoping eq. (40)

over k from 0 to K — 1 yield

K-1 meta 2
Buw 1 EHW‘ .

B 1 KZ”EH(?Lmeta(wk,m) ’
k=

2 K P owy, 2 K ‘ oL}
[meta (wo, ¢o) — min, é [meta (w, ¢ Bw oN 2 Bé o L?
< 3 + — ol 7\4 + /w + .
K 2B(1 ) B 12 1 @1

Let A = L™ (wg, ¢g) — min,, 4 L™ (w, ¢) and let £ be chosen from {0, ..., K — 1} uniformly
at random. Then, we have

E 8Lmem(w§ (;55 (L + L¢) + (1 - Oé[L)2NM2 Lw + L¢ z 2 E 1
Owe K B Ly+L, B 2 ’
L™ (we, e ) H L¢ +Ly) Leg+Ly ON 112 ) (L2 )
E —(1—-« M=+ M —+1],
H Ie Ly + Ly TR I
which, in conjunction with the definitions of L, L’ » and Ly, ineq. (32) and a = £5, yields
2\ % 2\ %
1 1
g |loLme e we 09 |* ) w(1-5) . s(-5)
8w5 - K B ’

vz
w0
2

E || 2L we $9) |7 %(1*%> + ﬁ(17%> + 2
[ieesd] |
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To achieve an e-stationary point, i.e., E H w H <eE H < ¢, ANIL requires at

most

8L'meta<w #) H

N 3N
2 2

L2 2 L3 L 2 L2
KBN =0 -2 =) (2 (1-5) +5 | Ne?

p? L Iz p L p
N 2\F N

<0 <1 - 2> + -5 672
pt L %

N/2
gradient evaluations in w, KB = O (/F4 (1 — Z—i) + u‘5) ¢~ 2 gradient evaluations in ¢, and

N/2
KBN =0 (sz\i (1 — g—z) + %)6’2 evaluations of second-order derivatives.

D Proof in Section 3.2: Nonconvex Inner Loop

D.1 Proof of Proposition 3

Based on the explicit forms of the meta gradient in eq. (10) and using an approach similar to eq. (11),
we have

HM’ _ M’
ow (w1,61) ow (w2,¢2)

N-1
= | TT ¢ = aV2 s, (wh (w1, 61), 60)) VL, (wiy (w1, 1), 1)
m=0

N-1
- H (I - O‘vfuLSi (wzn(w% (7252)7 QSQ))VMLDq‘, (wﬁ\/(w% ¢2); ¢2) ) (42)

m=0

where w!, (w, ¢) is obtained through the gradient descent steps in eq. (12).
Using the triangle inequality in eq. (42) yields

H OLp, (wy, 9) _ OLp,(wi,9)
ow (w1,¢1) ow

(w2,p2)

|| TL - a3 L, k. a1, 60) || s o 1), 60) — Va6
=0

N-1

|| TL U = aV2 L, (wh, (w1, 61), 61)) Voo L, (wiy (w1, 61), 61)
m=0

N-1

~ TT U~ aV2 Ls, (wh, (w3, 62), 62)) Voo L, (wh(wr, 61), 1) (43)

m=0

Our next two steps are to upper-bound the two terms at the right hand side of eq. (43), respectively.

Step 1: Upper-bound the first term at the right hand side of eq. (43).

| TL 0 — @92 L 0y a2, 60| [ Voo s 61),60) — Voo, (), )|
m=0

@) ) )
< (1+aL)|[Vu Lo, (wh (wr, 61),61) = VoL, (w(ws, 62), 62)|
(i) , ,

< (1t aL)VL([lwhy(wr, 61) — wii(ws. 62)]| + 61 — b)), (44)

where (i) follows from the fact that | V2, Ls, (w?, (w2, ¢2), ¢2)|| < L, and (ii) follows from Assump-
tion 1. Based on the gradient descent steps in eq. (12), we have, forany 0 < m < N — 1,

win-&-l (w1, ¢1) — win—i—l (w2, P2)

= wh, (wy, ¢1) — wh (w2, ¢2) — (Vi Ls, (w, (w1, ¢1), ¢1) — Vi Ls, (wh, (w2, ¢2), ¢2)).
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Based on the above equality, we further obtain

[wy 1 (w1, @1) — w4y (w2, da) || <[wh, (w1, ¢1) — wh, (w2, d2) ||
+ al|VLs, (wh, (w1, ¢1), 1) — Vi Ls, (wh, (w2, ¢2), 62|
<(1+ aL)|wy, (w1, d1) = wy, (w2, d2)|| + L[ d1 — @2,

where the last inequality follows from Assumption 1. Telescoping the above inequality over m from
0to N — 1yields

[wiy (wr, 1) = wiy(wa, $2)|| < (14 aL)V wy = wa| + (1 +aL)¥ =1)[|g1 — dof|.  (45)
Combining eq. (44) and eq. (45) yields
N-1
H H (I —aViLs, (w%(wz,@)’@))quwLDi (wiy (w1, ¢1), ¢1) — VwLDi(wév(wz,@)’(bz)H
m=0
< (1+ aL)*N L(Jjwy — wo| + |61 — e])). (46)

Step 2: Upper-bound the second term at the right hand side of eq. (43).

Based on item 2 in Assumption 1, we have that ||V, Lp, (-, -)|| < M. Then, the second term at the
right hand side of eq. (43) is further upper-bounded by

N-1 N-1
m|| TT - a¥i s, wintwn.0.00) - [L0 - aV3Ls (upywnéam)|. - @0
m= m=0
Pn_1

In order to upper-bound Py _; in eq. (47), we define a more general quantity P; by replacing NV — 1
with ¢ in eq. (47). Based on the triangle inequality, we have

t—1

1 - avViLs, (wh, ¢1))H vauLsi (wi(wy, 61), 1) — Vi, Ls, (wi (w2, $2), 9252)H

m=0
+Pt—1HI—aViLsi(wi(wz,%),éf’z)H
<a(l+ aL)' p(||lwi(wy, ¢1) — wi (w2, d2)|| + |o1 — d2) + (1 + aL) Py

PtSO[

©)]
<ap(l+aL)®(lwy — wal| + [[¢1 — d2l) + (1 + aL)Pi_y,

where (4) follows from eq. (45). Rearranging the above inequality, we have

p
Pi—7 (L+aL) " (Jwr = wall + (|61 = ¢s])

< (14 aL)(Per = 21+ aL)*(flur = wal + 61— ). (48)
Telescoping eq. (48) over t from 1 to N — 1 yields

Pt = 214 aL)N ! (lwy = wo + 161 = éa])

< (1+al)¥ (R = £+ aL)(|wr - wal| + 61 = 621)) )

which, in conjunction with Py = «||V2 Ls, (w1, ¢1) — V2 Ls, (wa, ¢2) || < ap(||wi —we|| + |1 —
o2]|), yields

Pyt = 214+ aL)V ! (lwr — wal + 61 = é2))

< 1+ aD)V (2 (lws = wal| + |6 = 62))
< B0+ alPV N (lwy w4161 = dal). (49)

22



where the last inequality follows because N > 1. Combining eq. (47), and eq. (49), we have that the
second term at the right hand side of eq. (43) is upper-bounded by

2Mp

L
Step 3: Combine two bounds in Steps 1 and 2.

(1+aL)* ' (lwy — wa] + g1 — d2l]). (50)

Combining eq. (46), eq. (50), and using o < O(%), we have

H dLp, (w, d))’ _ OLp,(wly, 9)
ow (w1,¢1) ow

(w2,¢2)
2M
< (1+aL+ =Z2) 1+ al)? T L(flwr — wal] + 61 - 62
< poly(M, p, &, L)N ([lwy — wa|[ + (|1 — ¢2]]), (51)
which, using an approach similar to eq. (18), completes the proof of the first item in Proposition 3.
We next prove the Lipschitz property of the partial gradient %Z”w Using an approach similar
toeq. (21) and eq. (22), we have

H dLp, (Wi, ) _ OLp,(wi,9)

99 (w1,61) 09 (w2,62)
N—-1 , '

<a Y (Ri+ R+ Rs)+ |VoLp, (wh(wi, é1),61) — VoLp, (why(wa, ¢2), é2)[,  (52)
m=0

where R, Ro and R3 are defined in eq. (22).

To upper-bound R; in the above inequality, we have
(4) . .
Ry <7 ([[wy, (wi, ¢1) = wy, (wa, g2)[| + [|¢1 = da) (1 + L)Y "M

M+ L)Y (g~ wal] + [r — Gl 653)
where (i) follows from Assumptions 1 and 2 and (i¢) follows from eq. (45).
For R», using the triangle inequality, we have
[Um (w1, 1) — U (w2, ¢2) |
<a||V3,Ls, (wh 1 (w1, 1), 61) = Vi, L, (wi, 41 (w2, 62), ¢2) [|Unt1 (wr, 61) |
+ I = Vi, Ls, (w1 (w1, 61), o) [ [Ung1 (wr, 1) = Uneg 1 (wa, ¢2) |
<ap(l+aL)V "2 ([[wh, oy (Wi, d1) = Wy gy (w2, d2)[| + (|61 — ¢2]))
+ (14 aL)|Upgr (w1, ¢1) = Uppgr (w2, 2) ||
<ap(l+aL)" ! (Jwy — wal + (|61 — é2|)
+ (1 + al)||Unt1 (w1, ¢1) = Uptr (w2, 2) |- 54
Telescoping the above inequality over m yields

[Unm (w1, 1) = U (w2, ¢2)|| + %(1 +aL)M(Jlwr — wol| + 61 — ¢2]))

< (1+aL)N 2 (|[Un (w1, 61) = Un—s(ws, é2) | + 2 (1+ aL)¥ " ([lws = wal| + 61 = 621) )

which, in conjunction with

[UN—2(w1, ¢1) = Un—2(w2, da)|| =a|| V3, Ls, (wiy_ (w1, ¢1), ¢1) — Vi, L, (wiy_y (wa, ¢2), 62
<ap(l+al)N ' ([lwy — wa|| + [|g1 — ¢2l),

yields that
[Unm (w1, 61) = U (az, @2) | <(ap + £) (1 + aL)? =3 (g = wsl| + |1 — 2]
— 21+ aL)N " (lwy = wsl| + [lé1 = g2ll). (55)

23



Based on Assumption 1, we have ||@Q, (w2, ¢2)|| < L and ||V, (w1, ¢1)|| < M, which, combined
with eq. (55) and the definition of Ry in eq. (22), yields

Ry <ML(ap+2)(1+ L) " 3(|lwy —wal] + 161 — 62
— Mp(1+aL)N 7 (|Jwy — wa + |61 — ¢2)). (56)

For R3, using Assumption 1, we have
Ry <L(1+ aL)N ="V Lp, (wiy (w1, ¢1), 61) — VL, (why (w2, ¢2), ¢2) ||
<L2(1 4oL (Jlwy = wal| + [lér = 2D, (57)
where the last inequality follows from eq. (45). Combining eq. (53), eq. (56) and eq. (57) yields
Ri+ Ry + Ry <M(7 = p)(1 + aL)V " (wr — wa] + [|¢1 — ¢2])

+ Mp(1+ aL)*M " 2(|lwy — wa|| + [[¢1 — ¢2l|)
+ L1+ aL)* " N (|lwy — wa| + |1 — ¢al]). (58)

Combining eq. (52), eq. (58), and using eq. (45) and o < O(%) we have

OLp, (wyy, ¢) _ OLp, (wi,¢)
H 99 ‘(w17¢1) o ‘(w2,¢2)

< (M =N +0L) "+ (L4 LY (14 0L ) (s — wall + 161 — 6 )
< pob’(Ma P, &, L)N(le - w2|| + H¢1 - (7752”)7 (59

which, using an approach similar to eq. (18), finishes the proof of the second item in Proposition 3.

D.2 Proof of Theorem 2
For notational convenience, we define

_ OLp, (W, n, Pk) _ OLp, (w v, )

gw(k) - 8wk ) g¢(k) - a¢k )
Ly = (L+aLl?+2Mp)(1+ L),
Ly=aM(t—p)N(1+aL)¥ "t + (L + ”24> (1+aL)?V. (60)

Based on the smoothness properties established in eq. (51) and eq. (59) in the proof of Proposition 3,
we have

QL™ (wy, ¢r,)
awk
OL™ " (wyy1, i)
O,

Adding the above two inequalities, and using an approach similar to eq. (36), we have

L™ (wy 1, Gpy1)

o meta » . w - .
<L7 ) ~ <L ) B S g;<k>> e U |

L
L™ (wypq, ) <L (wy, dr) + <  Wha1 — wk> + 7w||wk+1 —wl?,

L
L™ (wyp, ppy1) <L (wis, dr) + < s Pl — ¢>k> + 7¢H¢k+1 — )%

3wk ’ B k h
1€By i€By,
8 meta . .
_ <L&(;;u€,¢>k), % 3 g;(k)> +L¢H% S g;(k)HQ. ©61)
i€By i€By
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Let E;, = E(-|wg, ¢k ). Then, conditioning on wy, ¢, taking expectation over eq. (61) and using an
approach similar to eq. (37), we have

L™t (wy,, o) || (L + Ly)Bs 2
meta < meta _ ) 9] w
Ep L™ (W1, Gry1) L™ (W, dr) — Buw B, °B Ex |92 ()|
Lot Lo o | L7, 00) | _ | DL s 1) :
8wk a¢k

QL™ (wy, ¢y,

3 _
+ Ly (gEng;(k)HQJrﬁi For

‘ ) . (62)

Our next step is to upper-bound Ey | g%, (k) H2 and Ey||g} (k) ||2 in eq. (62). Based on the definitions
of g¢ (k) in eq. (60) and Proposition 1, we have

2

; 2
. 8LD1 (’U}Z ,qbk) N1 . .
Bellot (0] <Bi | =5 5| =B || [] (1 — 0V L, (0 s 64 Vio L, (.- 68)
m=0
<Ex(1+aL)* M? = (1 4+ aL)*N M?. (63)

Using an approach similar to eq. (63), we have

N-1 N—-1 2
By g5 (k)[|” <2Ex||a Y VVuLs, (Wi 6) [] (- aViLs, (), 68) VLo, (W] x, ér)
m=0 j=m+1
+2HV¢L’Di(w;€,N7¢k)H2
N—-1 9
<202 L2M?E (0 (1+ D)V 1) 420
m=0
<2M?(1 +aLl)N —1)? + 2M? < 2M?(1 + oL)*V. (64)

Substituting eq. (63) and eq. (64) into eq. (62), we have

’2
AL™ (wy, ¢y.) ||

Oy,

(1+ aL)*N M2 (65)

Ex L™ (wgs1, Grr1) <L (wy, i) — (ﬂw -
+ (Lw + L(b)ﬂ?u
2B

¢ﬂ¢>
B

L, + L¢ 2 oLmete (wk, qj)k)
751” P S
2 3wk

(1+aL)*M? — (Bs — Lyf33) ‘

+

Set B, = ﬁ and S, = i. Then, unconditioning on wy,, ¢y, in eq. (65), we have

meta meta ﬁw 6Lmeta w 7¢ IB’LU
EL™ (wht1, Pp1) SEL™ (w, ¢r) — Q]EHM —I-@(l—l—ozlj)QNM2
meta
5¢]EH5L 8((;Uky¢k) ‘ 5¢(1+QL)2NM2
k

Telescoping the above equality over k from 0 to K — 1 yields

Bﬁf KZ aLmeta wk, ¢k i Kzl E aLmeta wk d)k)
2 K P 2 K = 0y,
Lm““(wm ¢o) — miny ¢ Lm”“(w, ) 4 But2By N 72
< : .
< e sp (Lt al)* M (66)
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Let A = L™®%(w, ¢9) — min,, ¢ L™*(w,¢) > 0 and let £ be chosen from {0, ..., K — 1}
uniformly at random. Then, eq. (66) further yields

meta 2 Ly+Lg

8’11}5 K B

2L
OL™ (wg, e H2 AL, 2F T

dope K B

which, in conjunction with the definitions of L,, and Ly in eq. (60) and using o < O(ﬁ), yields

meta 2
Owg

EH (1+aL)?*NM?

EH (1+ aL)*N M2,

K ' B

8Lmeta ’U)g (bé H ( >
E . 67
H Ope ©n

. . . . meta meta 2
To achieve an e-stationary point, i.e., E H M@iyJ(wvd’)H <eE H aLaiw(“”‘” H < ¢, K and B need to

be at most O(Ne~?2), which, in conjunction with the gradient forms in Proposition 1, completes the
complexity results.
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