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We would like to thank all the reviewers for their comprehensive reviews. We clarify the major comments below.

Robustness, Novelty [R2] TensorNOODL is a simple online tensor factorization algorithm which provably recovers
the constituent factors exactly (upto scalings and permutations) at a linear rate for an inherently non-convex problem.
Our main result only states the sufficient conditions, and as shown in Fig. 4, the algorithm succeeds for all values of
{J, K, m, «, 8} showing its robustness; see also App.E where it shows orders of magnitude superior performance as
compared to related techniques. In addition, our analysis of the resulting Khatri-Rao structure is, to the best of our
knowledge, also the first to establish guarantees for recovery of constituent factors from the Kronecker structured data.

Model Assumptions [R1, R2] For probabilistic analysis like ours, it is common to impose structure on the factors,
such assumptions are also used by existing provable algorithms for tensor factorization [1,2,3]. As discussed in Sec. 1.3,
the existing provable algorithms for tensor factorization either only apply to the undercomplete case (m < n) [7,8,9], or
when applicable for overcomplete case, use sum of squares [6], or tensor power iterations with multiple initializations
[1,3], which are cumbersome for practical use. As noted in Sec.6 (and suggested by R1,R3) this is a first of its kind
simple provable algorithm, and we aim to work towards relaxing the conditions in our future work. Note that although
we leverage results from [11], our analysis works with any dictionary learning algorithm with appropriate guarantees.

Model Selection and Connections to popular algorithms [R2] While in general, the model selection for tensor
factorization task is NP-hard [5] and is usually based on heuristics, for this particular structured tensor factorization
task, our model assumptions ensure that the initialization algorithm such as [2] can recover A(®) as required by
A.2., implicitly accomplishing the model selection (finding m). Further, our aim here is to establish the theoretical
underpinnings behind popular heuristics (such as alternating optimization and exploiting the Khatri-Rao structure)
employed in tensor factorization tasks to enable development of simple, provable, and practical algorithms. Here, (1)
defines a general CP/PARAFAC problem only. As discussed in Sec.1, 1.1, 2-4, and Fig. 1, TensorNOODL accomplishes
online CP decomposition of a structured tensor, useful in applications where batch processing is not viable.
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Comparisons with ALS and using Tensor structure [R3] We compare TensorNOODL ,.[==== T TR
with related techniques which are also agnostic to the tensor structure for a fairness. Out ozf|-_ =i - Sl AN
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fibers are zero, processing only the non-zero fibers may lead to significant gains since ¢,
there is no need to solve large sparse approximation subproblems as is the case with ALS _?
(which also need to be tuned). Therefore, it seems that leveraging tensor structure may — sesuisommms nsowmmo soamay
increase the computational complexity. Nevertheless, it can be potentially be useful in Fig.A Comparing signatures of

presence of noise, where this structure is not obvious. Thank you for this insight. TensorNOODL & [4].
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Arora ’15[”’unbiased”] and Qualitative Real-data Experiments [R3] The authors propose an unbiased counterpart
in [2]. They conjecture that the sample complexity is similar to the biased counterpart, but leave the exact analysis
to future work; see [2], Thm 2, and footnote 2. In our experiments, we find that given equal number of samples, the
unbiased version is only slightly better than the biased counterpart. For quantitative real-world data, we compare the
cluster purity of TensorNOODL with other techniques [4,12] in App.E.1 for the Enron dataset. We’ve added Fig.A
which shows the qualitative signatures recovered, note that [12] does not recover the signatures.

Initializing A (°), Random initializations [R3,R4] For real data experiments we use the algorithm proposed by [2] to
initialize the algorithm (line 261, App. E.2.). For synthetic data experiments, the initialization algorithm of [2] with a
running time of O(m?n?s) becomes the bottleneck (in terms of time) as m and s increase. Therefore, we perturb the
ground-truth dictionary (in accordance with our theoretical result) for these experiments, providing all methods with this
initialization. Further, TensorNOODL requires the initial dictionary estimate to follow A.2. for exact recovery at a linear
rate. Initializations which do not meet these conditions may still converge, albeit not at a linear rate. Empirically, we do
see evidence in support of this, and we agree with R4 that using random initializations (along with model selection
algorithm) is a very interesting direction for our future work.

FISTA [R4] TensorNOODL at its core uses Iterative Hard Thresholding (IHT) for sparse approximation, which
essentially solves a projected gradient descent problem for the ¢y problem (counterpart of ISTA which operates for the
¢y case). Indeed, it is possible to build upon our work to use other algorithms for faster convergence. In theory, any
algorithm which can preserve the signed-support recovery of x can be used; see Lem. 3.
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