
Provable Online CP/PARAFAC Decomposition of a
Structured Tensor via Dictionary Learning

Sirisha Rambhatla 1 Xingguo Li 2 Jarvis Haupt 3

sirishar@usc.edu xingguol@cs.princeton.edu jdhaupt@umn.edu
1 Computer Science Department, University of Southern California

2 Computer Science Department, Princeton University
3 Department of Electrical and Computer Engineering, University of Minnesota – Twin Cities

Abstract
We consider the problem of factorizing a structured 3-way tensor into its
constituent Canonical Polyadic (CP) factors. This decomposition, which
can be viewed as a generalization of singular value decomposition (SVD)
for tensors, reveals how the tensor dimensions (features) interact with each
other. However, since the factors are a priori unknown, the corresponding
optimization problems are inherently non-convex. The existing guaranteed
algorithms which handle this non-convexity incur an irreducible error (bias),
and only apply to cases where all factors have the same structure. To this
end, we develop a provable algorithm for online structured tensor factor-
ization, wherein one of the factors obeys some incoherence conditions, and
the others are sparse. Specifically we show that, under some relatively mild
conditions on initialization, rank, and sparsity, our algorithm recovers the
factors exactly (up to scaling and permutation) at a linear rate. Comple-
mentary to our theoretical results, our synthetic and real-world data eval-
uations showcase superior performance compared to related techniques.

1 Introduction
Canonical Polyadic (CP) /PARAFAC decomposition aims to express a tensor as a sum of
rank-1 tensors, each of which is formed by the outer-product (denoted by “◦”) of constituent
factors columns. In this work, we consider the online factorization of a structured tensor
3-way tensor Z(t) ∈ Rn×J×K arriving at time t, as

Z(t) =
∑m
i=1 A∗i ◦B∗(t)i ◦C∗(t)i = [[A∗,B∗(t),C∗(t)]], (1)

where A∗i , ◦B
∗(t)
i and C∗(t)i are columns of factors A∗, B∗(t), and C∗(t), respectively, and are

a priori unknown. A popular choice for the batch setting (not online) is via the alternating
least squares (ALS) algorithm, where appropriate regularization terms (such as `1 loss for
sparsity) are added to the least-square objective to steer towards specific solutions [1–4].
However, these approaches suffer from three major issues – a) the non-convexity of associated
formulations makes it challenging to establish recovery and convergence guarantees, b) one
may need to solve an implicit model selection problem (e.g., choose the tensor rank m), and
c) regularization may be computationally expensive, and may not scale well in practice.
Recent works for guaranteed tensor factorization – based on tensor power method [5], convex
relaxations [6], sum-of-squares formulations [7–9], and variants of ALS algorithm [10] – have
focused on recovery of tensor factors wherein all factors have a common structure; based
on some notion of incoherence of individual factor matrices such as sparsity, incoherence, or
both [11]. Furthermore, these algorithms a) incur bias in estimation, b) are computationally
expensive in practice, and c) are not amenable for online (streaming) tensor factorization;
See Table 1. Consequently, there is a need to develop fast, scalable provable algorithms for
exact (unbiased) factorization of structured tensors arriving (or processed) in a streaming
fashion (online), generated by heterogeneously structured factors. To this end, we develop

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

a provable algorithm to recover the unknown fac-
tors of tensor(s) Z(t) in Fig.1 (arriving, or made
available for sequential processing, at an instance
t), assumed to be generated as (1), wherein the
factor A∗ is incoherent and fixed (deterministic),
and the factors B∗(t) and C∗(t) are sparse and
vary with t (obey some randomness assumptions).

n

K
J

Z(t) =
m∑
i=1

A∗i

B∗(t)i

C∗(t)i

Figure 1:Tensor Z(t) ∈Rn×J×K of interest,
a few mode-1 fibers are dense.

Model Justification: The tensor factorization task of interest arises in streaming applica-
tions where users interact only with a few items at each time t, i.e. the user-item interactions
are sparse. Here, the fixed incoherent factor A∗ columns model the underlying fixed inter-
actions patterns (signatures). At time t, a fresh observation tensor Z(t) arrives, and the task
is to estimate sparse factors (users and items), and the incoherent factor (patterns). This
estimation procedure reveals users B∗i and items C∗i sharing the same pattern A∗i , i.e. the
underlying clustering, and finds applications in scrolling pattern analysis in web analytics
[12], sports analytics (section 5.2), patient response to probes [13, 14], electro-dermal re-
sponse to audio-visual stimuli [15, 16], and organizational behavior via email activity [1, 17].

1.1 Overview of the results
We take a matrix factorization view of the tensor factorization task to develop an online
provable tensor factorization algorithm for exact recovery of the constituent factors. Lever-
aging the structure, we envision the non-zero fibers as being generated by a dictionary
learning model, where the data samples y(j) ∈ Rn are assumed to be generated as follows
from an a priori unknown dictionary A∗ ∈ Rn×m and sparse coefficients x∗(j) ∈ Rm.

y(j) = A∗x∗(j), ‖x∗(j)‖0 ≤ s for all j = 1, 2, . . . (2)
This modeling procedure includes a matricization or flattening of the tensor, which leads to a
Kronecker (Khatri-Rao) dependence structure among the elements of the resulting coefficient
matrix; see section 4. As a result, the main challenges in developing recovery guarantees are
to: a) analyze the Khatri Rao product (KRP) structure to identify and quantify data samples
(non-zero fibers) available for learning, b) establish guarantees on the resulting sparsity
structure, and c) develop a SVD-based guaranteed algorithm to successfully untangle the
sparse factors using corresponding coefficient matrix estimate and the underlying KRP
structure. Also, our matricization-based analysis can be of independent interest.
1.2 Contributions
We develop an algorithm to recover the CP factors of tensor(s) Z(t)∈Rn×J×K , arriving
(or made available) at time t, generated as per (1) from constituent factors A∗ ∈ Rn×m,
B∗(t) ∈ RJ×m, and C∗(t) ∈ RK×m, where the unit-norm columns of A∗ obey some incoher-
ence assumptions, and B∗(t) and C∗(t) are sparse. Our specific contributions are:
• Exact recovery and linear convergence: Our algorithm TensorNOODL, to the best of

our knowledge, is the first to accomplish recovery of the true CP factors of this structured
tensor(s) Z(t) exactly (up to scaling and permutations) at a linear rate. Specifically,
starting with an appropriate initialization A(0) of A∗ , we have A(t)

i →A∗i , B̂(t)
i →πBi

B∗(t)i ,
and Ĉ(t)

i →πCiC
∗(t)
i , as iterations t→∞, for constants πBi and πCi .

• Provable algorithm for heterogeneously-structured tensor factorization: We
consider the exact tensor factorization (an inherently non-convex task) when the factors
do not obey same structural assumptions. That is, our algorithmic procedure overcomes
the non-convexity bottleneck suffered by related optimization-based ALS formulations.

• Online, fast, and scalable: The online nature of our algorithm, separability of updates
due to bio-inspired neural plausibility, and relatively easy to tune parameters, make it
suitable for large-scale distributed implementations. Furthermore, our numerical sim-
ulations (both synthetic and real-world) demonstrate superior performance in terms of
accuracy, number of iterations, demonstrating its applicability to real-world tasks.

Furthermore, although estimating the rank of a given tensor is NP hard, the incoherence
assumption on A∗, and distributional assumptions on B∗(t) and C∗(t), ensure that our
matrix factorization view is rank revealing [18]. In other words, our assumptions ensure
that the dictionary initialization algorithms (such as [19]) can recover the rank of the tensor.
Following this, TensorNOODL recovers the true factors (up to scaling and permutation) whp.

2

Table 1: Comparing provable algorithms for tensor factorization and dictionary learning. As
shown here, the existing provable techniques do not apply where A: incoherent, (B,C): sparse.

Method Conditions Recovery Guarantees
Model Rank Initialization Estimation Bias ConvergenceConsidered Constraints

TensorNOODL (this work) A: incoherent, (B,C):
sparse

m = O(n) O∗
(

1
log(n)

)
No Bias Linear

Sun et al. [11]‡ (A,B,C): all incoherent
and sparse

m = o(n1.5) o(1) ‖Aij − Âij‖∞ = O(1
n0.25)† Not established

Sharan and Valiant [10]‡ (A,B,C): all incoherent m = o(n0.25) Random ‖Ai − Âi‖2 = O(
√

m
n)† Quadratic

Anandkumar et al. [5]‡ (A,B,C): all incoherent m = O(n) O∗
(

1√
n

)
¶ ‖Ai − Âi‖2 = Õ(1√

n
)† Linear§

m = o(n1.5) O(1) ‖Ai − Âi‖2 = Õ(
√
m
n)† Linear

Arora et al. [19] Dictionary Learning (2) m = O(n) O∗
(

1
log(n)

)
O(
√
s/n) Linear

m = O(n) O∗
(

1
log(n)

)
Negligible bias § Linear

Mairal et al. [20] Dictionary Learning (2) Convergence to stationary point; similar guarantees by Huang et al. [21].
‡ This procedure is not online. † Result applies for each i ∈ [1,m]. ¶ Polynomial number of initializations mβ2 are required, for β ≥ m/n.
§ The procedure has an almost Quadratic rate initially.

1.3 Related works

Tensor Factorization: Canonical polyadic (CP)/PARAFAC decomposition (1) captures
relationships between the latent factors, where the number of rank-1 tensors define the rank
for a tensor. Unlike matrix decompositions, tensor factorizations can be unique under rel-
atively mild conditions [22, 23]. However, determining tensor rank is NP-hard [24], and so
are tasks like tensor decompositions [25]. Nevertheless, regularized ALS-based approaches
emerged as a popular choice to impose structure on the factors, however establishing conver-
gence to even a stationary point is difficult [26]; see also [27]. The variants of ALS with some
convergence guarantees do so at the expense of complexity [28, 29], and convergence rate
[30]; See also [1] and [18]. On the other hand, guaranteed methods for tensor factorization
initially relied on a computationally expensive orthogonalizing step (whitening), and there-
fore, did not extend to the overcomplete setting (m > n) [31–37]. As a result, works such
as [5, 6, 38], relaxed orthogonality to an incoherence condition to handle the overcomplete
setting. To counter the complexity of these methods, [10] developed a provable ALS variant
using orthogonalization, however, this precludes its use in overcomplete settings.
Dictionary Learning: We now provide a brief overview of the dictionary learning liter-
ature. Popularized by the rich sparse inference literature, overcomplete (m ≥ n) represen-
tations lead to sparse(r) representations which are robust to noise; see [39–41]. Learning
such sparsifying overcomplete representations is known as dictionary learning [20, 42–45].
Analogous to the ALS algorithm, the alternating minimization-based techniques became
widely popular in practice, however theoretical guarantees were still limited. Provable algo-
rithms for under- and over-complete settings were developed, however their computational
complexity and initialization requirements limited their use [7, 46–48]. Tensor factorization
algorithms have also been used to learn orthogonal ([7] and [8]), and convolutional [35]
dictionaries. More recently, [49] proposed NOODL: a simple, scalable gradient descent-based
algorithm for joint estimation of the dictionary and the coefficients, for exact recovery of
both factors at a linear rate. Although this serves as a great starting point, tensor factoriza-
tion task cannot be handled by a mere “lifting” due to the induced dependence structure.
Overall, the existing provable techniques (Table 1) in addition to being computationally
expensive, incur an irreducible error (bias) in estimation and apply to cases where all factors
obey the same conditions. Consequently, there is a need for fast and scalable provable tensor
factorization techniques which can recover structured factors with no estimation bias.

Notation. Bold, lower-case (v) and upper-case (M) letters, denote vectors and matrices, respec-
tively. We use Mi, M(i,:), Mij (also M(i, j)), and vi (also v(i)) to denote the i-th column, i-th row,
(i, j) element, respectively. We use “� ” and “⊗ ” to denote the Khatri-Rao (column-wise Kro-
necker product) and Kronecker product, respectively. Next, we use (·)(n) to denote the n-th iterate,
and (·)(n) for the n-th data sample. We also use standard Landau notations O(·),Ω(·) (Õ(·), Ω̃(·))
to denote the asymptotic behavior (ignoring log factors). Also, for a constant L (independent of
n), we use g(n) = O∗(f(n)) to indicate that g(n) ≤ Lf(n). We use c(·) for constants determined
by the quantities in (·). Also, we define Tτ (z) := z · 1|z|≥τ as the hard-thresholding operator, where
“1” is the indicator function, and supp(·) for the support (set of non-zero elements) and sign(·) for
element-wise sign. Also, (.)(r) denotes potential iteration dependent parameters. See Appendix A.

3

n

K
J

Z(t) → → A∗

Dictionary

X∗(t)
Sparse

Coefficients

Dense Columns Collected to
form a Matrix

... ...

=Y(t)

Figure 2: Problem Formulation: The dense columns of Z(t) ∈ Rn×J×K are collected in a matrix
Y(t). Then Y(t) is viewed as arising from a dictionary learning model.

2 Problem Formulation
Our formulation is shown in Fig. 2. Here, our aim is to recover the CP factors of tensors
{Z(t)}T−1

t=0 assumed to be generated at each iteration as per (1). Without loss of generality,
let the factor A∗ follow some incoherence assumptions, while the factors B∗(t) and C∗(t) be
sparse. Now, the mode-1 unfolding or matricization Z(t)

1 ∈ RJK×n of Z(t) is given by

Z(t)>
1 = A∗(C∗(t) �B∗(t))> = A∗S∗(t), (3)

where S∗(t) ∈ Rm×JK is S∗(t) := (C∗(t) �B∗(t))>. As a result, matrix S∗(t) has a transposed
Khatri-Rao structure, i.e. the i-th row of S∗(t) is given by (C∗(t)i ⊗B∗(t)i)>. Further, since
B∗(t) and C∗(t) are sparse, only a few S∗(t) columns (say p) have non-zero elements. Now,
let Y(t) ∈ Rn×p be a matrix formed by collecting the non-zero Z(t)>

1 columns, we have
Y(t) = A∗X∗(t), (4)

where X∗(t) ∈ Rm×p denotes the sparse matrix corresponding to the non-zero columns of
S∗(t). Since recovering A∗ and X∗(t) given Y(t) is a dictionary learning task (2), we can now
employ a dictionary learning algorithm (such as NOODL) which exactly recovers A∗ (the dic-
tionary) and X∗(t) (the sparse coefficients) at each time step t of the (online) algorithm. The
exact recovery of X∗(t) enables recovery of B∗(t) and C∗(t) using our untangling procedure.

3 Algorithm
We begin by presenting the algorithmic details referring to relevant assumptions, we then
analyze the model assumptions and the main result in section 4. TensorNOODL (Alg. 1)
operates by casting the tensor decomposition problem as a dictionary learning task. Initially,
Alg. 1 is given a (ε0, 2)-close (defined below) estimate A(0) of A∗ for ε0 = O∗(1/ log(n)).
This initialization, which can be achieved by algorithms such as Arora et al. [19], ensures
that the estimate A(0) is both, column-wise and in spectral norm sense, close to A∗.

Definition 1 ((ε, κ)-closeness) A matrix A is (ε, κ)-close to A∗ if ‖A−A∗‖ ≤ κ‖A∗‖,
and if there is a permutation π : [m]→ [m] and a collection of signs σ : [m]→ {±1} such
that ‖σ(i)Aπ(i) −A∗i ‖ ≤ ε, ∀ i ∈ [m].
Next, we sequentially provide the tensors to be factorized, {Z(t)}T−1

t=0 (generated indepen-
dently as per (1)) at each iteration t. The algorithm proceeds in the following stages.

I. Estimate Sparse Matrix X∗(t): We use R iterative hard thresholding (IHT) steps (6)
– with step-size η(r)

x and threshold τ (r) chosen according to A.6 – to arrive at an estimate
X̂(t) (or X(R)(t)). Iterations R are determined by the target tolerance (δR) of the desired
coefficient estimate, i.e. we choose R = Ω(log(1/δR)), where (1− η(r)

x)R ≤ δR.
II. Estimate B∗ and C∗: As discussed in section 2, the tensor matricization leads to a
Khatri-Rao dependence structure between the factors B∗(t) and C∗(t). To recover these, we
develop a SVD-based algorithm (Alg. 2) to estimate sparse factors (B∗(t) and C∗(t)) using
an element-wise ζ-close estimate of S∗(t), i.e., |Ŝ(t)

ij −S∗(t)ij | ≤ ζ. Here, we form the estimate
Ŝ(t) of S∗(t) by placing columns of X̂(t) at their corresponding locations of Z(t)>

1 to the
Khatri-Rao structure (TensorNOODL is agnostic to the tensor structure of the data since it
only operates on the non-zero fibers Y(t) of Z(t)>

1 ; see (4) and Fig. 2). Our recovery result
for X̂(t) guarantees that Ŝ(t) has the same sign and support as Ŝ∗(t), we therefore provably
recover the original Khatri-Rao product structure.

4

III. Update A∗ estimate : We use X∗(t)
estimate to update A(t) by an approxi-
mate gradient descent strategy (8) with
step size ηA (A.5). The algorithm requires
T = max(Ω(log(1/εT)),Ω(log(

√
s/δT))) for

‖A(T)
i −A∗i ‖≤εT , ∀i ∈[m] and |X̂(T)

ij −X∗(t)ij | ≤ δT .
Runtime: The runtime of TensorNOODL
is O(mnp log(1

δR
) max(log(1

εT
), log(

√
s

δT
)) for

p=Ω(ms2). Furthermore, since X∗ columns
can be estimated independently in parallel,
TensorNOODL is scalable and can be imple-
mented in highly distributed settings.

4 Main Result
We now formalize our model assumptions and
state our main result; details in Appendix B.
Model Assumptions: First, we require that
A∗ is µ-incoherent (defined below), which de-
fines the notion of incoherence for A∗ columns
(refered to as dictionary).
Definition 2 A matrix A∈Rn×m with unit-
norm columns is µ-incoherent if for all i 6= j
the inner-product between the columns of the
matrix follow |〈Ai,Aj〉| ≤ µ/

√
n.

This ensures that dictionary columns are dis-
tinguishable, akin to relaxing the orthogonal-
ity constraint. Next, we assume that sparse
factors B∗(t) and C∗(t) are drawn from dis-
tribution classes ΓsG

α,C and ΓRad
β , respectively,

here ΓsG
γ,C and ΓRad

γ are defined as follows.

Algorithm 1 TensorNOODL: Neurally plausible al-
ternating Optimization-based Online Dictionary Learn-
ing for Tensor decompositions.
Input: Structured tensor Z(t) ∈ Rn×J×K at each t gen-

erated as per (1). Parameters ηA, ηx, τ , T , C,
and R as per A.3, A.5, and A.6.

Output: Dictionary A(t) and the factor estimates B(t)

and C(t) (corresponding to Z(t)) at t.
Initialize: Estimate A(0), which is (ε0, 2)-near to A∗ for

ε0 = O∗(1/ log(n)); see Def. 1.
for t = 0 to T − 1 do

I. Estimate Sparse Matrix X∗(t):
Initialize: X(0)(t) =TC/2(A(t)>

Y(t)) See Def.3 (5)
for r = 0 to R− 1 do

X(r+1)(t)= Tτ(r)(X(r)(t)− η(r)
x A(t)>

(A(t)X(r)−Y(t)))
(6)end

X̂(t) := X(R)(t).
II. Recover Sparse Factors B∗ and C∗:
Form Ŝ(t) by putting back columns of X̂(t) at the non-
zero column locations of Z(t)>

1 .
[B̂(t), Ĉ(t)] = UNTANGLE-KRP(Ŝ(t))

III. Update Dictionary Factor A(t):
ĝ(t) = 1

p (A(t)X̂(t)
indep −Y∗(t))sign(X̂(t)

indep)> (7)

A(t+1) = A(t) − ηA ĝ(t) (8)

A(t+1)
i = A(t+1)

i /‖A(t+1)
i ‖ ∀ i ∈ [m]

end

Algorithm 2 Untangle Khatri-Rao Product
(KRP): Recovering the Sparse factors
Input: Estimate Ŝ(t) of the KRP S∗(t)
Output: Estimates B̂(t) and Ĉ(t) of B∗(t) and C∗(t).
for i = 1 . . .m do

Reshape: i-th row of Ŝ(t) into M(i) ∈ RJ×K .
Set: B̂(t)

i ←
√
σ1u1, and Ĉ(t)

i ←
√
σ1v1, where σ1,

u1, and v1 are the principal left and right singular
vectors of M(i), respectively.

end

Definition 3 (Distribution Class ΓsG
γ,C and ΓRad

γ) A matrix M belongs to class
• ΓRad

γ : if each entry of M is independently non-zero with probability γ, and the values at
the non-zero locations are drawn from the Rademacher distribution.

• ΓsG
γ,C : if each entry of M is independently non-zero with probability γ, and the values at

the non-zero locations are sub-Gaussian, zero-mean with unit variance and bounded away
from C for some positive constant C ≤ 1, i.e., |Mij | ≥ C for (i, j) ∈ supp(M).

In essence, we assume that elements of B∗(t) (C∗(t)) are non-zero with probability α (β), and
that for B∗(t) the values at the non-zero locations are drawn from a zero-mean unit-variance
sub-Gaussian distribution, bounded away from zero, and the non-zero values of C∗(t) are
drawn from the Rademacher distribution 2.

Analyzing the Khatri-Rao Dependence: We now turn our attention to the KR de-
pendence structure of S∗(t). Fig. 3 shows a row of the matrix S∗(t), each entry of which
is formed by multiplication of an element of C∗(t)i with each element of columns of B∗(t)i .
Consequently, each row of the resulting matrix S∗(t) has K blocks (of size J), where the k-th
block is controlled by C∗(t)k,i , and therefore the (i, j)-th entry of S∗(t) can be written as

2The non-zero entries of C∗(t) can also be assumed to be drawn from a sub-Gaussian distri-
bution (like B∗(t)) at the expense of sparsity, incoherence, dimension(s), and sample complexity.
Specifically when non-zero entries of B∗(t) and C∗(t) are drawn from sub-Gaussian distribution (as
per ΓsG

γ,C), we will need the dictionary learning algorithm to work with the coefficient matrix X∗(t)

(formed by product of entries of B∗(t) and C∗(t)) which now has sub-Exponential non-zero entries.

5

Ci ∈ RK Bi ∈ RJ

=
×

1

=

×

2

=

×

=

×

=

×

=

×

K

=

. . .

Figure 3: Transposed Khatri-Rao dependence.

S∗(t)ij = C∗(t)(
⌊
j
J

⌋
+ 1, i) B∗(t)(j − J

⌊
j
J

⌋
, i). (9)

Depending upon α(β), S∗(t) (consequently Z(t)>
1) may have all-zero (degenerate) columns,

therefore, we only use non-zero columns Y(t) of Z(t)>
1 . Next, although elements in a column

of S∗(t) are independent, the KR structure induces a dependence in a row when they depend
on the same B∗(t) or C∗(t) element; see (9). In practice, we can use all non-zero columns of
Z(t)>

1 , however for our probabilistic analysis, we require an independent set of samples. We
form one such set by selecting the first column from the first block, second column from the
second block and so on; see Fig. 3. This results in a L = min(J,K) independent samples
set for a given Z(t)>

1 . With this, and our assumptions on sparse factors ensure that the L
independent columns of X∗(t) (X∗(t)indep) belong to the distribution class D defined as follows.

Definition 4 (Distribution class D) The coefficient vector x∗ belongs to an unknown
distribution D, where the support S = supp(x∗) is at most of size s, Pr[i ∈ S] = Θ(s/m) and
Pr[i, j ∈ S] = Θ(s2/m2). Moreover, the distribution is normalized such that E[x∗i |i ∈ S] = 0
and E[x∗2

i |i ∈ S] = 1, and when i ∈ S, |x∗i | ≥ C for some constant C ≤ 1. In addition, the
non-zero entries are sub-Gaussian and pairwise independent conditioned on the support.

Further, the (ε0, 2)-closeness (Def. 1) ensures that the signed-support (defined below) of the
coefficients are recovered correctly (with high probability).

Definition 5 The signed-support of a vector x is defined as sign(x) · supp(x).

Scaling and Permutation Indeterminacy: The unit-norm constraint on A∗ implies that
the scaling (including the sign) ambiguity only exists in the recovery of B∗(t) and C∗(t). To
this end, we will regard our algorithm to be successful in the following sense.

Definition 6 (Equivalence) Factorizations [[A,B,C]] are considered equivalent up to scal-
ing, i.e, [[A,B,C]] = [[A∗,B∗Dσb

,C∗Dσc
]] where σb(σc) is a vector of scalings (including

signs) corresponding to columns of the factors B and C, respectively.

Dictionary Factor Update Strategy: We use an approximate (we use an estimate of
X∗(t)) gradient descent-based strategy (7) to update A(t) by finding a direction g(t)

i to en-
sure descent. Here, the (Ω(s/m),Ω(m/s), 0)-correlatedness (defined below) of the expected
gradient vector is sufficient to make progress (“0” indicates no bias); see [19, 49–51].

Definition 7 A vector g(t)
i is (ρ−, ρ+ , ζt)-correlated with a vector z∗ if for any vector z(t)

〈g(t)
i , z(t) − z∗〉 ≥ ρ−‖z(t) − z∗‖2 + ρ+‖g(t)

i ‖
2 − ζt.

Our model assumptions can be formalized as follows, with which we state our main result.

A.1 A∗ is µ-incoherent (Def. 2), where µ = O(log(n)), ‖A∗‖ = O(
√
m/n) and m = O(n);

A.2 A(0) is (ε0, 2)-close to A∗ as per Def. 1, and ε0 = O∗(1/ log(n));
A.3 Factors B∗(t) and C∗(t)are respectively drawn from distributions ΓsG

α,C and ΓRad
β (Def.3);

A.4 Sparsity controlling parameters α and β obey αβ = O(
√
n/mµ log(n)) for

m = Ω(log(min(J,K))/αβ), resulting column sparsity s of S∗(t) is s = O(αβm);
A.5 The dictionary update step-size satisfies ηA = Θ(m/s);
A.6 The coefficient update step-size and threshold satisfy η(r)

x <c1(εt, µ, n, s)=Ω̃(s/
√
n)<1

and τ (r) = c2(εt, µ, s, n) = Ω̃(s2/n) for small constants c1 and c2.

6

(J,K) = 100 (J,K) = 300 (J,K) = 500

D
ic

ti
on

ar
y

R
ec

ov
er

y
A

cr
os

s
T

ec
hn

iq
ue

s

(a) (b) (c)

Figure 4: Number of iterations for convergence as a surrogate for data samples requirement 3.
Panels (a), (b), and (c) show the iterations taken by TensorNOODL to achieve a tolerance of
10−10 for A for J=K ={100, 300, 500}, respectively across ranks m={50, 150, 300, 450, 600} and
α=β ={0.005, 0.01, 0.05}, averaged across 3 Monte Carlo runs.

Theorem 1 (Main Result) Suppose a tensor Z(t) ∈ Rn×J×K provided to Alg. 1 at each
iteration t admits a decomposition of the form (1) with factors A∗ ∈ Rn×m, B∗(t) ∈ RJ×m
and C∗(t) ∈ RK×m and min(J,K) = Ω(ms2). Further, suppose that the assumptions A.1-
A.6 hold. Then, given R = Ω(log(n)), with probability at least (1− δalg) for some small
constant δalg, the estimate X̂(t) at t-th iteration has the correct signed-support and satisfies

(X̂(t)
i,j −X∗(t)i,j)2 ≤ ζ2 := O(s(1− ω)t/2‖A(0)

i −A∗i ‖),∀(i, j) ∈ supp(X∗(t)).

Furthermore, for some 0 < ω < 1/2, the estimate A(t) at t-th iteration satisfies

‖A(t)
i −A∗i ‖2 ≤ (1− ω)t‖A(0)

i −A∗i ‖2, ∀ t = 1, 2, . . .

Consequently, Alg. 2 recovers the supports of the sparse factors B∗(t) and C∗(t) correctly,
and ‖B̂(t)

i −B∗(t)i ‖2 ≤ εB and ‖Ĉ(t)
i −C∗(t)i ‖2 ≤ εC , where εB = εC = O(ζ

2

αβ).

Discussion: Theorem 1 states the sufficient conditions under which, for an appropriate
dictionary factor initialization (A.2), if the incoherent factor A∗ columns are sufficiently
spread out ensuring identifiability (A.1), the sparse factors B∗(t) and C∗(t) are appropriately
sparse (A.3 and A.4), and for appropriately chosen learning parameters (step sizes and
threshold A.5∼A.6), then Alg. 1 succeeds whp. Such initializations can be achieved by
existing algorithms and can also be used for model selection, i.e., determiningm i.e. revealing
rank; see [19]. Also, from A.4, we observe that the sparsity s (number of non-zeros) in a
column of S∗(t)) are critical for the success of the algorithm. Specifically, the upper-bound
on s keeps s small for the success of dictionary learning, while the lower-bound on m for
given sparsity controlling probabilities(α, β) ensures that there are enough independent non-
zero columns in S∗(t)) for learning. In other words, this condition ensures that sparsity is
neither too low (to avoid degeneracy) nor too high (for dictionary learning), requiring that
the independent samples L = min(J,K) = Ω(ms2), wherein s = O(αβm) whp.

5 Numerical Simulations
We evaluate TensorNOODL on synthetic and real-world data; more results in Appendix E.

5.1 Synthetic data evaluation
Experimental set-up: We compare TensorNOODL with online dictionary learning algo-
rithms presented in [19] (Arora(b) (incurs bias) and Arora(u) (claim no bias)), and [20],
which can be viewed as a variant of ALS (matricized) 4. We analyze the recov-
ery performance of the algorithms across different choices of tensor dimensions J = K =
{100, 300, 500} for a fixed n = 300, rank m = {50, 150, 300, 450, 600}, and the sparsity pa-
rameters α = β = {0.005, 0.01, 0.05} of factors B∗(t) and C∗(t), across 3 Monte-Carlo runs 5.

4As discussed, the provable tensor factorization algorithms shown in Table 1, are suitable only
for cases wherein all the factors obey same structural assumptions, and also are not online.

4 TensorNOODL takes a fresh tensor at each t, we use T as a surrogate for sample requirement.
5We fix (J,K) & (α, β), but TensorNOODL can also be used with iteration-dependent parameters.

7

(α, β) = 0.005 (α, β) = 0.01 (α, β) = 0.05

R
ec

ov
er

y
of

A
∗

ac
ro

ss
te

ch
ni

qu
es

50 100 150
Iterations

10-10

10-8

10-6

10-4

10-2

R
el

at
iv

e
F

ro
be

ni
us

 E
rr

or
50 100 150

Iterations

10-10

10-8

10-6

10-4

10-2

R
el

at
iv

e
F

ro
be

ni
us

 E
rr

or

20 40 60 80 100
Iterations

10-10

10-8

10-6

10-4

10-2

R
el

at
iv

e
F

ro
be

ni
us

 E
rr

or

(a) (b) (c)

R
ec

ov
er

y
of

A
∗

an
d

X
∗(
t)

by
Te

ns
or

NO
OD

L

(d) (e) (f)

Figure 5: Linear convergence of TensorNOODL. Panels (a), (b), and (c) show the convergence
properties of TensorNOODL, Arora (b), Arora (u) and Mairal‘09 for the incoherent factor A re-
covery for (α, β) = 0.005, 0.01 and 0.05 respectively for m = 450, (J,K) = 500 and seed= 26. Pan-
els (c), (d), and (e), show the recovery of X∗(t) (i.e. B∗(t) and C∗(t)) A∗, and the data fit (i.e.,
‖Y(t) −A(t)X̂(t)‖F/‖Y(t)‖F) for TensorNOODL corresponding to (a), (b), and (c), respectively.

We draw entries of A∗ ∈ Rn×m from N (0, 1), and normalize its columns to be unit-norm.
To form A(0), we perturb A∗ with random Gaussian noise and normalized its columns,
such that it is column-wise 2/ log(n) away from A∗ (A.2). To form B∗(t) (and C∗(t)), we
independently pick the non-zero locations with probability α (and β), and draw the values
on the support from the Rademacher distribution6; see Appendix E.1 for details.
Discussion: We focus on the recovery of X∗(t) (including support recovery) since the
performance of Alg. 2 solely depends on exact recovery of X∗(t). In Fig. 4, we analyze the
samples requirement across different choices of the dimension (J,K), rank (m) and sparsity
parameters (α, β) averaged across Monte Carlo runs using the total iterations T 4. In line
with theory, we observe a) in each panel the total iterations (to achieve tolerance εT) de-
creases with increasing (α, β), and b) for a fixed rank and sparsity parameters the T decreases
with increasing (J,K), these are both due to the increase in available data samples; also
sample requirement increases with rank m. Furthermore, only TensorNOODL recovers the
correct support of X∗(t), crucial for sparse factor recovery. Corroborating our theoretical
results, TensorNOODL achieves orders of magnitude superior recovery at linear rate (Fig. 5)
as compared to competing techniques both for the recovery of A∗, and X∗(t). Moreover,
since X∗ columns can be estimated independently, TensorNOODL is scalable and can be
implemented in highly distributed settings.

5.2 Real-world data evaluation

We consider a real data application in sports analytics. Additional real-data experiments for
an email activity-based organizational behavior application are presented in Appendix E.2.1.
NBA Shot Pattern Dataset

We analyze weekly shot patterns of the 100 high scoring players (80th percentile) against
30 teams in the 2018− 19 regular season (27 weeks) of the National Basketball Association
(NBA) league. The task is to identify specific shot patterns attempted by players against
teams and cluster them from the weekly 100× 30× 120 shot pattern tensor.

Methodology: We divide half-court into 10 × 12 blocks and sum-up all shots attempted
by a player in a game from a particular block, and vectorize to form a shot pattern vector
(R120) of a player against a particular opponent team. We use 2017 − 18’s regular season

6Corresponding code is available at https://github.com/srambhatla/TensorNOODL.

8

https://github.com/srambhatla/TensorNOODL

n
=

12
0

sh
ot

pa
tt

er
ns

K
=

30
Teams J = 100

Players

Z(t)

(a) NBA data tensor (b) Element 4 (c) Element 5 (d) Element 6

Corresponding Sparse factor (Players) Coefficients
Player Element 4 Element 5 Element 6

James Harden 0.1992 0.0678 0.2834
Devin Booker 0.0114 0.0104 0.4668

Figure 6: NBA Regular Season Shot Pattern data analysis. TensorNOODL clusters the players
and the teams. Panel (a) show the structured tensor of interest Z(t) ∈Rn×J×K for this application.
There are 27 such tensors arriving every week of the season. Panels (b)-(d) show the three recovered
dictionary factor elements shared by James Harden and Devin Booker (believed to have similar
styles) during week 10 of the regular season (2018− 19).

data to initialize incoherent factor using [19], recovering 7 elements. The resulting tensor
available at each week is shown in Fig. 6 (a).

Discussion: In Fig. 6 panels (b)-(d) we show the three recovered shot patterns and the
corresponding weights for week-10. TensorNOODL reveals the similarity in shot selection of
James Harden and Devin Booker, in line with the sports reports at the time [52, 53]. The
shared elements show players’ shot preference above the 3-point line (Fig. 6(a-b)) and at the
rim (Fig. 6(c)); See Appendix E.2.2 for detailed results, and Appendix E.2.1 for evaluations
on Enron data.

6 Discussion
Summary: Leveraging a matrix view of the tensor factorization task, we propose
TensorNOODL, to the best of our knowledge, the first provable algorithm to achieve exact
(up to scaling and permutations) online structured 3-way tensor factorization at a linear
rate. Our analysis to untangle the Kronecker product dependence structure (induced by the
matricized view) can be leveraged by other tensor factorization tasks.
Limitations and Future Work: We use probabilistic model assumptions which requires
us to carefully identify independent samples. Although not an issue in practice, this leads
to somewhat conservative results. Future work includes improving this sample efficiency.
Conclusions: We analyze an exciting modality where the tensor decomposition task can
be reduced to that of matrix factorization. Such correspondences offer a way to establish
strong convergence and recovery guarantees for structured tensor factorization tasks.

Acknowledgments
The authors graciously acknowledge the support from the DARPA YFA, Grant N66001-14-
1-4047. The authors would also like to express their gratitude to Prof. Nikos Sidiropoulos
and Di Xiao for their helpful discussions. The research work was undertaken when Sirisha
Rambhatla was a doctoral student at the Department of Electrical and Computer Engineer-
ing, University of Minnesota – Twin Cities, Minneapolis, MN.

Broader Impact
This work explores the theoretical foundations behind the success of popular alternating
minimization-based techniques for tensor factorization. Specifically, we propose an algo-
rithm for accurate model recovery for a tensor factorization task which has applications in
clustering and pattern recovery. Since clustering-based algorithms are used for identification
of users for targeted advertising campaigns on social network platforms, potential use cases
may target users based on their activity patterns. Nevertheless, understanding the theoreti-
cal aspects of machine learning algorithms is crucial for ensuring safety and trustworthiness
in critical applications, and can in fact be used to mitigate effects of the very biases that
these algorithms are prone to exacerbate.

9

References
[1] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM review,

51(3):455–500, 2009.
[2] s Eduardo Mart́ınez-Montes, José M Sánchez-Bornot, and Pedro A Valdés-Sosa. Penal-

ized parafac analysis of spontaneous eeg recordings. Statistica Sinica, pages 1449–1464,
2008.

[3] G. Allen. Sparse higher-order principal components analysis. In Artificial Intelligence
and Statistics, pages 27–36, 2012.

[4] E. E. Papalexakis, N. D. Sidiropoulos, and R. Bro. From k-means to higher-way co-
clustering: Multilinear decomposition with sparse latent factors. IEEE transactions on
signal processing, 61(2):493–506, 2013.

[5] A. Anandkumar, R. Ge, and M. Janzamin. Learning overcomplete latent variable
models through tensor methods. In Conference on Learning Theory, pages 36–112,
2015.

[6] G. Tang and P. Shah. Guaranteed tensor decomposition: A moment approach. In
International Conference on Machine Learning, pages 1491–1500, 2015.

[7] B. Barak, J. A. Kelner, and D. Steurer. Dictionary learning and tensor decomposi-
tion via the sum-of-squares method. In Proceedings of the forty-seventh annual ACM
symposium on Theory of computing, pages 143–151. ACM, 2015.

[8] T. Ma, J. Shi, and D. Steurer. Polynomial-time tensor decompositions with sum-of-
squares. In 57th Annual Symposium on Foundations of Computer Science (FOCS),
pages 438–446. IEEE, 2016.

[9] T. Schramm and D. Steurer. Fast and robust tensor decomposition with applications
to dictionary learning. In Conference on Learning Theory, pages 1760–1793, 2017.

[10] V. Sharan and G. Valiant. Orthogonalized als: A theoretically principled tensor decom-
position algorithm for practical use. In Proceedings of the 34th International Conference
on Machine Learning - Volume 70, ICML’17, pages 3095–3104. JMLR.org, 2017. URL
http://dl.acm.org/citation.cfm?id=3305890.3306001.

[11] W. W. Sun, J. Lu, H. Liu, and G. Cheng. Provable sparse tensor decomposition. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 79(3):899–916, 2017.

[12] F. Mueller and A. Lockerd. Cheese: tracking mouse movement activity on websites, a
tool for user modeling. In CHI’01 extended abstracts on Human factors in computing
systems, pages 279–280. ACM, 2001.

[13] W. Deburchgraeve, P. J. Cherian, M. De Vos, R. M. Swarte, J. H. Blok, G. H. Visser,
P. Govaert, and S. Van Huffel. Neonatal seizure localization using parafac decomposi-
tion. Clinical Neurophysiology, 120(10):1787–1796, 2009.

[14] H. Becker, L. Albera, P. Comon, R. Gribonval, F. Wendling, and I. Merlet. Brain-
source imaging: From sparse to tensor models. IEEE Signal Processing Magazine, 32
(6):100–112, 2015.

[15] B. Grundlehner, L. Brown, J. Penders, and B. Gyselinckx. The design and analysis
of a real-time, continuous arousal monitor. In 2009 Sixth International Workshop on
Wearable and Implantable Body Sensor Networks, pages 156–161. IEEE, 2009.

[16] F. Silveira, B. Eriksson, A. Sheth, and A. Sheppard. Predicting audience responses
to movie content from electro-dermal activity signals. In ACM international joint
conference on Pervasive and ubiquitous computing, pages 707–716. ACM, 2013.

[17] X. Fu, K. Huang, W. K. Ma, N. D. Sidiropoulos, and R. Bro. Joint tensor factor-
ization and outlying slab suppression with applications. IEEE Transactions on Signal
Processing, 63(23):6315–6328, 2015.

[18] Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E
Papalexakis, and Christos Faloutsos. Tensor decomposition for signal processing and
machine learning. IEEE Transactions on Signal Processing, 65(13):3551–3582, 2017.

[19] S. Arora, R. Ge, T. Ma, and A. Moitra. Simple, efficient, and neural algorithms for
sparse coding. In COLT, pages 113–149, 2015.

10

http://dl.acm.org/citation.cfm?id=3305890.3306001

[20] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse cod-
ing. In Proceedings of the 26th Annual International Conference on Machine Learning,
pages 689–696. ACM, 2009.

[21] K. Huang, N. D. Sidiropoulos, and A. P. Liavas. A flexible and efficient algorithmic
framework for constrained matrix and tensor factorization. IEEE Transactions on
Signal Processing, 64(19):5052–5065, 2016.

[22] J. B. Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with
application to arithmetic complexity and statistics. Linear algebra and its applications,
18(2):95–138, 1977.

[23] N. D. Sidiropoulos and R. Bro. On the uniqueness of multilinear decomposition of
n-way arrays. Journal of Chemometrics: A Journal of the Chemometrics Society, 14
(3):229–239, 2000.

[24] J. H̊astad. Tensor rank is np-complete. Journal of Algorithms, 11(4):644 – 654, 1990.
ISSN 0196-6774. doi: https://doi.org/10.1016/0196-6774(90)90014-6. URL http://
www.sciencedirect.com/science/article/pii/0196677490900146.

[25] C. J. Hillar and L. H. Lim. Most tensor problems are np-hard. Journal of the ACM
(JACM), 60(6):45, 2013.

[26] M. J. Mohlenkamp. Musings on multilinear fitting. Linear Algebra and its Applications,
438(2):834 – 852, 2013. ISSN 0024-3795. doi: https://doi.org/10.1016/j.laa.2011.04.019.
ssTensors and Multilinear Algebra.

[27] J. E. Cohen and N. Gillis. Dictionary-based tensor canonical polyadic decomposition.
IEEE Transactions on Signal Processing, 66(7):1876–1889, 2017.

[28] Z. Li, A. Uschmajew, and S. Zhang. On convergence of the maximum block improve-
ment method. SIAM Journal on Optimization, 25(1):210–233, 2015.

[29] M. Razaviyayn, M. Hong, and Z. Q. Luo. A unified convergence analysis of block
successive minimization methods for nonsmooth optimization. SIAM Journal on Opti-
mization, 23(2):1126–1153, 2013.

[30] A. Uschmajew. Local convergence of the alternating least squares algorithm for canon-
ical tensor approximation. SIAM Journal on Matrix Analysis and Applications, 33(2):
639–652, 2012.

[31] P. Comon. Independent component analysis, a new concept? Signal processing, 36(3):
287–314, 1994.

[32] T. G. Kolda and J. R. Mayo. Shifted power method for computing tensor eigenpairs.
SIAM Journal on Matrix Analysis and Applications, 32(4):1095–1124, 2011.

[33] T. Zhang and G. Golub. Rank-one approximation to high order tensors. SIAM
Journal on Matrix Analysis and Applications, 23(2):534–550, 2001. doi: 10.1137/
S0895479899352045.

[34] Q. V. Le, A. Karpenko, J. Ngiam, and A. Y. Ng. Ica with reconstruction cost for
efficient overcomplete feature learning. In Advances in Neural Information Processing
Systems, pages 1017–1025, 2011.

[35] F. Huang and A. Anandkumar. Convolutional dictionary learning through tensor fac-
torization. In Feature Extraction: Modern Questions and Challenges, pages 116–129,
2015.

[36] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decompo-
sitions for learning latent variable models. Journal of Machine Learning Research, 15:
2773–2832, 2014.

[37] A. Anandkumar, P. Jain, Y. Shi, and U. N. Niranjan. Tensor vs. matrix methods:
Robust tensor decomposition under block sparse perturbations. In Artificial Intelligence
and Statistics, pages 268–276, 2016.

[38] R. Sun and Z. Q. Luo. Guaranteed matrix completion via non-convex factorization.
IEEE Transactions on Information Theory, 62(11):6535–6579, Nov 2016. ISSN 0018-
9448. doi: 10.1109/TIT.2016.2598574.

11

http://www.sciencedirect.com/science/article/pii/0196677490900146
http://www.sciencedirect.com/science/article/pii/0196677490900146

[39] S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE
Transactions on Signal Processing, 41(12):3397–3415, Dec 1993. ISSN 1053-587X. doi:
10.1109/78.258082.

[40] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis
pursuit. SIAM Journal on Scientific Computing, 20(1):33–61, 1998. doi: 10.1137/
S1064827596304010. URL https://doi.org/10.1137/S1064827596304010.

[41] D.L. Donoho, M. Elad, and V. N. Temlyakov. Stable recovery of sparse overcomplete
representations in the presence of noise. IEEE Transactions on Information Theory,
52(1):6–18, 2006.

[42] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A
strategy employed by v1? Vision research, 37(23):3311–3325, 1997.

[43] M. S. Lewicki and T. J. Sejnowski. Learning overcomplete representations. Neu-
ral Comput., 12(2):337–365, February 2000. ISSN 0899-7667. doi: 10.1162/
089976600300015826. URL http://dx.doi.org/10.1162/089976600300015826.

[44] R. Gribonval and K. Schnass. Dictionary identification and sparse matrix-factorization
via `1 -minimization. IEEE Transactions on Information Theory, 56(7):3523–3539,
July 2010. ISSN 0018-9448. doi: 10.1109/TIT.2010.2048466.

[45] S. Rambhatla and J. Haupt. Semi-blind source separation via sparse representations
and online dictionary learning. In 2013 Asilomar Conference on Signals, Systems and
Computers,, pages 1687–1691. IEEE, 2013.

[46] D. A. Spielman, H. Wang, and J. Wright. Exact recovery of sparsely-used dictionaries.
In Conference on Learning Theory, pages 37–1, 2012.

[47] A. Agarwal, A. Anandkumar, P. Jain, P. Netrapalli, and R. Tandon. Learning sparsely
used overcomplete dictionaries. In COLT, pages 123–137, 2014.

[48] S. Arora, R. Ge, and A. Moitra. New algorithms for learning incoherent and overcom-
plete dictionaries. In COLT, pages 779–806, 2014.

[49] S. Rambhatla, X. Li, and J. Haupt. NOODL: Provable online dictionary learning and
sparse coding. In International Conference on Learning Representations (ICLR), 2019.
URL https://openreview.net/forum?id=HJeu43ActQ.

[50] E. J. Candès, X. Li, and M. Soltanolkotabi. Phase retrieval via wirtinger flow: Theory
and algorithms. IEEE Transactions on Information Theory, 61(4):1985–2007, April
2015. ISSN 0018-9448. doi: 10.1109/TIT.2015.2399924.

[51] Y. Chen and M. J. Wainwright. Fast low-rank estimation by projected gradient descent:
General statistical and algorithmic guarantees. CoRR, abs/1509.03025, 2015.

[52] S. Rafferty. Devin booker has taken a page out of James Harden’s play-
book – and it’s working, 2018. URL https://ca.nba.com/news/devin-
booker-assists-james-harden-comparison-huge-development-phoenix-suns/
rr5zo0v7p9x41kmeyl94rmy2o.

[53] P. Uggetti. Devin Booker keeps climbing the ladder. When will the suns catch up?,
2018. URL https://www.theringer.com/nba/2019/3/28/18284788/devin-booker-
phoenix-suns-dysfunction.

12

https://doi.org/10.1137/S1064827596304010
http://dx.doi.org/10.1162/089976600300015826
https://openreview.net/forum?id=HJeu43ActQ
https://ca.nba.com/news/devin-booker-assists-james-harden-comparison-huge-development-phoenix-suns/rr5zo0v7p9x41kmeyl94rmy2o
https://ca.nba.com/news/devin-booker-assists-james-harden-comparison-huge-development-phoenix-suns/rr5zo0v7p9x41kmeyl94rmy2o
https://ca.nba.com/news/devin-booker-assists-james-harden-comparison-huge-development-phoenix-suns/rr5zo0v7p9x41kmeyl94rmy2o
https://www.theringer.com/nba/2019/3/28/18284788/devin-booker-phoenix-suns-dysfunction
https://www.theringer.com/nba/2019/3/28/18284788/devin-booker-phoenix-suns-dysfunction

	Introduction
	Overview of the results
	Contributions
	Related works

	Problem Formulation
	Algorithm
	Main Result
	Numerical Simulations
	Synthetic data evaluation
	Real-world data evaluation

	Discussion

