
We thank each reviewer for their insightful and constructive feedback. It will surely improve the manuscript.1
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Figure 1: Prediction error (averaged over 10
independent replications) of pruned CART vs.
k-NN (with cross-validated k) as a function of
ambient dimension d ∈ {d0, . . . , 100} with
fixed sparsity d0 = 5. CART is impervious
to increasing ambient dimensionality, whereas
k-NN suffers and does not adapt to sparsity.

Experiments. Reviewers #2 and #4 suggested that we illustrate our the-2

ory with experiments. We wholeheartedly agree. Following this sug-3

gestion, our paper now includes experiments with various synthetic/real-4

world datasets and compares CART with k-NN and other kernel methods.5

In Fig. 1, we show the outcome of one such experiment. We sample6

{(Xi, Yi)}1≤i≤n i.i.d. with n = 1000 and consider a sparse additive model7

Y =
∑d0

j=1 gj(Xj) with d0 = 5 component functions, where each gj(Xj)8

equals ±X2
j (alternating signs) and X ∼ Uniform([0, 1]d). We then plot9

the test error of CART vs. k-NN as d ranges from 5 to 100. According to10

Theorems 3 and 4, the convergence rate of CART depends primarily on the11

sparsity d0 and therefore its performance should not be adversely affected12

by growing d. Consistent with our theory, the prediction error of CART13

remains stable as d increases, whereas k-NN does not adapt to the sparsity.14

Distributional assumptions. Reviewer #2 inquired about the conse-15

quences of assuming the input variable X = (X1, . . . , Xd) is uniformly16

distributed on [0, 1]d. For independent predictor variables Xj , there is17

no loss of generality in assuming uniform marginal distributions. Indeed,18

CART trees are invariant to strictly monotone transformations of the in-19

dividual predictor variables. One such transformation is the marginal cu-20

mulative distribution function FXj
(·) of the predictor variables, for which21

FXj
(Xj) ∼ Uniform([0, 1])—and so the problem can be reduced to the22

uniform case. For dependent predictor variables, the proofs go through if the joint density of X is bounded above and23

below by a positive constant, though the convergence rates have worse dependence on the sparsity level.24

Connection to ensemble models. Reviewer #1 would like to see a more in-depth discussion of how the analysis for25

CART trees can be carried over to random forests—one that goes beyond the ensemble principle. This is an excellent26

point and we agree that it deserves more attention. Therefore, we have included a new section that explicitly describes27

how our results can be used to show analogous adaptivity properties for random forests. Let us briefly mention that,28

while the efficacy of randomization in random forests (e.g., bagging or random feature selection) is not fully understood29

from a theoretical perspective, basic properties such as consistency often begin with a study of the individual trees30

[Scornet et al., 2015, Wager & Athey, 2017]. Finally, it is indeed true that the empirical soundness of CART has been31

well-documented over the past 30+ years—however—many of its theoretical properties (like adaptivity to sparsity)32

have not been made rigorous. Since CART is still widely used for its simplicity and interpretability, the primary goal of33

this paper is to put these empirical observations on a solid theoretical foundation.34

Proxy for estimation and training error. Reviewer #4 asked for further clarification on how we avoid using the node35

diameters as a proxy for the approximation error and, instead, directly bound the training error. The extant approach36

typically bounds the expected prediction error (over the training data) by analyzing the approximation and estimation37

errors separately (the estimation error is usually less troublesome). Because CART outputs the average of the response38

values in a node, if the regression function is smooth, the approximation error is at most a constant multiple of the39

largest node diameter. Thus, one can use the node diameters as a proxy for the approximation error. In contrast, we use40

the fact that the prediction error is with high-probability (over the training data) bounded by the training error plus a41

complexity term. The connection between the Pearson correlation and the training error (see Lemma 1) facilitates our42

analysis and allows us to prove more fine-grained results.43

Quantity that governs the training and prediction errors. Reviewer #4 asked for clarification on whether the44

quantity in Assumption 1 governs the convergence rate of both the training error and prediction error. Assumption45

1 is merely a technical condition about the maximum number of data points in each node and enables one to use46

the correlation comparison inequality in Fact 2—it does not explicitly control the training and prediction errors. As47

mentioned in the discussion preceding Theorem 4, it is ρ̂M (i.e., the largest correlation between the response data and a48

monotone function of an individual predictor variable) that explicitly controls the rate at which both errors tend to zero.49

Additional reference. Reviewer #2 mentioned the reference [Nobel, 2002]. We thank the reviewer for pointing this50

out to us and have cited it in a revised version of the paper.51

Accessibility to broader audience. Reviewer #3 expressed concern that the paper may seem difficult for readers52

without expertise in the subject area to follow along with the mathematical notation. We have carefully gone through53

the paper to explain and write all notation in a more accessible way that respects the reader’s background. We have also54

carried out a thorough proof-reading to correct any typos or references that were not properly compiled (as mentioned55

by Reviewers #1 and #2).56


