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Abstract
Decision trees with binary splits are popularly constructed using Classification
and Regression Trees (CART) methodology. For regression models, this approach
recursively divides the data into two near-homogenous daughter nodes according
to a split point that maximizes the reduction in sum of squares error (the impurity)
along a particular variable. This paper aims to study the statistical properties of
regression trees constructed with CART methodology. In doing so, we find that the
training error is governed by the Pearson correlation between the optimal decision
stump and response data in each node, which we bound by constructing a prior
distribution on the split points and solving a nonlinear optimization problem. We
leverage this connection between the training error and Pearson correlation to show
that CART with cost-complexity pruning achieves an optimal complexity/goodness-
of-fit tradeoff when the depth scales with the logarithm of the sample size. Data
dependent quantities, which adapt to the dimensionality and latent structure of the
regression model, are seen to govern the convergence rates of the prediction error.

1 Introduction
Decision trees are the building blocks of some of the most important and powerful algorithms in
statistical learning. For example, ensembles of decision trees are used for some bootstrap aggregated
prediction rules (e.g., bagging [2] and random forests [3]). In addition, each iteration of gradient tree
boosting (e.g., TreeBoost [7]) fits the pseudo-residuals with decision trees as base learners. From
an applied perspective, decision trees have an appealing interpretability and are accompanied by a
rich set of analytic and visual diagnostic tools. These attributes make tree-based learning particularly
well-suited for applied sciences and related disciplines—which may rely heavily on understanding
and interpreting the output from the training algorithm. Although, as with many aspects of statistical
learning, good empirical performance often comes at the expense of rigor. Tree-structured learning
with decision trees is no exception—statistical guarantees for popular variants, i.e., those that are
actually used in practice, are hard to find. Indeed, the recursive manner in which decision trees are
constructed makes them unamenable to analysis, especially when the split protocol involves both the
input and output data. Despite these challenges, we take a step forward in advancing the theory of
decision trees and aim to tackle the following fundamental question:

When do decision trees adapt to the sparsity of a predictive model?

To make our work informative to the applied user of decision trees, we strive to make the least
departure from practice and therefore focus specifically on Classification and Regression Tree
(CART) [4] methodology—by far the most popular for regression and classification problems. With
this methodology, the tree construction importantly depends on both the input and output data and
is therefore data dependent. This aspect lends itself favorably to the empirical performance of
CART, but poses unique mathematical challenges. It is perhaps not surprising then that, despite the
widespread use of CART, there have been only a small handful of papers that study its theoretical
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properties. For example, [15] study the asymptotic properties of CART in a fixed dimensional regime,
en route to establishing consistency of Breiman’s random forests for additive regression models.
Another notable paper [8] provides oracle-type inequalities for the CART pruning algorithm proposed
by [4], though the theory does not imply guarantees for out-out-sample prediction. What the existing
literature currently lacks, however, is a more fine-grained analysis that reveals the unique advantages
of tree learning with CART over other unstructured regression procedures, like vanilla k-NN or other
kernel based estimators. Filling this theoretical gap, our main message is that, in certain settings,
CART can identify low dimensional, latent structure in the data and adapt accordingly. We illustrate
the adaptive properties of CART when the model is sparse, namely, when the output depends only on
a small, unknown subset of the input variables—thereby circumventing the curse of dimensionality.

Arguably the most difficult technical aspect of studying decision trees (and for that matter, any
adaptive partitioning-based predictor) is understanding their approximation error, or at least pinning
down conditions on the data that enable such an endeavor. Indeed, most existing convergence results
for decision trees or ensembles thereof bound the expected (over the training data) prediction error by
the size (i.e., the diameter) of the terminal nodes and show that they vanish with the depth of the tree,
ensuring that the approximation error does so also [6, 16]. Others [15] control the variation of the
regression function inside the terminal nodes, without explicitly controlling their diameters, though
the effect is similar. While these techniques can be useful to prove consistency statements, they are
not generally delicate enough to capture the adaptive properties of the tree. It also often requires
making strong assumptions about the tree construction. To address this shortcoming, in contrast, we
use the fact that the prediction error is with high-probability (over the training data) bounded by the
training error plus a complexity term. One of our crucial insights is that we can avoid using the node
diameters as a proxy for the approximation error and, instead, directly bound the training error in
terms of data dependent quantities (like the Pearson correlation coefficient) that are more transparent
and interpretable, thereby facilitating our analysis and allowing us to prove more fine-grained results.

1.1 Learning setting
Let us now describe the learning setting and framework that we will operate under for the rest of the
paper. For clarity and ease of exposition, we focus specifically on regression trees, where the target
outcome is a continuous real value. We assume the training data is Dn = {(X1, Y1), . . . , (Xn, Yn)},
where (Xi, Yi), 1  i  n are i.i.d. with common joint distribution PX,Y . Here, Xi 2 [0, 1]d is
the input and Yi 2 R is a continuous response (or output) variable. A generic pair of variables will
be denoted as (X, Y ). A generic coordinate of X will be denoted by X , unless there is a need to
highlight the dependence on the jth coordinate index, denoted by Xj , or additionally on the ith data
point, denoted by Xij . Using squared error loss L(Y, Y 0) = (Y � Y 0)2 as the performance metric,
our goal is to predict Y at a new point X = x via a tree structured prediction rule bY (x) = bY (x;Dn).
The training error and mean squared prediction error are, respectively,

err(bY ) :=
1

n

nX

i=1

(Yi � bY (Xi))
2 and Err(bY ) := E(X0,Y 0)[(Y

0 � bY (X0))2],

where (X0, Y 0) denotes an independent copy of (X, Y ). For data {(X1, U1, V1), . . . , (Xn, Un, Vn)},
we let

b⇢ (U, V | X 2 A) :=
1
N

P
Xi2A(Ui � U)(Vi � V )

q
1
N

P
Xi2A(Ui � U)2 ⇥ 1

N

P
Xi2A(Vi � V )2

,

(A is a subset, N = #{Xi 2 A}, U = 1
N

P
Xi2A Ui, and V = 1

N

P
Xi2A Vi) denote the empirical

Pearson product-moment correlation coefficient, given X 2 A, and let ⇢(U, V | X 2 A) be its
infinite sample counterpart. If Ui = g(Xij) for a univariate function g(·) of a coordinate Xj , we
write b⇢ (g(Xj), V | X 2 A) or ⇢(g(Xj), V | X 2 A). For brevity, we let b�2

Y denote the sample
variance of the response values Y1, Y2, . . . , Yn in the training data. The rth derivative of a real valued
function g(·) is denoted by g(r)(·). Proofs of all forthcoming results are given in the supplement.

2 Preliminaries
As mentioned earlier, regression trees are commonly constructed with Classification and Regression
Tree (CART) [4] methodology. The primary objective of CART is to find partitions of the input
variables that produce minimal variance of the response values (i.e., minimal sum of squares error
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with respect to the average response values). Because of the computational infeasibility of choosing
the best overall partition, CART decision trees are greedily grown with a procedure in which binary
splits recursively partition the tree into near-homogeneous terminal nodes. An effective binary split
partitions the data from the parent tree node into two daughter nodes so that the homogeneity in each
of the daughter nodes, as measured through the impurity, is reduced.

The CART algorithm is comprised of two elements—a growing procedure and a pruning procedure.
The growing procedure constructs from the data a maximal binary tree Tmax by the recursive parti-
tioning scheme; the pruning procedure selects, among all the subtrees of Tmax, a sequence of subtrees
that greedily optimize a cost function.

2.1 Growing the tree
Let us now describe the tree construction algorithm with additional detail. Consider splitting a
regression tree T at a node t. Let s be a candidate split point for a generic variable X that divides t
into left and right daughter nodes tL and tR according to whether X  s or X > s. These two nodes
will be denoted by tL = {X 2 t : X  s} and tR = {X 2 t : X > s}. As mentioned previously, a
tree is grown by recursively reducing node impurity. Impurity for regression trees is determined by
the within node sample variance

b�(t) := dVAR(Y | X 2 t) =
1

N(t)

X

Xi2t

(Yi � Y t)
2, (1)

where Y t =
1

N(t)

P
Xi2t Yi is the sample mean for t and N(t) = #{Xi 2 t} is the number of data

points in t. Similarly, the within node sample variance for a daughter node is

b�(tL) =
1

N(tL)

X

Xi2tL

(Yi � Y tL)
2, b�(tR) =

1

N(tR)

X

Xi2tR

(Yi � Y tR)
2,

where Y tL is the sample mean for tL and N(tL) is the sample size of tL (similar definitions apply to
tR). The parent node t is split into two daughter nodes using the variable and split point producing
the largest decrease in impurity. For a candidate split s for X , this decrease in impurity equals [4,
Definition 8.13]

b�(s, t) := b�(t)� [ bP (tL)b�(tL) + bP (tR)b�(tR)], (2)

where bP (tL) = N(tL)/N(t) and bP (tR) = N(tR)/N(t) are the proportions of data points in t that
are contained in tL and tR, respectively.

The tree T is grown recursively by finding the variable |̂ and split point ŝ = ŝ|̂ that maximizes
b�(s, t). Note that for notational brevity, we suppress the dependence on the input coordinate index j.
The output bY (T ) of the tree at a terminal node t is the least squares predictor, namely, bY (T,x) = Y t

for all x 2 t.

2.2 Pruning the tree
The CART growing procedure stops once a maximal binary tree Tmax is grown (i.e., when the terminal
nodes contain at least a single data point). However, bY (Tmax) is generally not a good predictor, since
it will tend to overfit the data and therefore generalize poorly to unseen data. This effect can be
mitigated by complexity regularization. Removing portions of the overly complex tree (i.e., via
pruning) is one way of reducing its complexity and improving performance. We will now describe
such a procedure.

We say that T is a pruned subtree of T 0, written as T � T 0, if T can be obtained from T 0 by iteratively
merging any number of its internal nodes. A pruned subtree of Tmax is defined as any binary subtree
of Tmax having the same root node as Tmax. The number of terminal nodes in a tree T is denoted |T |.
Given a subtree T and temperature ↵ > 0, we define the penalized cost function

R↵(bY (T )) := err(bY (T )) + ↵|T |. (3)

As shown in [4, Section 10.2], the smallest minimizing subtree for the temperature ↵,

bT 2 argmin
T�Tmax

R↵(bY (T )),
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exists and is unique (smallest in the sense that if T 0 2 argminT�Tmax
R↵(bY (T )), then bT � T 0). For

a fixed ↵, the optimal subtree bT can be found efficiently by weakest link pruning [4, 9], i.e., by
successively collapsing the internal node that increases err(bY (T )) the least, until we arrive at the
single-node tree consisting of the root node. Good values of ↵ can be selected using cross-validation,
for example, though analyzing the effect of such a procedure is outside the scope of the present paper.

Our first result shows that, with high probability, the test error of the pruned tree bT on new data is
bounded by a multiple of minT�Tmax R↵(bY (T )) plus lower order terms.

Theorem 1. Let bT be the smallest minimizer of (3). Suppose Y = f(X), B = supx |f(x)| < 1,

n > (d + 1)/2, and ↵ > 27B2(d+1) log(2en/(d+1))
n . Then, with probability at least 1 � � over the

training sample Dn,

Err(bY ( bT ))  4 min
T�Tmax

R↵(bY (T )) +
54B2 log(2/�)

n
.

Similar bounds hold for the excess risk for binary classification, i.e., Y 2 {0, 1}, since, in this case,
the squared error impurity (1) equals one-half of the so-called Gini impurity used for classification
trees (which output the majority vote in each terminal node). See also [14] for results of a similar
flavor when the penalty is proportional to

p
|T |.

In what follows, we let TK � Tmax denote a fully grown binary tree of depth K = ⇥(log2(n)), i.e.,
we stop splitting if (1) the node contains a single data point, (2) all response values in the node are
the same, or (3) a depth of K is reached, whichever occurs sooner. We also let bT be the smallest
minimizer of the cost function (3) with temperature ↵ = ⇥((d/n) log(n/d)).

3 Bounding the Training Error
In the previous section, Theorem 1 showed that, with high probability, the test error is bounded by a
multiple of the cost function (3) at its minimum (plus lower order terms). Since the cost function is
defined as the training error plus penalty term, the next step in our course of study is to understand
how the training error of CART behaves.

3.1 Splitting criterion and Pearson correlation
Before we begin our analysis of the training error, we first digress back to the tree construction
algorithm and give an alternative characterization of the objective. Now, the use of the sum of squares
impurity criterion b�(s, t) with averages in the terminal nodes permits further simplifications of the
formula (2) above. For example, using the sum of squares decomposition, b�(s, t) can equivalently
be expressed as [4, Section 9.3]

bP (tL) bP (tR)
�
Y tL � Y tR

�2
, (4)

which is commonly used for its computational appeal—that is, one can find the best split for a
continuous variable with just a single pass over the data, without the need to calculate multiple
averages and sums of squared differences for these averages, as required with (2). Yet another way to
view b�(s, t), which does not appear to have been considered in past literature and will prove to be
useful for our purposes, is via its equivalent representation as b�(t)⇥ b⇢ 2(eY , Y | X 2 t), where

b⇢ (eY , Y | X 2 t) :=
1

N(t)

P
Xi2t(

eYi � Y t)(Yi � Y t)
q

1
N(t)

P
Xi2t(

eYi � Y t)2 ⇥ 1
N(t)

P
Xi2t(Yi � Y t)2

� 0 (5)

is the Pearson product-moment correlation coefficient between the decision stump

eY := Y tL1(X  s) + Y tR1(X > s) (6)

and response variable Y within t (for the proof, see Lemma A.1 in the supplement).1 Hence, at each
node, CART seeks the decision stump most correlated in magnitude with the response variable along

1It should be stressed that the alternative characterization of the splitting criterion (2) in terms of a correlation
is unique to the squared error impurity with (constant) averages in the terminal nodes.

4



a particular variable, i.e.,

ŝ 2 argmax
s

b�(s, t) = argmax
s

b⇢ (eY , Y | X 2 t). (7)

Equivalently, CART splits along variables with decision stumps that are most correlated with the
residuals Yi � Y t of the current fit Y t. As with r2 for simple linear regression, the squared
correlation b⇢ 2(eY , Y | X 2 t) equals the coefficient of determination R2, in the sense that it
describes the fraction of the variance in Y that is explained by a decision stump eY in X , since
b⇢ 2(eY , Y | X 2 t) = b�(s, t)/b�(t) = 1� 1

N(t)

P
X2t(Yi � eYi)2/

1
N(t)

P
X2t(Yi � Y t)2.

Definition 1. We let bY denote a decision stump eY with an optimal direction |̂ 2
argmaxj=1,2,...,d

b�(ŝ, t) and corresponding optimal split ŝ.

We now introduce a data dependent quantity that will play a central role in determining the rates
of convergence of the prediction error. For a univariate function class G, we let b⇢G be the largest
Pearson correlation between the response data Y and a function in G of a single input coordinate for
a worst-case node, i.e.,

b⇢G := min
t

sup
g(·)2G, j=1,2,...,d

|b⇢ (g(Xj), Y | X 2 t)|, (8)

where the minimum runs over all internal nodes t in TK . We will specifically focus on classes G that
consist of decision stumps, and more generally, monotone functions.

3.2 Location of splits and Pearson correlation
Having already revealed the intimate role the correlation between the decision stump and response
values (5) plays in the tree construction, it is instructive to explore this relationship with the location
of the splits. In order to study this cleanly, let us for the moment work in an asymptotic data setting
to determine the coordinates to split and their split points, i.e.,

b�(s, t) !
n!1

�(s, t) := �(t)� [P (tL)�(tL) + P (tR)�(tR)], (9)

where quantities without hats are the population level counterparts of the empirical quantities defined
previously in (2). A decision stump (6) with an optimal theoretical direction j⇤ and corresponding
optimal theoretical split s⇤ = s⇤j⇤ is denoted by bY ⇤. Now, if the number of data points within t is
large and �(s, t) has a unique global maximum, then we can expect ŝ ⇡ s⇤ (via an empirical process
argument) and hence the infinite sample setting is a good approximation to CART with empirical
splits, giving us some insights into its dynamics. Indeed, if s⇤ is unique, [10, Theorem 2] shows that ŝ
converges in probability to s⇤. With additional assumptions, one can go even further and characterize
the rate of convergence. For example, [5, Section 3.4.2] and [1] provide cube root asymptotics for ŝ,
i.e., n1/3(ŝ� s⇤) converges in distribution.

Each node t is a Cartesian product of intervals. As such, the interval along variable X in t is
denoted by [a, b], where a < b. The next theorem characterizes the relationship between an optimal
theoretical split s⇤ and infinite sample correlation ⇢(bY , Y | X 2 t)

a.s.
:= limn b⇢ (bY ⇤, Y | X 2 t) for a

deterministic node t (the limit exists by the uniform law of large numbers). The proof is based on the
first-order optimality condition, namely, @

@s�(s, t) |s=s⇤= 0.

Theorem 2. Suppose X is uniformly distributed on [0, 1]d and �(s⇤, t) > 0. For a deterministic

parent node t, an optimal theoretical split s⇤ 2 [a, b] along variable X has the form

a+ b

2
± b� a

2

s
v

v + ⇢2(bY ⇤, Y | X 2 t)
, (10)

where v = (E[Y |X2t, X=s⇤]�E[Y |X2t])2

VAR(Y |X2t) .

Expression (10) in Theorem 2 reveals that an optimal theoretical split s⇤ is a perturbation of the
median (a + b)/2 of the conditional distribution X | X 2 t, where the gap is governed by the
correlation ⇢(bY ⇤, Y | X 2 t). These correlations control the local and directional granularity of
the partition of the input domain. Splits along input coordinates that contain a strong signal, i.e.,
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⇢(bY ⇤, Y | X 2 t) � 0, tend to be further away from the parent node edges, thereby producing
side lengths [a, b] that are on average narrower. At the other extreme, the correlation is weakest
when there is no signal in the splitting direction or when the response values in the node are
not fit well by a decision stump—yielding either s⇤ ⇡ a + (b � a)⇢2(bY ⇤, Y | X 2 t)/(4v) or
s⇤ ⇡ b� (b� a)⇢2(bY ⇤, Y | X 2 t)/(4v)—and hence the predicted output in one of the daughter
nodes does not change by much. For example, if Y = g(X) is a sinusoidal waveform with large
frequency w (not fit well by a single decision stump) and t is the root node [0, 1]d, then v = ⇥(1) and
⇢(bY ⇤, Y | X 2 t) = ⇥(1/

p
w), and hence by (10), either s⇤ = ⇥(1/w) or s⇤ = 1�⇥(1/w) (see

Lemma A.2 in the supplement). This phenomenon, where optimal splits concentrate at the endpoints
of the node along noisy directions, has been dubbed ‘end-cut preference’ in the literature and has
been known empirically since the inception of CART [10], [4, Section 11.8]. The theory above is
also consistent with empirical studies on the local adaptivity of Breiman’s random forests which use
CART [12, Section 4].

3.3 Training error and Pearson correlation
In addition to determining the location of the splits, the correlation is also directly connected to the
training error. Intuitively, the training error should small when CART finds decision stumps that have
strong correlation with the response values in each node. More precisely, the following lemma reveals
the importance of the correlation (5) in controlling the training error. It shows that each time a node
t is split, the training error in t is reduced by a constant factor, namely, exp(�b⇢ 2(bY , Y | X 2 t))
or, uniformly, by exp(�b⇢ 2

H
), where H is the collection of all decision stumps and b⇢H is the quantity

defined in (8). Recursing this contraction inequality over nodes at each level of the tree leads to
the conclusion that the training error should be exponentially small in the depth K, provided the
correlation at each node is large.

Lemma 1. Almost surely,

1

N(t)

X

Xi2t

(Yi � bYi)
2  1

N(t)

X

Xi2t

(Yi � Y t)
2 ⇥ exp(�b⇢ 2(bY , Y | X 2 t)), (11)

and hence

err(bY (TK))  b�2
Y exp(�K ⇥ b⇢ 2

H
), (12)

where H is the collection of all decision stumps.

3.4 Size of Pearson correlation via comparison inequalities
Due to the importance of the correlation in controlling the training error, it is natural to ask when
it will be large. We accomplish this by studying its size relative to the correlation between the
data and another more flexible model. That is, we fit an arbitrary univariate function g(X) of a
generic coordinate X to the data in the node and ask how large b⇢ (bY , Y | X 2 t) is relative to
|b⇢ (g(X), Y | X 2 t)|. Such a relationship will enable us to conclude that if Y is locally correlated
with g(X) in the node, then so will Y with an optimal decision stump bY . Before we continue, let
us mention that studying b⇢ (bY , Y | X 2 t) directly is hopeless since it not at all straightforward to
disentangle the dependence on the data. Even if this could be done and a target population level
quantity could be identified, it is difficult to rely on concentration of measure when t contains very
few data points; a likely situation among deep nodes. Nevertheless, by definition of bY via (7), we can
construct a prior ⇧(j, s) on coordinates j and splits s, and lower bound b⇢ (bY , Y | X 2 t) by

Z
b⇢ (eY , Y | X 2 t)d⇧(j, s), (13)

which is much less burdensome to analyze. Importantly, the prior can involve unknown quantities
from the distribution of (X, Y ). For a special choice of prior ⇧, (13) can be further lower bounded
by

b⇢ (bY , Y | X 2 t) � constant ⇥ |b⇢ (g(X), Y | X 2 t)|. (14)
The constant in (14) depends on g(·), though importantly it is invariant to the scale of g(·). If g(·)
belongs to a univariate model class G, this constant can either be studied directly for the specific g(·)
or minimized over g(·) 2 G to yield a more insightful lower bound. For certain model classes G,
the minimization problem turns out to be equivalent to a quadratic program, and the solution can be
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obtained explicitly and used to prove the next set of results. Our first application of this technique
shows that, despite fitting the data to a decision stump with one degree of freedom (i.e., the location
of the split), CART behaves almost as if it fit the data to a monotone function with N(t)� 1 degrees
of freedom, at the expense of a sublogarithmic factor in N(t). For example, the correlation between
the response variable and the decision stump is, up to a sub-logarithmic factor, at least as strong as
the correlation between the response variable and a linear or isotonic fit.

Fact 1. Almost surely, uniformly over all monotone functions g(·) of X in the node, we have

b⇢ (bY , Y | X 2 t) � 1p
1 + log(2N(t))

⇥ |b⇢ (g(X), Y | X 2 t)|. (15)
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(a) Synthetic data. Prediction error of
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(c) Minimum correlation b⇢H (averaged
over 10 independent replications) of all
nodes of pruned CART tree as sparsity
d0 varies.

The previous fact also suggests that CART is quite good at
fitting response values that have a local, low-dimensional,
monotone relationship with the input variables. Note that be-
cause correlation is merely a measure of linear association,
|b⇢ (g(X), Y | X 2 t)| can still be large for some monotone
g(·), even if Y is not approximately monotone in one coordi-
nate. That is, Y need only be locally correlated with such a
function. On the other hand, if Y has no signal in X , then
[11, Lemma 1, Supplement] shows that, with high probability,
b⇢ (bY , Y | X 2 t) is O(

p
(logN(t))/N(t)).

4 Main Results
In this section, we use the training error bound (12) and the de-
vice (13) for obtaining correlation comparison inequalities (à la
Fact 1) to give bounds on the prediction error of CART. We first
outline the high-level strategy. By Theorem 1, with high prob-
ability, the leading behavior of the prediction error Err(bY ( bT ))
is governed by infT�Tmax R↵(bY (T )), which is smaller than the
minimum of R↵(bY (TK)) = err(bY (TK))+↵|TK | over all fully
grown trees TK of depth K with |TK |  2K , i.e.,

inf
K�1

{err(bY (TK)) + ↵2K}. (16)

Coupled with an informative bound on err(bY (TK)), (16) can
then be further bounded and solved. The proofs reveal that
a good balance between the tree size and its goodness of fit
occurs when K is logarithmic in the sample size.

4.1 Asymptotic
consistency rates for sparse additive models
Applying the training error bound (12) to (16) with K =
d(b⇢ 2

H
+ log 2)�1 log(b�2

Y /↵)e, we have from Theorem 1 that
with probability at least 1� �,

Err(bY ( bT )) = O
⇣
b�2
Y

⇣d log(n/d)
nb�2

Y

⌘ b⇢ 2
H

b⇢ 2
H

+log 2
+

log(1/�)

n

⌘
.

(17)
It turns out that if X is uniformly distributed and Y is a sparse
additive model with d0 component functions gj(·), then b⇢ 2

H
is

asymptotically lower bounded by a constant multiple of 1/d0.
Thus, we find from (17) that if d0 is fixed, then limn Err(bY ( bT )) a.s.

= 0 even when the ambient
dimension grows as d = o(n). Note that such a statement is not possible for vanilla k-NN or other
kernel based regression methods with nonadaptive weights, unless feature selection is performed
beforehand. In fact, we show next that the prediction error rate that CART achieves is the same
as what would be achieved by a standard kernel predictor if one had a priori knowledge of the
locations of the d0 relevant input variables that determine the output. A routine computer experiment
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on synthetic or real data easily confirms this theory. In Fig. 1a and Fig. 1c, we generate 1000
samples from the model Y =

Pd0

j=1 gj(Xj), where each gj(Xj) equals ±X2
j (alternating signs) and

X ⇠ Uniform([0, 1]d). In Fig. 1a, we plot the test error, averaged over 10 independent replications,
of pruned CART vs. k-NN (with cross-validated k) as d ranges from 5 to 100 with d0 = 5 fixed. A
similar experiment is performed in Fig. 1b on the Boston housing dataset [4, Section 8.2] (d0 = 10
and n = 506), where we scale the inputs to be in [0, 1] and add d� d0 noisy Uniform([0, 1]) input
variables. According to Theorem 3, the convergence rate of CART depends primarily on the sparsity
d0 and therefore its performance should not be adversely affected by growing d. Consistent with our
theory, the prediction error of CART remains stable as d increases, whereas k-NN does not adapt to
the sparsity. Furthermore, Fig. 1c illustrates how b⇢ 2

H
decays with d0 if d = 20, thus corroborating

with the aforementioned asymptotic behavior of ⌦(1/d0).

Theorem 3. Suppose X is uniformly distributed on [0, 1]d and Y =
P

j gj(Xj) is a sparse additive

model with d0 ⌧ d smooth component functions gj(·), where each function is not too locally ‘flat’ in

the sense that

sup
x

inf{r � 1 : g(r)j (·) exists, continuous, and nonzero at x} < 1. (18)

Then there exists a constant C > 0 that is independent of d0 such that, almost surely, lim infn b⇢ 2
H

�
C/d0, and

lim sup
n

Err(bY ( bT ))
((d/n) log(n/d))⌦(1/d0)

a.s.
= O(1). (19)

Remark 1. For independent, continuous marginal input variables Xj , there is no loss of generality

in assuming uniform distributions in Theorem 3. Indeed, CART decision trees are invariant to strictly

monotone transformations of Xj . One such transformation is the marginal cumulative distribution

function FXj (·), for which FXj (Xj) ⇠ Uniform([0, 1])—and so the problem can immediately be

reduced to the uniform case.

Any nonconstant component function gj(·) that admits a power series representation satisfies the
hypothesis of Theorem 3, though, in general, the condition (18) accommodates functions that are not
analytic or infinitely differentiable. In fact, even differentiability is not necessary—similar results
hold if the gj(·) are step functions, as we now show. To this end, assume that Y =

P
j gj(Xj) is an

additive model, where each component function gj(·) is a bounded step function and the total number
of constant pieces of Y is V . We show in the supplement that each optimal split ŝ in a node t satisfies

max{Xij 2 I : Xi 2 t}  ŝ  min{Xij 2 I 0 : Xi 2 t}, (20)
for some direction j and successive intervals I and I 0 on which gj(·) is constant. For example, if
Y = c11(X1 < s1) + c21(X2 < s2), then the first split separates the data along X1 at s1 (resp. X2

at s2), and at the next level down, CART separates the data in both daughter nodes along X2 at s2
(resp. X1 at s1). Thus, in general, each empirical split always perfectly separates the data in the node
between two adjacent constant values of a component function. A CART decision tree grown in this
way will achieve zero training error once it has at least V terminal nodes, i.e., |T | � V . This is in
fact the same training error that would result from the global least squares projection onto the space
of all step functions with V constant pieces. From Theorem 1, we immediately obtain the following
performance bound, which is the optimal O(1/n) parametric rate for prediction, up to a logarithmic
factor in the sample size [17]. Notice that we do not make any assumptions on the input distribution.

Theorem 4. Suppose Y =
P

j gj(Xj), where each component function gj(·) is a bounded step

function and the total number of constant pieces of Y is V . With probability at least 1� �,

Err(bY ( bT )) = O
⇣V d log(n/d)

n
+

log(1/�)

n

⌘
. (21)

4.2 Finite sample consistency rates for general sparse models
Using Fact 1, we now provide results of a similar flavor for more general regression models under
a mild assumption on the largest number of data points in a node at level k in TK , denoted by Nk.
Importantly, our theory only requires that each N(t) is upper bounded at every level of the tree. This
condition still allows for nodes that have very few data points, which is typical for trees trained in
practice. Contrast this assumption with past work on tree learning (including tree ensembles like
random forests) that requires each N(t) to be lower bounded [4, Section 12.2], [13, 16, 6].
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Assumption 1. For some constants a � 0 and A > 0, the largest number of data points in a node at

level k in TK satisfies Nk  Anka/2k, for k = 1, 2, . . . ,K = ⇥(log2(n)).

Recall the quantity b⇢G defined in (8), namely, the largest correlation between the response data Y
and a function in G for a worst-case node. Our next theorem shows that if M is the collection of all
monotone (i.e., increasing or decreasing) functions, then

b⇢M = min
t

sup
g(·) monotone, j=1,2,...,d

|b⇢ (g(Xj), Y | X 2 t)|

governs the rate at which the training error and prediction error decrease. Both errors are small if the
local monotone dependence between X and Y is high; that is, if CART partitions the input domain
into pieces where the response variable is locally monotone in a few of the input coordinates.

Theorem 5. Let Y = f(X), where f(·) is a bounded function. Under Assumption 1, almost surely,

err(bY (TK))  b�2
Y

⇣
1� K

log2(4K
aAn)

⌘b⇢ 2
M

. (22)

Furthermore, with probability at least 1� �,

Err(bY ( bT )) = O
⇣
b�2
Y

⇣ log((d/b�2
Y ) log

2+a(n))

log(n)

⌘b⇢ 2
M

+
log(1/�)

n

⌘
. (23)

We will now argue that b⇢M is an empirical measure of the local dimensionality of Y . More
specifically, we argue that if CART effectively partitions the input domain so that, in each node,
Y is locally correlated with sparse additive models with d0 ⌧ d monotone component functions,
then b⇢ 2

M
= ⌦(1/d0). To see why this assertion is true, suppose g1(X1), g2(X2), . . . , gd(Xd) is an

arbitrary collection of d univariate functions from M. However, suppose that only a subset of d0
of the input variables X1, X2, . . . , Xd locally affect Y in each node. Then, it can be shown (see
Lemma A.3 in the supplement) that there is some node t and sparse additive model Y0 with d0
component functions of the form ±gj(Xj), corresponding to the d0 input variables that locally affect
Y , such that

b⇢ 2
M

� b⇢ 2(Y0, Y | X 2 t)

d0
= ⌦(1/d0), (24)

almost surely. The above statement is reminiscent of Theorem 3 in which b⇢ 2
H

= ⌦(1/d0) controls the
convergence rate of the prediction error when the underlying regression model is additive. Though, in
contrast, note that (24) holds regardless of the dependence structure between the d0 input coordinates
that matter and the d� d0 input coordinates that do not. Thus, (24) and Theorem 5 together suggest
that it is possible to achieve rates of the form (log(d)/ log(n))⌦(1/d0) in fairly general settings.

5 Extensions to Tree Ensembles
Key to our analysis of CART was the ability to connect the training error to the objective function of
the growing procedure, as in Lemma 1. Establishing similar relationships is not as easy with trees
that are constructed from bootstrap samples or random subsets of input variables. Nevertheless, we
mention a few ideas for future work. Suppose bY (T ) = (1/m)

P
T
bY (T ) is the output of an ensemble

T of m decision trees from a random forest. By convexity of the squared error loss [3, Section
11] or [2, Section 4.1], we have Err(bY (T ))  (1/m)

P
T Err(bY (T )), where the prediction error is

averaged with respect to the tree randomization mechanism. Using the law of total expectation by
conditioning on each realization of the (random) tree, Err(bY (T )) can be decomposed into quantities
that involve the prediction error of a fixed (non-random) tree, for which our previous results can be
applied. We will leave the exact details of these extensions for future work.

6 Conclusion
A key strength of CART decision trees is that they can exploit local, low dimensionality of the
model—via a built-in, automatic dimension reduction mechanism. This is particularly useful since
many real-world input/output systems are locally approximated by simple model forms with only
a few variables. Adaptivity with CART is made possible by the recursive partitioning of the input
space, in which optimal splits are increasingly affected by local qualities of the data as the tree is
grown. To illustrate this ability, we identified settings where CART adapts to the unknown sparsity of
the model. To the best of our knowledge, the consistency rates given here are the first of their kind
for CART decision trees.

9



Broader Impact
Who may benefit from this research. There are at least two groups of people who will bene-
fit—either directly or indirectly—from this research.

1. Decision makers across a variety of domains, especially those with limited training in
statistics. CART has enabled data-driven decision making in multiple high-stakes domains
(e.g., business, medicine, and policy) over the past three decades. In particular, those who do
not have a formal quantitative background will benefit from the intuitive and interpretable
nature of CART and its quick and easy implementation.

2. Members of the society who may be have faced ethical/fairness concerns associated with their
data and its use. As this paper has demonstrated, CART forms predictions by emphasizing
variables that are more relevant to the output. In a social science context, this suggests that
CART may focus more on key diagnostic information (e.g., education, income) without
being influenced by potentially non-diagnostic variables that other methods may have falsely
deemed relevant (e.g., gender, race).

Who may be put at a disadvantage from this research. There is no foreseeable population who
may be put at a disadvantage from this research.

What are the consequences of failure of the system. Overreliance on any prediction method can
have obvious, negative real-world consequences, particularly when the prediction method is prone to
failure. CART suffers from a couple of pitfalls: instability (i.e., small perturbations in the training
samples may significantly change the structure of an optimal tree and consequent predictions) and
difficulty in accurately approximating certain simple models, such as linear or, more generally,
additive, if given insufficient or low quality data.

Whether the task/method leverages biases in the data. While CART is not impervious to all
pre-existing biases in the data (e.g., those arising from systematic measurement errors at the data
collection stage), as we have shown, it is less susceptible to the presence of additional, non-diagnostic
variables in the data. Consequently, CART has the potential to mitigate the negative consequences of
biasing information that is inevitable with most datasets.
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