
A Examples

A.1 Reduction to WMI models on continuous variables only

In this section, we show one example of the polytime reduction from a WMI model with continuos
and discrete ones into one over continuous variables only, as introduced in [41].
Example A.1 (Reduction From WMI to WMIR). Consider the WMI model (∆,W) where ∆ is the
SMT formula over continuous variables X,Y, Z and Boolean variable B as introduced in Example 2.2
with the per-literal weightsW as introduced in Example 2.5. Then the WMI model (∆′,W ′) over
continuous variables only X,Y, Z,TB, where TB is a freshly introduced continuous variable, obtained
by the reduction of Zeng and Van den Broeck [41] is shown below.

∆
′ =

{ 0 ≤ X ≤ 2 ∧ 1 ≤ Y ≤ 2 ∧ 0 ≤ Z ≤ 2
X ≥ 1 ∨ (−1 ≤ TB ≤ 1)
X + Y ≤ 3 ∧ X + Z ≥ 2 ∧ Y + Z ≤ 3 TB X Y

Z

whereW ′ = {w`1 (TB) := 2; w`2 (x) := x2; w`3 (y, z) := 2yz; w`4 (x, y) := x + y} where `1 := 0 ≤
TB ≤ 1, `2 := x ≥ 1, `3 := y + z ≤ 3, `4 := x + y ≤ 3 and all the weights associated to other literals
are constantly 1 except ¬`2 which is 0.

Note that the primal graph G∆′ (above, right) is isomorphic to the primal graph G∆ and that the
weighted model integral of model (∆′,W ′) is left unchanged:

WMI(∆′,W ′; X,Y, Z,TB) =

∫ 0

−1
dtB

∫ 2

1
dx

∫ −x+3

1
dy

∫ −y+3

−x+2
x2 · 1 · (x + y) · 2yz dz+

+

∫ 1

0
dtB

∫ 2

1
dx

∫ −x+3

1
dy

∫ −y+3

−x+2
x2 · 2 · (x + y) · 2yz dz =
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480

=WMI(∆,W; X,Y, Z, B).

then we will denote the integrands as u1(x, y, z) = x2 ·1 · (x+ y) ·2yz, u2(x, y, z) = x2 ·2 · (x+ y) ·2yz .

A.2 ReCoIn steps: from augmentation to relaxation

Here we complete Example 4.2 by providing the weight functions associated to the WMI models
ReCoIn operates on.
Example A.2 (Augmentation). Consider the WMI model (∆′,W ′) over continuous variables
X,Y, Z,TB as introduced in Example A.1. Given the edges to remove Ed = {X − Z}, the aug-
mented WMI model (∆aug,Waug) over variables X,Y, Z = Z0, Z1,TB as obtained from Algorithm 2
is represented below.

∆
aug =



0 ≤ X ≤ 2 ∧ 1 ≤ Y ≤ 2
0 ≤ Z0 ≤ 2 ∧ 0 ≤ Z1 ≤ 2
−1 ≤ TB ≤ 1
X ≥ 1 ∨ TB > 0
X + Y ≤ 3 ∧ X + Z1 ≥ 2 ∧ Y + Z0 ≤ 3
Z0 = Z1

TB X Y

Z1 Z0

andWaug = {w`1 (TB) := 2; w`2 (x) := x2; w`3 (y, z
0) := 2yz0; w`4 (x, y) := x + y; w`5 (z

0, z1) :=
δ(z0, z1)} where `1 := 0 ≤ TB, `2 := x ≥ 1, `3 := y + z0 ≤ 3, `4 := x + y ≤ 3, `5 := Z0 = Z1 and all
the weights associated to other literals are constantly 1 except ¬`2 which is 0.

Note that the weighted model integral of model (∆aug,Waug) is unchanged as below:

WMI(∆aug,Waug; X,Y, Z0, Z1,TB) =

=

∫ 0

−1
dtB

∫ 2

1
dx

∫ −x+3

1
dy

∫ −y+3

0

∫ 1

−x+2
x2 · (2 + 1) · (x + y) · 2yz0δ(z0 − z1)dz1dz0

=

∫ 2

1
dx

∫ −x+3

1
dy

∫ −y+3

−x+2
x2 · (2 + 1) · (x + y) · 2yz0 dz0
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=
11173

480
=WMI(∆′,W ′; X,Y, Z,TB) =WMI(∆,W; X,Y, Z, B).

Further we will show in Proof B.3 that generally the WMI of the augmented model remains unchanged.
Example A.3 (Relaxation). Consider the augmented WMI model (∆aug,Waug) over continuous
variables X,Y, Z0, Z1,TB as introduced in Example A.2. Given the equivalence constraint to remove
{Z0 = Z1}, the relaxed WMI model (∆rel,Wrel) and its remaining part (∆rem,Wrem) as obtained
from Algorithm 3 are represented below.

∆
rel =


0 ≤ X ≤ 2 ∧ 1 ≤ Y ≤ 2 ∧ 0 ≤ Z0 ≤ 2 ∧ 0 ≤ Z1 ≤ 2
X ≥ 1 ∨ (−1 ≤ TB ≤ 1)
X + Y ≤ 3 ∧ X + Z1 ≥ 2 ∧ Y + Z0 ≤ 3

TB X Y

Z1 Z0

∆
rem =

{
0 ≤ Z0 ≤ 2 ∧ 0 ≤ Z1 ≤ 2
Z0 = Z1 Z0Z1

and Wrel = {w`1 (TB) := 2; w`2 (x) := x2; w`3 (y, z
0) := 2yz0; w`4 (x, y) := x + y}, Wrem =

{w`5 (z
0, z1) := δ(z0, z1)}, and all the weights associated to other literals are constantly 1 except ¬`2

which is 0.

B Proofs

B.1 THEOREM 3.3

Proof. We prove our complexity result by reducing a #P-complete variant of the subset sum
problem [24] to an MI problem over an SMT(LRA) formula ∆with tree primal graph whose diameter
is n. This problem is a counting version of subset sum problem saying that given a set of positive
integers S = {s1, s2, · · · , sn}, and a positive integer L, the goal is to count the number of subsets
S′ ⊆ S such that the sum of all the integers in the subset S′ equals to L. Notice that our proof can be
applied to rational numbers as well and we assume binary representations for numbers.
First, we reduce the counting subset sum problem in polynomial time to a model integration problem
by constructing the following SMT(LRA) formula ∆ on real variables X whose primal graph is
shown in Figure 2:

X1 X2 X3 Xn−1 Xn

s2 s3 sn

s1

Figure 2: Primal graph G∆ used for the #P-hardness reduction in Theorem 3.3. We construct the
corresponding formula ∆ such that G∆ has maximum diameter (it is a chain). We graphically augment
graph G∆ by introducing blue nodes to indicate that integers si in set S are contained in clauses
between two variables.

∆ =



s1 −
1

2n
< x1 < s1 +

1
2n︸                         ︷︷                         ︸

`(1,0)

∨−
1

2n
< x1 <

1
2n︸              ︷︷              ︸

`(1,1)

xi−1 + si −
1

2n
< xi < xi−1 + si +

1
2n︸                                           ︷︷                                           ︸

`(i,0)

∨ xi−1 −
1

2n
< xi < xi−1 +

1
2n︸                              ︷︷                              ︸

`(i,1)

, i = 2, · · · n

For brevity, we denote the first and the second literal in the i-th clause by `(i, 0) and `(i, 1) respectively
as shown above. Also We choose two constants l = L − 1

2 and u = L + 1
2 .

In the following, we prove that nnMI(∆ ∧ (l < Xn < u)) equals to the number of subset S′ ⊆ S whose
element sum equals to L, which indicates that WMI problem whose tree primal graph has diameter
Θ(n) is #P-hard.
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Let ak = (a1, a2, · · · , ak) be some assignment to Boolean variables (A1, A2, · · · , Ak) with ai ∈ {0, 1},
i ∈ [k]. Given an assignment ak , we define subset sums to be S(ak) ,

∑k
i=1 aisi , and formulas

∆ak ,
∧k

i=1 `(i, ai).

Claim B.1. The model integration for formula ∆ak with an given assignment ak ∈ {0, 1}k is
MI(∆ak ) = ( 1

n )
k . Moreover, for each variable Xi in ∆ak , its satisfying assignments consist of the

interval [
∑i

j=1 aj sj − i
2n,

∑i
j=1 aj sj + i

2n ]. Specifically, the satisfying assignments for variable Xn in
formula ∆an can be denoted by the interval [S(an) − 1

2, S(a
n) + 1

2 ].

Proof. (Claim B.1) First we prove that MI(∆ak ) = ( 1
n )

k . For brevity, denote aisi by ŝi . By definition
of model integration and the fact that the integral is absolutely convergent (since we are integrating a
constant function, i.e., one, over finite volume regions), we have the following equation.

MI(∆ak ) =

∫
(x1, · · · ,xk ) |=∆ak

1 dx1 · · · dxk =
∫ ŝ1+

1
2n

ŝ1−
1

2n

dx1 · · ·

∫ xk−2+ŝk−1+
1

2n

xk−2+ŝk−1−
1

2n

dxk−1

∫ xk−1+ŝk+
1

2n

xk−1+ŝk−
1

2n

1 dxk

Observe that for the most inner integration over variable xk , the integration result is 1
n . By doing this

iteratively, we have that MI(∆ak ) = ( 1
n )

k .

Next we prove that satisfying assignments for variable Xi in formula ∆ak is the interval [
∑i

j=1 aj sj −
i

2n,
∑i

j=1 aj sj + i
2n ] by mathematical induction. For i = 1, since X1 is in interval [a1s1−

1
2n, a1s1+

1
2n ],

the statement holds in this case. Suppose that the statement holds for i = m, i.e. variable Xm has
its satisfying assignments in interval [

∑m
j=1 aj sj − m

2n,
∑m

j=1 aj sj + m
2n ]. Since variable Xm+1 has its

satisfying assignments in interval [Xm + am+1sm+1 −
1

2n, Xm + am+1sm+1 +
1

2n ], then its satisfying
assignments consist interval [

∑m+1
j=1 aj sj − m+1

2n ,
∑m+1

j=1 aj sj + m+1
2n ], that is, the statement also holds

for i = m + 1. Thus the claim holds. �

The above claim shows how to compute the model integration of formula ∆ak . We will show in the
next claim how to compute the model integration of formula ∆an conjoined with a query l < Xn < u.

Claim B.2. For each assignment an ∈ {0, 1}n, the model integration of formula ∆an ∧ (l < Xn < u)
falls into one of the following cases:

i) If S(an) < L or S(an) > L, it holds that MI(∆an ∧ (l < Xn < u)) = 0.
ii) If S(an) = L, it holds that MI(∆an ∧ (l < Xn < u)) = ( 1

n )
n.

Proof. (Claim B.2) From the previous Claim B.1, it is shown that variable Xn has its satisfying
assignments in interval [S(an) − 1

2, S(a
n) + 1

2 ] in formula ∆an for each an ∈ {0, 1}n. If S(an) < L,
given that S(an) is a sum of positive integers, then it holds that S(an) + 1

2 ≤ (L − 1) + 1
2 = L − 1

2 = l
and therefore, MI(∆an ∧ (l < Xn < u)) = 0; similarly, if S(an) > L, then it holds that S(an) − 1

2 ≥ u
and therefore, MI(∆an ∧ (l < Xn < u)) = 0. If S(an) = L, by Claim B.1 we have that the satisfying
assignment interval is inside the interval [l, u] and thus it holds that MI(∆an ∧ (l < Xn < u)) =
MI(∆an ) = ( 1

n )
n. �

In the next claim, we show how to compute the model integration of formula ∆ as well as for formula
∆ conjoined with query l < Xn < u based on the already proven Claim B.1 and Claim B.2.

Claim B.3. The following two equations hold:

i) MI(∆) =
∑

an MI(∆an ).
ii) MI(∆ ∧ (l < Xn < u)) =

∑
an MI(∆an ∧ (l < Xn < u)).

Proof. (Claim B.3) Observe that for each clause in ∆, literals are mutually exclusive since each si is a
positive integer. Then we have that formulas ∆an are mutually exclusive and meanwhile ∆ =

∨
an ∆an .

Thus it holds that MI(∆) =
∑

an MI(∆an ). Similarly, we have formulas (∆an ∧ (l < Xn < u))’s are
mutually exclusive and meanwhile ∆ ∧ (l < Xn < u) =

∨
an ∆an ∧ (l < Xn < u). Thus the second

equation holds. �
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X1,1

X2,2

X2,1

∑

s

Xk,1

Xk+1,2

Xk+1,1

∑

s

Xk, n2

Xk+1,n

Xk+1,n−1

∑

s

s1

s2

sn−1

sn

Figure 3: Primal graph used for #P-hardness reduction in Theorem 7. We also put blue nodes to
indicate that integer si’s in set S are contained in some clauses and that model integration over some
cliques is the sum of some si’s.

From the above claims, we can conclude that MI(∆ ∧ (l < Xn < u)) = t( 1
n )

n where t is the number of
assignments an s.t. S(an) = L. Notice that for each an ∈ {0, 1}n, there is a one-to-one correspondance
to a subset S′ ⊆ S by defining an as ai = 1 if and only if si ∈ S′; and S(an) equals to L if and only if
the sum of elements in S′is L. Therefore nnMI(∆ ∧ (l < Xn < u)) equals to the number of subset
S′ ⊆ S whose element sum equals to L. This finishes the proof for the statement that inference in
WMI(Ω, n, 1) is #P-hard.

�

B.2 THEOREM 3.4

Proof. Again we prove our complexity result by reducing the #P-complete variant of the subset sum
problem [24] to an MI problem over an SMT(LRA) formula ∆ with primal graph whose diameter is
Θ(log n) and treewidth two. In the #P-complete subset sum problem, we are given a set of positive
integers S = {s1, s2, · · · , sn}, and a positive integer L. Notice that our proof can be applied to rational
numbers as well and we assume binary representations for numbers. The goal is to count the number
of subsets S′ ⊆ S such that the sum of all the integers in S′ equals L.
First, we reduce this problem in polynomial time to a model integration problem with the following
SMT(LRA) formula ∆ where variables are real and u and l are two constants. Its primal graph is
shown in Figure 3. Consider n = 2k , n, k ∈ N.

∆ =
∧
i∈[n]

(−
1

4n
< Xk+1,i <

1
4n
∨ −

1
4n
+ si < Xk+1,i <

1
4n
+ si)

∧
∆t

where ∆t =
∧

j∈[k],i∈[2 j ]

−
1

4n
+ Xj+1,2i−1 + Xj+1,2i < Xj,i <

1
4n
+ Xj+1,2i−1 + Xj+1,2i

For brevity, we denote all the variables by X and denote the literal − 1
4n < Xk+1,i <

1
4n by `(i, 0) and

literal − 1
4n + si < Xk+1,i <

1
4n + si by `(i, 1) respectively. Also We choose two constants l = L − 1

2
and u = L + 1

2 . In the following, we prove that (2n)2n−1MI(∆ ∧ (l < X1,1 < u)) equals to the number
of subset S′ ⊆ S whose element sum equals to L, which indicates that model integration problem
with primal graph whose diameter is Θ(log n) and treewidth two is #P-hard.
Let an = (a1, a2, · · · , an) ∈ {0, 1}n be some assignment to Boolean variables (A1, A2, · · · , An). Given
an assignment an, define the sum as S(an) ,

∑n
i=1 aisi , and formula as ∆an ,

∧n
i=1 `(i, ai) ∧ ∆t .
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Claim B.4. The model integration for formula ∆an with given an ∈ {0, 1}n is MI(∆an ) = ( 1
2n )

2n−1.
Moreover, for each variable Xj,i in formula ∆an , its satisfying assignments consist of the interval
[
∑

l alsl − 2k− j+2−1
4n ,

∑
l alsl + 2k− j+2−1

4n ] where l ∈ {l | Xk+1,l is a descendant of Xj,i}. Specifically, the
satisfying assignments for the root variable X1,1 can be denoted the interval [S(an) − 2n−1

4n , S(an) +
2n−1

4n ] ⊂ [S(a
n) − 1

2, S(a
n) + 1

2 ].

Proof. (Claim B.4) First we prove that MI(∆an ) = ( 1
2n )

2n−1. For brevity, denote aisi by ŝi . By
definition of model integration and the fact that the integral is absolutely convergent (since we are
integrating a constant function, i.e., one, over finite volume regions), we have the following equations

MI(∆an ) =

∫
x |=∆an

1 dX

=

∫ 1
4n +ŝn

− 1
4n +ŝn

dxk+1,n · · ·

∫ 1
4n +ŝ1

− 1
4n +ŝ1

dxk+1,1

∫ 1
4n +xk+1,n−1+xk+1,n

− 1
4n +xk+1,n−1+xk+1,n

dxk,2k−1 · · ·

∫ 1
4n +x2,1+x2,2

− 1
4n +x2,1+x2,2

1 dx1,1 .

Observe that for the most inner integration over variable x1,1, the integration result is 1
2n . By doing this

iteratively, we have that MI(∆ak ) = ( 1
2n )

2n−1 where the 2n − 1 comes from the number of variables.
Then we prove that satisfying assignments for variable Xj,i in formula ∆an lie in the interval
[
∑

l alsl − 2k− j+2−1
4n ,

∑
l alsl + 2k− j+2−1

4n ] where l ∈ {l | Xk+1,l is a descendant of Xj,i} by performing
mathematical induction in a bottom-up way.
For j = 1, any variable Xk+2−j,i with i ∈ [2k+2−j] has satisfying assignments consisting of the interval
[aisi − 1

4n, aisi +
1

4n ]. Thus the statement holds for this case.

Suppose that the statement holds for j = m, that is, for any i ∈ [2k+2−m], any variable Xk+2−m,i
has satisfying assignments consisting interval [

∑
l alsl − 2m−1

4n ,
∑

l alsl + 2m−1
4n ] where l ∈ {l |

Xk+1,l is a descendant of Xk+2−m,i}.

Then for j = m + 1 and any i ∈ [2k+1−m], the variable Xk+1−m,i has two descendants, variable
Xk+2−m,2i−1 and variable Xk+2−m,2i . Moreover, we have that − 1

4n + Xk+2−m,2i−1 + Xk+2−m,2i <

Xk+1−m,i <
1

4n + Xk+2−m,2i−1 + Xk+2−m,2i . Then the lower bound of the interval for variable Xk+1−m,i

is− 1
4n+

∑
l alsl−2 2m−1

4n =
∑

l alsl− 2m+1−1
4n ; similarly the upper bound of the interval is

∑
l alsl+ 2m+1−1

4n ,
where l ∈ {l | Xk+1,l is a descendant of Xk+1−m,i}. That is, the statement also holds for j = m + 1
which finishes our proof. �

The above claim shows what the model integration of formula ∆ak is like. We’ll show in the next
claim what the model integration of formula ∆an conjoined with a query l < X1,1 < u is like.

Claim B.5. For each assignments an ∈ {0, 1}n, the model integration of ∆an ∧ (l < X1,1 < u) falls
into one of the following cases:

i) If S(an) < L or S(an) > L, then MI(∆an ∧ (l < X1,1 < u)) = 0.
ii) If S(an) = L, then MI(∆an ∧ (l < X1,1 < u)) = ( 1

2n )
2n−1.

Proof. (Claim B.5) From previous Claim B.4, it is shown that variable X1,1 has its satisfying
assignments in the interval [S(an) − 2n−1

4n , S(an) + 2n−1
4n ] in formula ∆an for each an ∈ {0, 1}n.

If S(an) < L, given that S(an) is a sum of positive integers, then it holds that S(an) + 1
2 ≤

(L − 1) + 2n−1
4n < L − 1

2 = l and therefore, MI(∆an ∧ (l < X1,1 < u)) = 0; similarly, if S(an) > L,
then it holds that S(an) − 1

2 > u and therefore, MI(∆an ∧ (l < X1,1 < u)) = 0. If S(an) = L, then by
Claim B.4 we have that the satisfying assignment interval is inside the interval [l, u] and thus it holds
that MI(∆an ∧ (l < X1,1 < u)) = MI(∆an ) = ( 1

2n )
2n−1. �

Claim B.6. The following two equations hold:

i) MI(∆) =
∑

an MI(∆an ).
ii) MI(∆ ∧ (l < X1,1 < u)) =

∑
an MI(∆an ∧ (l < X1,1 < u)).
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Proof. (Claim B.6) Observe that for each pair of literals `(i, 0) and `(i, 1), i ∈ [n], literals are mutually
exclusive since each si is a positive integer. Then we have that formulas ∆an are mutually exclusive
and meanwhile formula ∆ =

∨
an ∆an . Thus it holds that MI(∆) =

∑
an MI(∆an ). Similarly, we

have formulas (∆an ∧ (l < X1,1 < u))’s are mutually exclusive and meanwhile ∆ ∧ (l < X1,1 < u) =∨
an ∆an ∧ (l < X1,1 < u). Thus the second equation holds. �

From the above claims, we can conclude that MI(∆ ∧ (l < X1,1 < u)) = t( 1
2n )

2n−1 where t is the
number of assignments an s.t. S(an) = L. Notice that for each an ∈ {0, 1}n, there is a one-to-one
correspondence to a subset S′ ⊆ S by defining an as ai = 1 if and only if si ∈ S′; and S(an) equals to
L if and only if the sum of elements in S′ is L. Therefore (2n)2n−1MI(∆ ∧ (l < X1,1 < u)) equals to
the number of subset S′ ⊆ S whose element sum equals to L. This finishes the proof for the statement
that inference in WMI(Ω, log(n), 2) is #P-hard. �

B.3 PROPOSITION 4.1

Proof. W.l.o.g, consider the case where the augmented WMI model (∆aug,Waug) is obtained by
removing an edge Xi − Xj and inducing the dependency Xi − Xc

i − Xj from the original WMI model
(∆,W) as shown in Algorithm 2.
Instrumentally to the proof, we introduce the concept of total truth assignments of an SMT(LRA)
formula ∆. A total truth assignment µ is defined as a partitioning of all true literals in L, the set of all
literals in formula ∆, into a set of literals µ> interpreted as true for a certain total configurations of
the variables in ∆ and and the complementary set µ⊥ containing the literals interpreted as false. Let
tta(∆) be the set of all total truth assignments for formula ∆.
Notice that when operating on continuous variables only, the definition of WMI in Equation 1 can be
rewritten in terms of the total truth assignments to ∆ as follows:

WMI(∆,W) =
∑

µ∈tta(∆)

∫
nx |= µo

∏̀
∈L

w(x)nx |=`odx :=
∑

µ∈tta(∆)
Zµ . (6)

Before we prove that the WMI remains unchanged for the augmented model, we need the following
claim.

Claim B.7. Let tta(∆) and tta(∆aug) be the set of total truth assignments of formula ∆ and that of
formula ∆aug respectively. Then there exists a bijection between tta(∆) and tta(∆aug).

Proof. The proof is done by explicitly constructing a bijection f : tta(∆) → tta(∆aug) which maps
µ ∈ tta(∆) to µ′ ∈ tta(∆aug) in the following way:

i) for every ` ∈ ∆i , if ` ∈ µ>, then ` ∈ µ′> and `{Xi : Xc
i } ∈ µ

′
>; otherwise ` ∈ µ′⊥ and

`{Xi : Xc
i } ∈ µ

′
⊥.

ii) for every ` ∈ ∆i j , if ` ∈ µ>, then `{Xi : Xc
i } ∈ µ

′
>; otherwise `{Xi : Xc

i } ∈ µ
′
⊥.

iii) for every ` < ∆i and ` < ∆i j , if ` ∈ µ>, then ` ∈ µ′>; otherwise ` ∈ µ′⊥.
iv) finally, by definition, literal Xi = Xc

i is always in set µ′> (otherwise µ′ would not be a
satisfying assignment to formula ∆aug)

where ∆i is the sub-formula containing all the univariate clauses in ∆ referring to Xi only and
analogously ∆i j is the sub-formula containing bivariate clauses in ∆ referring to Xi and Xj .
First, note that the function f is well-defined since every literal in formula ∆aug is assigned to either set
µ′> or set µ′⊥ by the construction of formula ∆aug and this uniquely defines a µ′ ∈ tta(∆aug). Second,
by construction, if f (µ1) = f (µ2) for some µ1, µ2 ∈ tta(∆), the two total truth assignments µ1 and µ2
should have the same set of positive literals as well as the same set of negative literals, which means
that µ1 = µ2. Thus, the function f is a one-to-one mapping. Moreover, for each µ′ ∈ tta(∆aug), there
exists µ ∈ tta(∆) obtained by substituting the variable x ′i by Xi and deleting literals in ∆i{Xi : Xc

i }

and literal Xi = Xc
i , such that f (µ) = µ′. That is, the function f is also an onto mapping. Overall, the

function f is a bijection between tta(∆) and tta(∆aug). �

From Equation 6, it follows that to prove that WMI(∆,W) =WMI(∆aug,Waug), it suffices to prove
that for each µ ∈ tta(∆), Zµ, the integration inside summation corresponding to assignment µ, equates
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Zaug
f (µ)

inside WMI(∆aug with function f as defined in Claim B.7. Let X−i = X \ {Xi}. Then the set of
variables appearing in formula ∆aug can be written as X−i ∪ {Xi} ∪ {Xc

i }. Let ∆
aug
i j := ∆i j{Xi : Xc

i }

and ∆aug := ¯∆aug ∧ (Xi = Xc
i ). We explicitly formulate the integration Zµ and Zaug

f (µ)
as follows.

Zµ =
∫

nx |= µo
∏̀
∈∆

w`(x)
nx |=`odx

Zaug
f (µ)
=

∫
nx−i, xi, xci |= f (µ)o

∏
`∈ ¯∆aug

w`(x−i, xi, xci )
nx−i,xi,xci |=`oδ(xi − xci )dxci dxidx−i

=

∫ ∏
`∈ ¯∆aug

`<∆
aug
i j

w`(x−i, xi)nx−i,xi |=`o ·

©­­«
∫ ∏

`∈∆
aug
i j

w`(xci , xj)nx
c
i ,x j |=`oδ(xi − xci )nx−i, xi, xci |= f (µ)odxci

ª®®¬ dxidx−i

Notice that by the property of Dirac Delta function and the construction of function f , it holds that∫ ∏
`∈∆

aug
i j

w`(xci , xj)nx
c
i ,x j |=`oδ(xi − xci )nx−i, xi, xci |= f (µ)odxci =

∏
`∈∆i j

w(xi, xj)nxi,x j |=`onx |= µo

Therefore, it holds that

Zaug
f (µ)
=

∫
nx |= µo

∏
`∈ ¯∆aug

`<∆
aug
i j

w`(x−i, xi)nx−i,xi |=`o
∏
`∈∆i j

w`(xi, xj)nxi,x j |=`odx = Zµ

Finally, we have that the WMI of the original model (∆,W) equates that of the augmented model
(∆aug,Waug) by observing that WMI(∆,W) =

∑
µ Zµ =

∑
f (µ) Zaug

f (µ)
=WMI(∆aug,Waug).

Moreover, for any univariate literal `, it can be shown by similar arguments that WMI(∆ ∧ `,W) =
WMI(∆aug ∧ `,Waug). Thus, it holds that Pr∆(`) = WMI(∆ ∧ `,W)/WMI(∆,W) = WMI(∆aug ∧
`,Waug)/WMI(∆aug,Waug) = Pr∆aug (`). �

B.4 THEOREM 4.3

For the remaining WMI model (∆rem,Wrem), it holds that

Pr∆rem (`k,i ∧ `
c
k,i) =

WMI(∆rem ∧ `k,i ∧ `
c
k,i
,Wrem)

WMI(∆rem,Wrem)

=
WMI(∆rem ∧ `k,i ∧ `

c
k,i
,Wrem)

WMI(∆rem ∧ `k,i ∧ `
c
k,i
,Wrem) +WMI(∆rem ∧ ¬`k,i ∧ ¬`

c
k,i
,Wrem)

=
exp (θk,i + θck,i)

rk + exp (θk,i + θck,i)

By substituting the sum of θk,i and θck,i with the first equality in Equation 3, it holds that Pr∆rem (`k,i ∧

`c
k,i
) = Pr∆rel (`k,i); similarly, by substituting the sumwith the second equality, it holds thatPr∆rem (`k,i∧

`c
k,i
) = Pr∆rel (`ck,i), which finishes the proof.
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C Algorithms

Algorithm 2 augmentModel(∆,W, Ed)
Input: a WMI model with SMT formula ∆ and per-literal weightsW and a set Ed of edges to be
deleted
Output: augmented WMI model (∆aug,Waug) and equivalence constraint set L
1: ∆aug ← copy(∆)
2: Waug ← copy(W)
3: L ← {}
4: for edge Xi − Xj ∈ Ed do
5: Xc

i ← copy(Xi) . Assume to copy Xi

6: ˆ̀← (Xi = Xc
i )

7: L ← L ∪ { ˆ̀}
8: ∆′← ∆aug ∧ ˆ̀,
9: w ˆ̀ := δ(Xi, Xc

i )

10: Waug ←Waug ∪ {w ˆ̀}
11: for clause Γ ∈ ∆i, j do . Rename edges
12: Γ′← Γ{Xi : Xc

i }

13: ∆′← ∆′{Γ : Γ′}
14: for each literal ` ∈ Γ do
15: `′← `{Xi : Xc

i }

16: w`′ ← copy(w`)
17: Waug ←Waug ∪ {w`′} \ {w`}

18: for clause Γ ∈ ∆i do . Copy and rename bounding-box literals
19: Γ′← copy(Γ)
20: ∆′← ∆′ ∧ Γ′{Xi : Xc

i }

21: ∆aug ← ∆′

22: return ∆aug,Waug,L
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Algorithm 3 relaxModel(∆aug,Waug,L)
Input: an augmented WMI model (∆aug,Waug), L: equivalence constraints to be relaxed
Output: a relaxed WMI model (∆rel,Wrel), and its “remaining-part” model (∆rem,Wrem).
1: ∆rem ← >
2: Wrem ← {}
3: ∆rel ← copy(∆aug)
4: Wrel ← copy(Waug)
5: for each `∗ : (Xi = Xc

i ) ∈ L do
6: for clause Γ ∈ ∆i do
7: ∆rem ← ∆rem ∧ Γ ∧ Γ{Xi : Xc

i }

8: for each literal ` ∈ Γ do
9: `′← `{Xi : Xc

i }

10: w`′ ← copy(w`)
11: Wrel ←Wrel ∪ {w`′}
12: Wrem ←Wrem ∪ {w`,w`′}

13: ∆rel ← ∆rel{`∗ : >} . disconnect Xi and copy Xc
i

14: Wrel ←Wrel \ {w`∗ }
15: ∆rem ← ∆rem ∧ `∗

16: Wrem ←Wrem ∪ {w`∗ }

17: return (∆rel,Wrel), (∆rem,Wrem)

Algorithm 4 addingCompensations(∆rel,Wrel, L, K)
Input: a relaxed WMI model (∆rel,Wrel), K number of compensating literals to introduce
Output: the relaxed WMI model (∆rel

+ ,W
rel
+ ) with compensating literals initialized.

1: ∆rel
+ ← ∆

rel,Wrel
+ ←W

rel

2: Xo ← nonCopyVars(L) . Gather original variables
3: for each Xi ∈ Xo do
4: for k = 1, . . . ,K do
5: τi,k ∼ Uniform(support(Xi)) . Randomly help support
6: σi,k ∼ Uniform({+1,−1}) . And pick one half
7: `i,k ← (Xi ≤ σi,k · τi,k)

8: ∆rel
+,i ← ∆

rel
+,i ∧ `i,k

9: θi,k ← 1 . Initiate potentials
10: w`i,k := exp(θi,k)
11: Wrel

+ ←W
rel
+ ∪ {w`i,k }

12: for each ` : (Xi = Xc
i ) ∈ L do

13: `c
i,k
← (Xc

i ≤ σi,k · τi,k)

14: ∆
rel,c
+,i ← ∆

rel,c
+,i ∧ `i,k

15: θc
i,k
← 1 . Initiate potentials

16: w`c
i,k

:= exp(θc
i,k
)

17: Wrel
+ ←W

rel
+ ∪ {w`ci,k }

18: Return (∆rel
+ ,W

rel
+ )
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