
MetaDropout Conv4 VGG

𝝋𝒄𝒐𝒏𝒗𝟒 𝝋𝑽𝑮𝑮

MetaPerturb
. . .

ResNet-44

. . .
WRN-28-2

𝝋 (𝟖𝟐)z

s

predefined tasks w/o task sampling
for standard (many-shot) learning

Task 𝟏

episodic training w/ task sampling
for few-shot learning

Task 𝑻

Episodic Task

Total
Dataset

sample

. . .Dog

Cat

...

. . .Car

Truck

...

.
Total

Dataset

We thank all the reviewers for constructive comments. Reviewers appreciate that our paper is well-written, clear, and is1

tackling the important problem of scaling meta-learning, by proposing a novel distributed framework.2

[Common Comments] Comparison with MetaDropout [R2, R4] Our MetaPerturb is not incremental over3

MetaDropout [18]. 1) MetaDropout cannot generalize across heterogeneous neural architectures, since it learns4

an individual noise generator for each layer (Figure 2 of [18]). Thus it is tied to the specific base network architecture5

(Top Figure), while MetaPerturb can generalize across architectures since it is a size- and order-invariant set function6

shared across all layers (L74-75). 2) MetaDropout does not scale to large networks since the noise generator should7

be the same size as the main network. MetaPerturb, on the other hand, requires marginal memory overhead (828

parameters) even for deep CNNs (e.g. ResNet-44, L190-192) since it shares the same lightweight noise generator across9

all layers and channels. MetaDropout also becomes almost infeasible to train with large networks due to the needs of10

computing the second-order derivatives. 3) MetaDropout cannot scale to standard learning (Top Figure), since it11

uses episodic training and MAML for meta-learning. For standard learning with a large number of instances, taking a12

few gradient steps with few sampled instances is highly insufficient for minimizing loss on all instances, and taking13

large number of gradient steps over large number of episodes is infeasible. (L115-116) We overcome such a challenge14

by proposing a scalable meta-learning framework which splits the given dataset into multiple subsets (tasks) without15

task sampling, and jointly training the shared set-function across all tasks (L76-77) without lookahead gradient steps.16

Improvement on fine-grained datasets [R1, R2] As mentioned in L252-254, we attribute the improvements to z and17

s, which help focus on the more relevant part of each input, that is crucial for discrimination between two very similar18

classes. Missing references [R3, R4] We will cite them and include the following discussions: FiLM uses instance-19

wise modulation whereas our s network is a batch-wise set function. MetaMixup meta-learns the hyperparameter20

of Mixup and MetaReg proposes to meta-learn the regularization parameter (`1 for domain generalization), but they21

consider generalization within a single task or across similar domains, while ours target heterogeneous domains.22

[R4] Contributions seems limited. Please see the comparison against MetaDropout in the general comments. Also,23

each component is largely different from the models mentioned: 1) vs. BN: While BN learns the scaling terms as24

free variables, s network outputs the scaling factor for each channel as a function of the batch. 2) vs. Deep Sets. The25

DeepSets paper does not deal with channel-wise permutation equivariance for Conv layers, which we newly developed.26

Method Train time Accuracy
MetaPerturb ∼ 1 hr 69.79±0.60

MetaPerturb ∼ 6 hrs 69.88±0.50w/ Ren et al

Analysis on approximation error. We meta-trained MetaPerturb with Ren27

et al. [30] with a single lookahead step and meta-test on STL10 for empirical28

analysis. The Table on the right shows that Ren et al. [30] increases the29

training time by 6× with marginal increase in accuracy. Why not consider30

other techniques? Although there exist diverse approaches to improve generalization, we compared against the most31

relevant works (stochastic perturbation) since all other techniques are orthogonal to ours and thus can be used together.32

Jutification of the parameter usage control for each dataset. Figure 6 shows that the distribution of s is different33

across the datasets, and the ablation study (Table 3) shows the necessity of the s network. What if it is not CNNs?34

For MLP, perturbation function can be implemented by replacing convolution with linear operations. For RNNs and35

Transformers, we leave it as future work. Missing configurations of hyperparameters. Please see Section C.4. of the36

supplementary file. Definition of the optimal amount of perturbation. We will tone down optimal to proper.37

[R2] TinyImageNet may contain image classes for fine-grained datasets (e.g. aircraft). TIN contains low-38

resolution (32×32) images with general classes (e.g. airplane, bird), while Aircraft and CUB datasets contain39

high-resolution images (84×84) and contain fine-grained classes. Thus, we believe that the two datasets are sufficiently40

different. Performance of finetuning. In Table 1, finetuning significantly outperforms learning from scratch in all41

cases. Yet, for experiments with SVHN which contains digits and which is largely different from classes in TIN (Table42

2), the performance gain become smaller. MetaPerturb obtains large performance gains on both cases, which shows that43

the knowledge of perturbing a sample is more generic and thus is applicable to diverse domains.44

[R1] Perturb function at the top and bottom layers.45 Location of perturb s-CIFAR100 Aircraft CUB
Top layers 32.54±0.19 53.42±0.79 27.70±0.68

Bottom layers 31.75±0.97 61.93±0.86 31.40±0.24

Top&Bottom layers 33.63±0.48 61.65±1.65 32.57±0.30

MetaPerturb 34.47±0.45 66.12±0.70 39.94±1.30

We performed the suggested experiments, and it per-46

forms better than perturbing only the top or the bottom47

layer, but is worse than the full model. Split of Btr and48

Bte? They both come only from the training split of the49

original dataset (no fairness issue). Heterogeneous tasks for meta-test? At meta-test time, we fix the transferred50

perturbation parameters and only train the main model parameters with a single target task.51

0.2

0.0

0.2

0.4

mean of feature map 1~4 variance of feature map 1~4 C H

FC weights

Conv kernel 1 Conv kernel 2 Conv kernel 3 Conv kernel 4

[R3] Weight visualization of s network. We also visualize the weights for the 3x3 Conv52

filters and FC layer weight on the right. It shows that the s network outputs larger scales53

for feature maps with more channels and larger spatial size. is the gradient of φ shared?54

Yes, and φ is updated synchronously at every iteration thanks to its small dimensionality55

(d = 82). Controversial flatter loss surface. We agree and will tone down the claims.56

