- 1 Overview. We include ImageNet-R results, better models on ImageNet-C and improve our ablation studies.
- We thank the reviewers for their extensive and helpful comments which contributed to improving our manuscript. The
- 3 reviewers state that the "simplicity of the method is appealing, and it provides a substantial improvement for little
- extra effort" (R3) and agree on the importance of the considered problem for the NeurIPS community (R1,2). Below,
- 5 we address main concerns and discuss updated results with more robust models (DeepAugment) and new datasets
- 6 (ImageNet-R) which appeared in parallel work during the review phase. We also incorporated most of the suggestions
- regarding figure formatting and formal methods in the camera-ready version.

R1, R2, R4: Does the proposed method generalize to other datasets? We already showed gains across the 15 different datasets in the IN-C benchmark (of four different types). We now extend this analysis to 15 new data shifts in ImageNet-R (IN-R; 200 class IN, 30,000 images), another large image dataset with more challenging dataset shifts like art, cartoons, deviantart or graffiti. We observe consistent gains (Table 1) with a new RN50 SoTA of 48.9% when using a batch size of 2048 for adaptation. For the vanilla RN50, we observe performance improvements on IN-R when using a batch size larger than 32 (Fig. 1) almost reaching AugMix performance w/o adaptation for large batch sizes.

T1: ImageNet-R (n=2048), top-1 error.				
Model, adaptation:	base	adapt		
ResNet50	63.8	59.9		
Fixup	61.2	_		
GroupNorm	65.0	_		
SIN	58.6	54.2		
ANT	61.0	58.0		
ANT+SIN	53.8	52.0		
AugMix (AM)	59.0	55.8		
DeepAug (DAug)	57.8	52.5		
DAug + AM	53.2	48.9		
DAug + AM (RNXt101)	47.9	44.0		

19

20

21

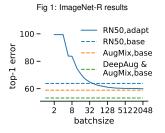


Table 2: New models on IN-C (n=2048), mCE				
Model	base	adapt		
DeepAug	60.36	49.44		
DeepAug+AugMix	53.55	45.36		
DeepAug+AugMix+RNXt101	44.52	37.96		

I. 3a: ObjectNet evaluation (n = 512), acc		1.3b: Mixed IN-C, err		
ResNet50 model	top-1	top-5	top-1	top-5
BatchNorm w/o adapt	21.85	39.09	61.08	40.81
BatchNorm w/ adapt	24.04	41.15	60.87	40.31
GroupNorm	29.18	50.24	57.25	35.97
Fixup	28.52	48.56	56.83	35.43

Clarifications around novelty & central hypotheses: Adaptation of BN layers is a well-known method in domain adaptation. Our contribution is to extensively evaluate (and theoretically analyze) its performance on *systematic* dataset shifts in both large and small sample size adaptation scenarios, and to show that a domain adaptation evaluation scenario has the potential to substantially improve over the ad-hoc setting on robustness datasets, making it a strong baseline.

Our main hypotheses (H) and tests (T) (asked by R3) are:

- H: Systematic dataset shifts yield a mismatch in internal statistics and result in decreased accuracy. T: The Wasserstein distance between source and target statistics quantifies the amount of mismatch and is predictive of degradation, especially within a corruption type.
- H: Correcting the statistics improves accuracy under distribution shift. T: We show consistent, substantial improvements due to BN adaptation across a wide range of models and 17 domains (15 IN-C + IN-R + ON).
- **H**: The observed sample size performance trade-off can be explained by statistical estimation errors (theoretical model) and can be mitigated using a Bayesian approach. **T**: We propose a theoretical model to qualitatively explain the sample size vs. performance degradation trade-off and propose an easy fix for the small sample case.

Additional Control Experiments (ObjectNet, mixed IN-C) R4 discussed our negative results on IN-V2 and ON.
We want to stress that these results are control experiments, and the observed outcome matches the expectations.
BatchNorm adaptation can only mitigate *systematic shifts* in the data distribution, which is unlike the shift in IN-V2 (iid data, or a more complex sampling bias) or ObjectNet (complex distributional shift by random variations in poses, etc).

To stress this point, we perform two additional controls: We evaluate GroupNorm + Fixup on ObjectNet as suggested by R4, which outperform the BN model (T3a). We also randomly sample 50,000 IN-C images across corruptions and severities (3 seeds), destroying the systematic shift. GN+Fixup now also outperforms BN w + w/o adapt (Table 3b).

Use of exponential moving average instead of a weighted average (R1) We agree that this is the correct method especially for practitioners, and added a note in the Appendix. Results are indistinguishable from the "full adaptation" results due to the large number of samples in the test set and we can add a short comparison on this to the appendix.

Manuscript edits We fixed Figs. 1, 2, 4 according to R2's suggestions; the color code in Fig. 4, IN-V2 was indeed wrong, colors should match in the limit of many samples (adaptation converges to baseline performance). We revised \$ 1–2 & fixed Def. 1. We revised Fig. 3 and note linear relationships between the Wasserstein distance & accuracy both before and after adaptation, highlighting the usefulness to quantify domain shift; we do not observe a relationship between Wasserstein distance and the amount of correction by adaptation (R3) and will add a supplementary figure. We thoroughly revised the appendix and sectioning.