Supplementary Material

A Relationship with OptNet and Implicit Differentiation Based Learning

Given a prediction model such as linear model, energy-based model, kernel function, deep neural
network, etc, a loss function is needed to measure the quality of its prediction against the given
ground truth. Although surrogate losses had been popular in making the loss convex, recently it
is often observed that directly comparing the prediction of the model, typically computed through
an argmin optimization (or argmax), against the ground truth under the true loss of interest can be
much more effective. The error signal is originated from the last step through the argmin, and then
backpropagated through the model itself for training. For example, Amos et al used it to train input
convex neural networks at ICML 2017, [18] used it to train a structured prediction energy network,
and [60] used it to train an energy-based model for time-series imputation. Other works include
[24, 61], etc. A number of implicit and auto-differentiation algorithms have been proposed for it, e.g.,
[14, 16, 17, 19, 25].

Other uses of such differentiable optimization have been found in learning attention models [26],
meta-learning to differentiate through the base learning algorithm [21, 22], or to train the generator in
a generative adversarial model by optimizing out the discriminator [20], or for end-to-end planning
and control [23]. In all these cases, differentiable optimization is used as an algorithm to train a given
component within a multi-component learning paradigm. But each component itself has its own
pre-fixed model and parameterization.

To the best of our knowledge, OptNet [14] proposed for the first time using optimization as a layer
of the deep neural network, hence extending the model itself. However, it focused on efficient
algorithms for differentiation' and the general framework of optimization layer was demonstrated by
using standard operations such as total variation denoising, which bears resemblance to task-driven
dictionary learning [62, 63]. It remains unclear how to leverage the general framework of OptNet to
flexibly model a broad range of structures, while reusing the existing primitives in deep learning (like
our extension of LSTM in Section 4).

This is achieved by ProxNet. Although ProxNet also inserts a new layer, it provides concrete
and novel ways to model structured priors in data through proximal mapping. [64] used proximal
operators for regularizing inverse imaging problems. Most aforementioned works use differentiable
optimization as a learning algorithm for a given model, while ProxNet uses it as a first-class modeling
construct within a deep network. Designing the potential function f in (2) can be highly nontrivial,
as we have demonstrated in the examples of dropout, kernel warping, multiview learning, and LSTM.

[65] used proximal mapping for the inner-level optimization of meta-learning, which constitutes a
bi-level optimization. Their focus is to streamline the optimization using implicit gradient, while our
goal, in contrast, is to use proximal mapping to learn structured data representations.

We note that despite the similarity in titles, [66] differs from our work as it applies proximal mapping
in a solver to perform inference in a graphical model, whose cliques are neural networks. The
optimization process happens to be analogous to a recurrent net, interlaced with proximal maps,
and similar analogy has been drawn between the ISTA optimization algorithm and LSTM [67]. We
instead use proximal map as a first-class construct/layer in a deep network.

B Connecting ProxNet with Meta-learning

In view that ProxNet is a bi-level optimization and the z in (2) may consist of the embeddings of input
objects in mini-batches, we can interpret ProxNet from a meta-learning perspective. In particular,
each mini-batch corresponds to a “task™ (or dataset, episode, etc) in the standard meta-learning
terminology, and the regularization term corresponds to the task-specific base learner inside each
episode of the meta learner. Naturally, the preceding layers serve as the meta-parameters subject to
meta-learning. For example, [68—70] used simple metric-based nearest neighbor, [71, 72] optimized

! Although the original paper only detailed on quadratic optimization mainly for the efficient GPU implemen-
tation, it is conceptually applicable to general nonlinear optimization. Such extensions have been achieved in
[15].

15

standard learning algorithms iteratively, and [21, 22] leveraged closed-form solutions for base learners.
Explicit learning of learner’s update rule was investigated in [73-75]. In this sense, ProxNet extends
meta-learning to unsupervised base learners.

We emphasize that ProxNet only leverages the idea and technique in meta-learning. It is beyond our
paper to address existing challenges in meta-learning itself.

Detailed description The conventional meta-learning has a meta-parameter p, and each base-
learner (for each task) has its own base-parameters w. Then by Equation (1) of the paper

Aravind Rajeswaran, Chelsea Finn, Sham Kakade, Sergey Levine. Meta-Learning with Implicit
Gradients. Neural Information Processing Systems (NeurIPS), 2019,

the bi-level optimization in meta-learning can be set up as (“perf” for “performance”):

min Z Test-perf (arg min Training-perf(w, p, D", p, Df‘”t)) (13)
p - w

Here DI and D! are the training and test data for task i, respectively. Now we can establish the
one-to-one correspondence between (13) and ProxNet in the context of multiview learning. Please
refer to Section 5 for notations, especially Equations (9) and (11).

e p: the union of i) the feature extractors f and g for the two views, and ii) the downstream
supervised layers. Only the former (f and g) is used in the inner training (arg min,,), which
transforms the raw data into the input of the proximal layer.

e w: the U and V projection directions used by CCA;

e DIrain: the j-th mini-batch {(z;,v:)}7 1;

* Training-perf(w, p, DI"*™) = min 53 |P = X[+ 5, |Q = Y|l — u(UTPQTV),
where X = (f(z1),...,f(zn)) and Y = (g(y1),...,9(yn)). That is, for any given
projection directions U and V' (i.e., w), what is the minimal denoising objective, which

combines the displacement (Frobenius norm) and the CCA objective (correlation between
the projections);

e Dicst: the i-th mini-batch (same as D{"");
e Test-perf: pass Di° through f and g, followed by denoising based on the trained w =
(U,V): argmin £ | P — X%+ > 1Q - Y2 — tr(UT PQTV), and finally apply the
P,Q

supervised layers to measure the test performance.

So ProxNet effectively corresponds to a base-learner of multiview denoising. It extends the common
meta-learning practice in two ways:

e the base-learner is unsupervised;

e the training and test performance employ different tasks (denoising versus error).

The latter is quite a valid learning paradigm: the training phase extracts useful representations as
parameterized by U and V, and then the product (U and V') is evaluated on the test data by computing
their projections, followed by a supervised loss. Since mini-batch sizes are very small (also intended
to keep the optimization efficient), it can be considered as a few-shot learning. Surely the algorithm
does not have to be restricted to mini-batches that are drawn iid; different mini-batches can employ
bona-fide different learning tasks.

C Connecting Proximal Mapping to Kernel Warping

The graph Laplacian on a function f is } -, wi; (f(2i) — f(z;))? where f(z;) — f(x;) is bounded
and linear in f. Parameterizing an image as I («) where « is the degree of rotation/translation/etc,

transformation invariance favors a small magnitude of %Lﬁo f(I(«)), again a bounded linear
functional. By Riesz representation theorem, a bounded linear functional can be written as (z;, f),,

16

for some z; € H. We will refer to z; as an invariance representer, and suppose we have m such
invariances.

In order to respect the desired invariances, [36] proposed a warped RKHS 7{° consisting of the same
functions in the original #, but redefining the norm and the corresponding kernel by

150 =13+ D (2 f (14)

This leads to a new RKHS consisting of the same set of functions as #, but its inner product warped
into

0o = (@t D (Fozidae (9,200 (15)

and its kernel is warped into
ko (x1, x0) =k(21,20) — 2(21) T K z2(x2), (16)
where z(z) = (21(x),...,2n(2))". Then replacing k(z,) by k°(z, -) results in a new invariant

representation. Such a warping can be applied to all layers in, e.g., deep convolutional kernel networks
[CKNs, 76], instilling invariance with respect to preceding layer’s output.

The major limitation of this method, however, is that the invariances have to be modeled by the square
of a linear form — (z;, f)?_[— in order to make Hf||§_[+ 3 (=, f)?_l a norm square, precluding
many interesting invariances such as total variation f — [|f’(z)|dx.

Interestingly, this can be achieved by simply reformulating kernel warping as proximal mapping. To
this end, recall that a Euclidean embedding maps f € H to areal vector f, such that (f, h) ~ (f, h),,
for all f,h € H. A commonly used formula for embedding is the Nystrom approximation [77].
Using p samples W := {w;}’_, drawn i.i.d. from X, we derive an embedding of f € H as follows,

ensuring that (f, h) ~ (f, h),, forall f,h € H:
f= K;V1/2fw, where Ky = (k(wi,w;))ij € RF*P, fu := (f(w1),.--, flwp)) | € RP.
Let ¢(z) be the embedding of k(z,-), and Z := (Z1,..., Z,) where Z; is the embedding of the

invariance representer z;. Then [36] showed that the Euclidean embedding of k°(z, -) can be written
as

(I+ZZT) " V?p(x). (17)
Now to apply proximal map, it is natural to set L(f) = 1 Z = (s, >7_L to enforce invariance. Then
the proximal map P, (k(z, -)) for the representer k(x, -) with A = Tis
Pi(k(x,) = axgmin {L(/) + § I — k(.)3 } as)
. m 2 2
=argmin {437 (5 D3+ 1F — k() (19)
=T+ 22" k(z,-). (20)
Its Euclidean embedding can be obtained by replacing z; with Z;, and k(z, -) with @(z):
. 1 meos 21 ~ 2] _ 5 5Ty—1 ~
argmin {337 (50)° + 4 v - p(@)|*} = I+ 227) " p(a). @1

This is almost the same as that from kernel warping in (17), except for the exponenton I + ZZ .
In practice, we observed that it led to little difference, and the result of proximal mapping using

Gaussian kernel and flat-gradient invariance is shown in Figure 1. Thatis, L(f) = 2 >, |V f(2;) 112
Trivially, CKNs can now leverage nonlinear invariances such as total variation by using a nonlinear
regularizer L in (18).

D Simulations for Connecting Proximal Mapping to Dropout

We now use the two-moon dataset to verify that only small differences arise if dropout is implemented
by proximal mapping in Section 3, as opposed to the adaptive regularization in (6). Suppose the

17

i-th training examples is x; € R with label y; € {—1,1}. The j-th feature of z; is denoted as Tij.
Employing logistic loss, the adaptive regularization view of dropout by [37] can be written as

1 n
* = i - 1 1 —Y; T i B2 5 22
B = min, n; og(1 + exp(—y;f3 m))+uzj:agﬁj (22)

where a; = % S pi(l —pz’)l’?j, pi=(1+exp(—fTx;))" "
Our proximal map is defined as

o)A 2 2
Pr(x) =arg min § 5 ||z—x||2+ijzj , (23)

J

where b; = L3 | ¢;(1 — ¢)xyy, = (1+ exp(—z'z;)) 7%
And the output layer is trained by

acRd | N4
=1

1 n
Q= min { Z log(1 + exp(—yia Pr(x;)) + ¢ ||a||2} . (24)
To demonstrate that the two methods yield similar discriminant values, we produce a scatter plot
of] Pr(z;) (for proximal mapping) versus 3, x; (for dropout). Figure 6 shows the result for two
example settings. Clearly, the two methods produce similar discriminant values for all training
examples. The Matlab code is also available on GitHub.

(@A =0.5p=0.1and c = 0.2)%) p=0.1,A=0.1,and c = 15*p

Figure 6: Scatter plot of o] Pr(z;) (y-axis for proximal mapping) versus 3, x; (z-axis for dropout)

For optimize (24), we simply invoked fminunc without providing any gradient subroutine. That is,
fminunc was98 left to choose its own solver which typically utilizes its own finite difference routine.
The result looks good and efficient for this dataset.

E ProxNet for Multiview Learning

Most multiview learning algorithms are based on CCA, which most commonly involves only two
views. It is in fact not hard to extend it to more than two views. For example, [78] proposed that given
J centered views X; € RV*% for j € [J], where N is the number of training examples and d; is
the dimensionality of the j-th view, the generalized CCA (GCCA) can be written as the following
optimization problem

J
LE{X;}_y) =min) |G = X,;U;1%, (25)

j=1

18

where G € RV*", U; € R%*", GTG = I. Intuitively, it finds a linear transformation U; for
each view, so that all views can be transformed to a similar core G. Furthermore, G needs to be
orthonormal, to avoid mode collapse. The optimal value, denoted as L({X}), will be used as the L
function in (11).

Furthermore, given {X,}, (25) can be optimized efficiently in closed form based on generalized
eigenvalues [78-80]. Based on the optimal solution of G and {U; }, the derivative of L({X;}) in
{X} can be directly computed by Danskin’s theorem.

F Backpropagation Through Time for Adversarial LSTM

To concentrate on backpropagation, we assume that the ultimate objective J only depends only on the
output of the last time step 7', i.e., hp. Extension can be easily made to the case where each step also

contributes to the overall loss. From the final layer, we get . Then we can get 5 ir 9 _ and 86‘1] -
as in the standard LSTM (G'7 in the final layer can be 1gn0red and a‘] = 0). In order to compute the
derivatives with respect to the weights W in the LSTMs, we need to recurswely compute 6" and
ey ‘] , given g,;] and 2 aCt. Once they are available, then

0]) 87 8 aJ 9

— = — ——hi(ci—1,he—1,3 — === —1,he1, , 26

oW oh, oW t(ce—1, he—1,2¢) + e, 8WCt(Ct 1, he—1,¢) (26)

t=1 | <> Ny
by (27) standard LSTM by (30) standard LSTM

where the two % on the right-hand side are identical to the standard operations in LSTMs. Here
we use the Jacobian matrix arrangement for partial derivatives, i.e., if f maps from R” to R™, then
Bf(gc) c RmXxn,

oJ

Given Do, » We can first compute and based on the prox1ma1 map, and the details will be
provided in Section F.1. Given thelr values, we now compute a and W . Firstly,
oJ aJ oh oJ 0G &] 85

= = Rl S Bt t. 27)

8ht,1 8ht 3ht,1 6Gt 6ht71 aSt 8ht,1

M~ N e S N~

by recursion std LSTM by (28) by (37) std LSTM

Ohy an

The terms 77— and 3 are identical to the operations in the standard LSTM. The only remaining

oJ

term is in fact a d1rect10na1 second-order derivative, where the direction zz- can be computed from

from (47):
0J 0G, oJ 0?
— = —1, he 28
8Gt 8ht_1 8Gt 8Q?taht_18t(0t b 1;$t) ()
0 oJ 0
=—(=, — —1,he . 29
By <8Gt’8xt3t(ct 1, 1,213t)> (29)
—~—
by (47)
Such computations are well supported in most deep learning packages, such as PyTorch. Secondly,
= — — — . 30
ders O Do, | 0G,dey | s e G0
~ —— — —— ~ ——
by recursion std LSTM by (31) by (37) std LSTM

The terms 66’ *— and are identical to the operations in the standard LSTM. The only remaining

term is in fact a d1rect10nal second-order derivative:
oJ 0G, oJ 0?

65,5

9G, Dory 0G, Dzpder se(ci—1,he—1,) (31)
0 oJ 0

" e <aG amst(ct—hht—h“ft>> : (32)
t—1 t t

by (47)

19

F.1 Gradient Derivation for the Proximal Map

We now compute the derivatives involved in the proximal operator, namely g—i and %. For clarify,

let us omit the step index ¢, set § = v/\ without loss of generality, and denote

J=f(c), where c:=c(G,s):=(I+GG") s (33)
We first compute 9.J/ds which is easier.
AJ :=f(c(G,s+ As)) — f(c(G, 9)) (34)
=V 1) (c(G, s+ As) — ¢(G, s)) + o(||As|) (35)
=Vf(c)"(I+GG")tAs+ o(||As|). (36)
Therefore,
o ViU aaT) (37
We now move on to 9.J/0G. Notice
AJ :=f(c(G+ AG, s)) — f(e(G, 9)) (38)
=Vf(e)" (c(G+ AG,s) — ¢(G, s)) + o(||AG]|). (39)
Since
c(G+AG,s) = (I+(G+AG)(G+AG)) s (40)
=1 +6aT): (I F(I+GGT) 3(AGGT + GAGT)(I + GGT)*%) (I+ GGT)%] s
(41)
=(I+GGT)" % (1 —(I+GGT) 2 (AGGT + GAGT)(I +GGT)"% + o(||AG||)) (I+GGT) %
(42)
=c(G,8) — (I +GGT)"HAGG" + GAGT)(I + GG ") s + o(|AG]), (43)
we can finally obtain
AJ =-Vfe) I+GGT)HAGGT + GAGT)(I +GGT) s+ o(|AG]|) (44)

=—tr (AGT(I+GGT) 1 (Vf(e)s" +sVf(e)T) (I+GGT)'G) +o(||AG])). 45)
So in conclusion,

oJ

56 = U +GE)T (Vi(@)sT +sVi()T) (1 +6GT)a (46)

= —(ac" +ca")G, where a=(I+GG")"'Vf(c). (47)

G Detailed Experimental Result

All code and data are available anonymously, with no tracing, at
https://github.com/learndeep2019/ProxNet.

We will demonstrate the effectiveness of ProxNet on several multi-view learning tasks including
image classification, speech recognition, and crosslingual word embedding. Four baseline methods
were selected for comparison in multi-view learning:

e Vanilla model: a network is trained for each view without CCA regularization, and the
output of the two views were combined by averaging their logits for supervised tasks. The
network is trained in an end-to-end manner.

e DCCA [10]: a network is trained to learn a pair of highly-correlated representations for
the two views, which are then used for training the subsequent supervised task. The whole
model is trained in a disjoint manner.

20

https://github.com/learndeep2019/ProxNet

e DCCAE [9]: same as DCCA, except that it trains an extra decoder to enforce that the
learned representations can well reconstruct the input.

o RRM: connect the code/output of DCCA with a supervised classifier, and train it with the
encoder in an end-to-end fashion. It also resembles ProxNet, except that the regularizer
L(X,Y) is moved from the proximal layer to the overall objective as in (1) (i.e., no more
proximal mapping).

G.1 Multiview Supervised Learning: image recognition with sketch and photo

Dataset. We first evaluated ProxNet on a large scale sketch-photo paired database — Sketchy which
consists of 12,500 photos and 75,471 hand-drawn sketches of objects from 125 classes. Each sample
from sketch and photo is 256 x 256 colored natural images. To demonstrate the robustness of our
method, we varied the number of classes over {20, 50,100, 125} by sampling a subset of classes
from the original dataset. For each class, there are 100 sketch-photo pairs. We randomly selected 80
pairs of photo and sketch from each same class to form the training set, and then used the remaining
20 pairs for testing.

Implementation detail. Our implementation was based on PyTorch and all training was conducted
on one NVIDIA GeForce 2080Ti GPU.

For all methods, we used ResNet-18 as the feature extractor. In ProxNet, the feature extractor
immediately followed by a proximal layer which has input and output dimension d = 20. Then a
classifier which has three fully-connected layer each having 512 units was trained on the outputs of
proximal layer. The final output layer has multiple softmax units that each corresponds to the output
classes. At training time, we employed an adaptive trade-off parameter A; = (1 + kt)c, where
k = 0.5 and oy = 0.1. RRM used the same architecture as ProxNet, except that, instead of using the
proximal layer, RRM moves the CCA objective (i.e., the regularizer L(X,Y")) to the overall objective
to promote the correlation between the two views’ hidden representation.

Since the Vanilla model does not promote correlation between views, it can be adapted from RRM
model by removing the regularizer from the overall objective. [9, 10] trained DCCA and DCCAE in
two separate steps instead of end-to-end. The first step learned an encoder (and decoder for DCCAE)
to optimize the CCA objective, and the second step trained a supervised classifier based on the code.
In our experiment, their encoders employed the same architecture as the feature extractors of ProxNet
and other baselines, i.e., ResNet-18. For DCCAE, we built a CNN-based decoder to reconstruct the
inputs.

For all methods, the loss was evaluated on the averaged logits at training time in order to be consistent
with how predictions were made at test time.

We used the Ray Tune library to select the hyper-parameters for all methods, and the selected
parameters are summarized here:

Table 5: Hyper-parameters for all methods on the Sketchy dataset
Hyper-parameters Vanilla DCCA DCCAE RRM ProxNet

Dimensiond 15 22 19 20 20
Optimizer Adam Adam Adam Adam Adam

Learning rate 0.0012 0.0010 0.0009 0.0011 0.0011

Weight decay 10~* 10=* 10=* 107* 107*

The accuracy of all methods saturates after the mini-batch size goes above 100. So we just used 100
for all methods to keep training efficient.

G.2 Audio-Visual Speech Recognition

Dataset. In this task, we aim to use learned features for speaker-independent phonetic recognition.
We experimented on the Wisconsin X-ray Micro-Beam Database (XRMB) corpus which consists of
simultaneously recorded speech and articulatory measurements from 47 American English speakers

21

and 2357 utterances. The two raw-input views are acoustic features (39D mel frequency cepstral
coefficients (MFCCs) and their first and sencond derivatives) and articulatory features (16D hori-
zontal/vertical displacement of 8 pellets attached to several parts of the vocal tract). Along with
the multi-view data there are phonetic labels available for classification. To simulate the real-life
scenarios and improve the model’s robustness to noise, the acoustic features of a given speaker are
corrupted by mixing with {0.2, 0.5, 0.8} level of another random picked speaker’s acoustic features.
The XRMB speakers were partitioned into disjoint sets of 35/12 speakers for training and testing
respectively.

Implementation detail. In [9], to incorporate contexts information, the inputs are concatenated
over a W-frame window centered at each frame, giving 39 x W and 16 x W feature dimensions for
each of the two views respectively. Although this delicately construed inputs freed the encoder/feature
extractor from considering the time dependency within frames, we prefer a refined modeling of the
sequential structure. Therefore, instead of concatenating features for each W -frame window followed
by a fully connected network as in [45], we implementated, for all algorithms under consideration,
a 2-layer LSTM with hidden size 256. The output of LSTM was passed through a fully connected
layer, projecting to a K -dimensional subspace. This feature extractor significantly improved the
performance of all methods.

The supervised predictor was implemented by a fully connected network of 2 hidden layers each
having 256 ReLU units, and a linear output layer of 41 log-softmax units. We used Pytorch’s built-in
function Connectionist Temporal Classification (CTC) loss [44] with greedy search as the phone
recognizer. Again, all methods shared the same architecture of supervised predictor.

Both RRM and Vanilla were trained in the same way as for the Sketchy dataset in Section G.1. To
train ProxNet, we employed an adaptive trade-off parameter A\; = (1 + kt)cp, where k = 1 and
ap = 0.5. DCCA and DCCAE performed poorly if only the learned code/features were used for
phonetic recognition. Therefore, we followed [9] and concatenated them with the original features
(39D and 16D for the acoustic and articulatory views, respectively), based on which a CTC-based
recognizer is trained. This improved the PER performance of DCCA and DCCAE significantly.

In the logit averaging mode, all methods were trained with a loss applied to the averaged logits. This
is the same as Section G.1. In the acoustic mode, however, a loss is applied to each view at training
time based on the ground truth label. These are both consistent with how predictions are made at test
time.

Here we intentionally used K instead of d to denote the hidden dimension. This is to avoid confusion
because LSTM is used as in Figure 4. For a mini-batch of size m where each sequence has length
s, the input of the proximal layer is in fact m - s examples of K dimensional. Although m - s may
result in a large number, the proximal mapping can still be solved efficiently because we were able to
use a larger value of \ in this dataset. In addition, the computational cost for SVD on an ms-by-K
matrix is O(msK?) when K < ms. Since we used K = 20, the quadratic dependency on K did not
create a computational challenge in practice.

As in the Skytch dataset, we used the Ray Tune library to select the hyper-parameters, and the selected
parameters are summarized here:

Table 6: Hyper-parameters for all methods on XRMB
Hyper-parameters Vanilla DCCA DCCAE RRM ProxNet

Dimension K 12 20 20 18 20
Optimizer Adam Adam Adam Adam Adam

Learning rate 0.0009 0.0011 0.0010 0.0013 0.0010

Weight decay 0.0005 0.0005 0.0005 0.0005 0.0005

Line 250 made an inaccurate description of how we tuned K: “The dimension of subspace was tuned
in {10, 20, 30, 50}, and the sequence length was tuned in {250, 500, 1000} for all algorithms”. This
was the setting in our preliminary experiment. The Ray Tune library indeed allowed us to later search
all parameters in a continuous space, and so the K values in Table 6 can be 12 or 18.

22

We eventually set the sequence length to s = 1000 for all methods, because it consistently produced
the best result, which is not surprising because longer sequences can preserve more structure. However,
the PER saturated after the length rose beyond 1000.

Similarly, the PER of all methods leveled off after the mini-batch size grew above 32. So we just
used m = 32 for all methods to keep training efficient.

Evaluation. For all experiments, we report the Phone error rates (PERs) which is defined as
PER = (S+ D+ I)/N, where S is the number of substitutions, D is the number of deletions,
I is the number of insertions to get from the reference to the hypothesis, and N is the number of
phonetics in the reference. The PERs obtained by different methods are given in Table 2.

G.3 Crosslingual/Multilingual Word Embedding

In this task, we learned representation of English and German words from the paired (English,
German) word embeddings for improved semantic similarity.

Dataset. We first built a parallel vocabulary of English and German from the parallel news com-
mentary corpora [WMT 2012-2018 46] using the word alignment method from [47, 48]. Then we
selected 36K English-German word pairs, in descending order of frequency, for training. Based on
the vocabulary we also built a bilingual dictionary for testing, where each English word x; is matched
with the (unique) German word y; that has been most frequently aligned to x;. Unlike the setup in
[53] and [9], where word embeddings are trained via Latent Semantic Analysis (LSA) using parallel
corpora, we used the pretrained monolingual 300-dimensional word embedding from [50] and [49]
as the raw word embeddings (x; and y;).

To evaluate the quality of learned word representation, we experimented on two different benchmarks
that have been widely used to measure word similarity [51, 52]. Multilingual WS353 contains
353 pairs of English words, and their translations to German, Italian and Russian, that have been
assigned similarity ratings by humans. It was further split into Multilingual WS-SIM and Multilingual
WS-REL which measure the similarity and relatedness between word pairs respectively. Multilingual
SimLex999 is a similarity-focused dataset consisting of 666 noun pairs, 222 verb pairs, 111 adjective
pairs, and their translations from English to German, Italian and Russian.

Baselines. We compared our method with the monolingual word embedding (baseline method)
from fastText to show that ProxNet learned a good word representation through the proximal layer.
Since our method is mainly based on CCA, we also chose three competitive CCA-based models for
comparison, including:

e linearCCA [53], which applied a linear projection on the two languages’ word embedding
and then projected them into a common vector space such that aligned word pairs should be
maximally correlated.

e DCCA [81], which, instead of learning linear transformations with CCA, learned nonlinear
transformations of two languages’ embedding that are highly correlated.

e DCCAE [9], which noted that there is useful information in the original inputs that is not
correlated across views. Therefore, they not only projected the original embedding into
subspace, but also reconstructed the inputs from the latent representation.

o CL-DEPEMB [54], a novel cross-lingual word representation model which injects syntactic
information through dependency-based contexts into a shared cross-lingual word vector
space.

Implementation detail. We first used the fastText model to embed the 36K English-German word
pairs into vectors. Then we normalized each vector to unit /5 norm and removed the per-dimension
mean and standard deviation of the training pairs.

To build an end-to-end model, we followed the same intuition as DCCAE but instead of using the
latent representation from the encoder to reconstruct the inputs, we used the outputs of proximal layer,
which is a proximal approximation of latent representation from the encoder, to do the reconstruction.
That is, the input reconstruction error was used as the ultimate objective.

23

Table 7: Summary of datasets for adversarial LSTM training

Dataset Training Test = Median length Attributes Classes

v 225 370 15 12 9
HAR 6,127 2,974 128 9 6
AD 5,500 2,200 39 13 10
IMDB 25,000 25,000 239 - 2

We implemented the encoder (feature mapping f and g) by using multilayer perceptrons with ReLU
activation and the decoder by using a symmetric architecture of encoder. We tuned the hidden
dimension h for f and g among {0.1,0.3,0.5,0.7,0.9} x 300, the regularization parameter A from
{0.001,0.01,0.1,1, 10}, and the depth and layer width from 1 to 4 and {256,512,1024, 2048},
respectively. For optimization, we used SGD with momentum 0.99, a weight decay of 0.0005, and a
learning rate 0.1 which was divided by 10 after 100 and 200 epochs.

At test time, for numerical stability, we combined the word vectors from bilingual dictionary and
the test set to build paired vocabulary for each language. We applied the same data preprocessing
(normalize to unit norm, remove the mean/standard deviation of the training set) on test vocabularies
(English and German word vectors). Then we feed paired test vocabularies into the models and
obtained the word representation of the test data. We projected the output of the proximal layer
to the subspace where each paired word representation was maximally correlated. The projection
matrices were calculated from the 36K training set through the standard CCA method. We computed
the cosine similarity between the final word vectors in each pair, ordered the pairs by similarity, and
computed the Spearman’s correlation between the model’s ranking and human’s ranking.

G.4 Adversarial Training in Recurrent Neural Network

Here we include more details on the experiment of adversarial training in recurrent neural network as
described in Section 6.4.

Datasets. To demonstrate the effectiveness of using proximal mapping, we tested on four different
sequence datasets. The Janpanese Vowels dataset [JV 55] contains time series data where nine male
speakers uttered Japanese Vowels successively, and the task is to classify speakers. The Human
Activity Recognition dataset [HAR 56] is used to classify a person’s activity (sitting, walking, etc.)
based on a trace of their movement using sensors. The Arabic Digits dataset [AD, 57] contains time
series corresponding to spoken Arabic digits by native speakers, and the task is to classify digits.
IMDB [58] is a standard movie review dataset for sentiment classification. Details of the datasets are
summarized in Table 7. The - is because IMDB is a text dataset, for which a 256-dimensional word
embedding is learned.

Preprocessing. Normalization was the only preprocessing applied to all datasets. For those datasets
that contain variable-length sequences, zero-padding was used to make all sequences have the same
length as the longest sequence in a mini-batch. To reduce the effect of padding, we first sorted all
sequences by length (except the IMDB dataset), so that sequences with similar length were assigned
to the same mini-batch.

Baseline models. To show the impact of applying proximal mapping on LSTM, we compared our
method with two baselines. For JV, HAR and AD datasets, the base model structure was composed
of a CNN layer, followed by an LSTM layer and a fully-connected layer. The CNN layer was
constructed with kernel size 3, 8, 3 and contained 32, 64, 64 filters for JV, HAR, AD respectively. For
the LSTM layer, the number of hidden units used in these three datasets are 64, 128, 64, respectively.
This architecture was denoted as LSTM in Table 4. For IMDB, following [40], the basic model
consisted of a word embedding layer with dimension 256, a single-layer LSTM with 1024 hidden
units, and a hidden dense layer of dimension 30.

On top of this basic LSTM structure, we compared two different adversarial training methods.
AdvLSTM is the adversarial training method in [40], which we reimplemented in PyTorch, and
perturbation was added to the input of each LSTM layer. ProxLSTM denotes our method described

24

in Section 4, where the LSTM cell in the basic structure was replaced by our ProxLSTM cell. LSTM
and AdvLSTM here correspond to “Baseline” and “Adversarial” in [40] respectively.

Training. For the JV, HAR, AD datasets, we first trained the baseline LSTM to convergence, and
then applied AdvLSTM and ProxLSTM as fine tunning, where ADAM was used with learning rate
1073 and weight decay 10~%. For IMDB, we first trained LSTM and AdvLSTM by following the
settings in [40], with an ADAM optimizer of learning rate 5 - 10~* and exponential decay 0.9998.
Then the result of AdvVLSTM was used to initialize the weights of ProxLSTM. All settings were
evaluated 10 times to report the mean and standard deviation.

Results. The test accuracies were summarized in Table 4. Clearly, adversarial training improves
the performance, and ProxLSTM even promotes the performance more than AdvLSTM. Figure 5
illustrates the t-SNE embedding of extracted features from the last time step’s hidden state of HAR
test set. Although ProxLSTM only improves upon AdvLSTM marginally in test accuracy, Figure 5
shows the embedded features from ProxLSTM cluster more compactly than those of AdvLSTM (e.g.
the yellow class). The t-SNE plot of other datasets are available in Figures 7, 8 and 9. This further
indicates that ProxLSTM can learn better latent representation than AdvLSTM by applying proximal

mapping.

25

ProxLSTM™ _ AdVLSTM T = gie -

- {i . 2T ?;:'?"
... o =. .:..i -,
S50 2% S - & =2
sl g ST At S
’..c e S o e e e .~.
2 i o L
S I ot 2
- e~ e " o O Re® o o
ce = L B oo
- f?. -"
= s ST

Figure 7: t-SNE embedding of the JV dataset

idew

Figure 8: t-SNE embedding of the AD dataset

ProxLSTM . . AdvLSTM Ce.

Figure 9: t-SNE embedding of the IMDB dataset

26

	Introduction
	Proximal Mapping as a Primitive Construct in Deep Networks
	Connecting Proximal Mapping to RRM on Shallow Models
	Proximal Mapping for Robust Learning in Recurrent Neural Nets
	ProxNet for Multiview Learning
	Backpropagation and computational cost

	Experimental Results
	Multiview supervised learning 1: image recognition with sketch and photo
	Multiview supervised learning 2: audio-visual speech recognition
	Multiview unsupervised learning: crosslingual word embedding
	Robust training for recurrent networks

	Conclusion
	Relationship with OptNet and Implicit Differentiation Based Learning
	Connecting ProxNet with Meta-learning
	Connecting Proximal Mapping to Kernel Warping
	Simulations for Connecting Proximal Mapping to Dropout
	ProxNet for Multiview Learning
	Backpropagation Through Time for Adversarial LSTM
	Gradient Derivation for the Proximal Map

	Detailed Experimental Result
	Multiview Supervised Learning: image recognition with sketch and photo
	Audio-Visual Speech Recognition
	Crosslingual/Multilingual Word Embedding
	Adversarial Training in Recurrent Neural Network

