
We thank the reviewers for their time, feedback and highly encouraging comments. It was acknowledged that our1

algorithm is intuitive and principled (R4), achieves significantly better results (R1, R3), is clearly presented and2

situated (by all), and is novel and relevant to the community (by all). We will incorporate suggested improvements3

to the paper regarding punctuation, notation, algorithm box and typos. We address here the remaining concerns:4

Figure 1: Accuracy vs Timing com-
parison on CIFAR (time in seconds)

R2: Discrepancy in baselines’ numbers, lacking experimental information:5

We appreciate the reviewer bringing up this point since it is important for the6

reader to understand how our comparisons are made, which we will make clearer.7

Regarding the disparity, the cited works use a higher resource allocation than8

ours: a large replay buffer of size 5120 [Ref4]/5000 [Ref2 (results from AGEM)]9

for GEM, while our MNIST [Rotation/Permutation] experiments have a buffer10

containing only 200 samples. For EWC, the network used is 20 times larger11

[Ref2], there are only 10 tasks [Ref1, Ref2] (we have 20 tasks) and the setting is12

not single-pass [Ref1] (they train each task for 20 epochs). It should be noted that13

the low memory regime is where the performance trends of many CL methods14

are most pronounced and meaningful. Given unlimited memory/compute, all15

the methods perform comparably to ER training (as also noted by MER). We will16

expand the experimental description in the main paper to highlight these details,17

which we have currently outlined in Appendix F and G due to space constraints.18

R2: RHS 6= LHS in Eq. 1: While we believe the equation is technically correct, we acknowledge that it might be19

confusing since we have clubbed the implied data arguments into (Xn, Y n) for brevity. We will separate these for each20

of the task-specific loss functions in the camera ready for correctness.21

R3: Timing comparison: This is a good point, and we will include a plot for our Multi-Pass experiments on CIFAR,22

showing the total running time for La-MAML, GEM, AGEM, iCARL and ER, as shown here in Fig.1.23

R3, All: Multi-headed Problem Setting: We thank R3 for raising this point and make a correction to our experimental24

description: While our real-world vision experiments are multi-headed, our MNIST experiments are in the single-headed25

domain-incremental setup (since as mentioned in Section 5.1, the output space for all tasks is the same set of 10 classes26

while the common transformation to the digits varies with each task). The paper thus contains both task-aware and27

task-agnostic experiments since our algorithm’s working is task-agnostic. We omit Class-IL settings since they have28

many of their challenges arising primarily from the bias imbalance in the classification layer. Many class-IL works29

specifically focus on this issue since it is tricky to isolate it to study the general forgetting problem in CL (R3 Ref. [7]).30

R3: Choice of backbone: We have tried to use an architecture (3-4 conv layers + 2 FCs) that is commonly used31

in meta-learning works for its simplicity 1 2 3, and have used it to run all our baselines. In the CL setting with32

ever-increasing tasks, any model will eventually be under-parameterised. As long as the model performs decently in the33

i.i.d setting and there is a gap between the i.i.d-trained model and other CL methods, it should be valid to use it to study34

the CL problem. If the reviewer recommends, we will add a sensitivity analysis for network sizes to the Appendix.35

R3: Relevance of LLL setting: We agree that the issue of how setup constraints are commonly chosen in CL works36

is worthy of debate. However, we reiterate that the LLL setting is challenging yet realistic in many cases where it37

is not feasible to store all the within-task data points, and is also studied in many prior works like AGEM , MER. It38

should also be noted that we take multiple gradient steps (glances) over each sample in the LLL setup (described in39

Appendices E,F), thus making enough updates to the parameters.40

R3, R1: Lookahead plot: We had hoped to show through Fig.3 in the paper, how the performance varies as more tasks41

are added to the problem (as asked by R1). Note that the average accuracy stays roughly the same across an increasing42

number of tasks. We shall remove this figure if it is not considered informative by the reviewers.43

R1: RL experiments: We agree and think it would be particularly interesting to test our algorithm for Model-Based44

RL, where models learnt online from a temporal data stream should undergo considerable forgetting. However, given45

the ambiguities and lack of benchmarks for properly defining a continual setup in RL, we are pursuing it as an extension46

and it is out of scope for this work.47

R1: Lookahead search: We added the following: "In optimisation literature, lookahead search usually evaluates the48

fitness of proposed parameter updates based on an auxiliary criterion evaluated after hypothetically applying them.49

These proposals are then modified based on evaluated fitness to make an actual update. In our case, the LRs act as50

the modifiers of the update, and their values result from the evaluation of two criterions: the losses on old and new tasks".51
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