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Abstract

In the real world, object categories usually have a hierarchical granularity tree.
Nowadays, most researchers focus on recognizing categories in a specific granular-
ity, e.g., basic-level or sub(ordinate)-level. Compared with basic-level categories,
the sub-level categories provide more valuable information, but its training annota-
tions are harder to acquire. Therefore, an attractive problem is how to transfer the
knowledge learned from basic-level annotations to sub-level recognition. In this
paper, we introduce a new task, named Hierarchical Granularity Transfer Learning
(HGTL), to recognize sub-level categories with basic-level annotations and seman-
tic descriptions for hierarchical categories. Different from other recognition tasks,
HGTL has a serious granularity gap, i.e., the two granularities share an image space
but have different category domains, which impede the knowledge transfer. To this
end, we propose a novel Bi-granularity Semantic Preserving Network (BigSPN) to
bridge the granularity gap for robust knowledge transfer. Explicitly, BigSPN con-
structs specific visual encoders for different granularities, which are aligned with a
shared semantic interpreter via a novel subordinate entropy loss. Experiments on
three benchmarks with hierarchical granularities show that BigSPN is an effective
framework for Hierarchical Granularity Transfer Learning.

1 Introduction

In the real world, object categories usually form a hierarchical tree of different granularities [5, 33,
21, 48], e.g., a hierarchical tree of bird is shown in Fig. 1. For example, a bird has a basic-category
“Albatross" and several sub(ordinate)-categories, such as “Footed Albatross" and “Sooty Albatross"
species. Compared with basic-level categories, the sub-level categories contain more information,
but the annotations are also harder to obtain [41], which require expert taxonomy knowledge to
distinguish subtle differences. Thus, how to recognize sub-categories without sub-level image
annotations is an interesting and important problem.

To address this issue, we introduce a new task of Hierarchical Granularity Transfer Learning (HGTL),
which targets to recognize the subordinate-level categories with only basic-level image annotations
and semantic descriptions for hierarchical categories, e.g., attributes [39], as shown in Fig. 1. The
insight of HGTL is inspired by the semantic cognition of human. For example, when informed
that the “Footed Albatross" has brown wing and the “Sooty Albatross" has black wing, human can
distinguish these two sub-species visually.

Among the existing visual recognition tasks, the fine-grained visual categorization (FGVC) [16, 17,
49, 24], domain adaptation (DA) [27–29], and zero-shot learning (ZSL) [12, 13, 39, 23] are most
related to HGTL. Different from FGVC that depends on sub-level image annotations, HGTL requires
only basic-level annotations and extra semantic information. Compared with DA whose categories
of two domains are overlapped, HGTL has disjoint category domains, i.e., basic-categories and
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Figure 1: An example of Hierarchical Granularity Transfer Learning (HGTL). Given the basic-level
image annotations and category descriptions for hierarchical categories, HGTL aims to recognize the
subordinate categories.

sub-categories. ZSL can recognize new categories by transferring the learned visual and semantic
embedding functions from seen to unseen domains. However, in HGTL, each image has two disjoint
categories, thus a shared visual embedding function cannot well model the visual distributions of two
category granularities. In summary, HGTL presents a new challenge of disjoint category domains of
two granularities, which has not been explored in the existing recognition methods.

In this paper, we propose a novel Bi-granularity Semantic Preserving Network (BigSPN) to solve the
HGTL by constructing two specific visual encoders for respective basic- and sub-domain categories.
The core motivation of BigSPN is to leverage the semantic relationship between two category domains
for visual knowledge transfer. To this end, BigSPN first learns a visual encoder and a semantic
interpreter in the basic domain via the semantic-visual alignment. Since the semantic information can
associate two domains, the semantic interpreter is directly transferred to the sub-domain. Then, a
new part-based visual encoder is developed to capture the subtle visual difference for sub-category
domain. Due to unavailable sub-level image annotations, a subordinate entropy loss is developed to
train the new visual encoder to be aligned with the corresponding sub-level semantics, by solving
a multi-instance optimization problem. Finally, the sub-domain recognition becomes a nearest
neighbor searching problem between part-based visual representations and semantic embeddings
for sub-categories. Compared with previous recognition models, BigSPN can preserve the visual
distributions for both basic- and sub-domains via two separate visual encoders.

The overall contributions of this paper are summarized by: a) to our best knowledge, we introduce a
new task of Hierarchical Granularity Transfer Learning (HGTL) that targets to transfer knowledge
between hierarchical categories without subordinate category annotations; b) we propose a novel
Bi-granularity Semantic Preserving Network (BigSPN) to bridge the granularity gap for HGTL,
by constructing specific visual encoders for hierarchical categories. Due to unavailable sub-level
image annotations, the two visual encoders are learned via a shared semantic interpreter and a
subordinate entropy loss; c) the evaluations on three benchmarks with hierarchical categories, i.e.,
CUB-HGTL, AWA2-HGTL, and Flowers-HGTL, demonstrate that the BigSPN is a robust framework
for Hierarchical Granularity Transfer Learning.

2 Related Work

2.1 Fine-Gained Visual Categorization

Different from generic basic-category recognition, fine-grained visual categorization (FGVC) targets
to explore the subtle inter-class differences among subordinate object categories [9, 17, 44, 45, 33,
49, 35, 50]. According to [6], FGVC methods can be coarsely categorized into two branches: a)
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part-based localization; and b) global-based visual embedding. The part-based methods [9, 32, 49]
target to localize important local regions, e.g, bird head, for discriminative image representation.
Differently, the global embedding methods aim to extract a strong visual representation from a global
image directly. However, all the above FGVC methods depend heavily on the image annotations of
subordinate categories, which are usually hard to acquire.

2.2 Domain Adaptation

Domain adaptation (DA) [27, 29, 18, 43, 46], has been well studied for decades to transfer knowledge
between two domains. In DA, the two domains usually have an overlapped label space [3, 19, 30, 46]
but different image distributions , e.g., different image styles [27]. To bridge the visual gap between
two domains, recent DA methods [20, 29] tend to align the visual representations of two domains
so that the source classifier can be directly transferred to the target domain. Different from DA, the
proposed HGTL shares an image space but disjoint categories from different granularities, which
cannot be solved by using a shared classifier between two domains.

2.3 Zero-Shot Learning

Recently, zero-shot learning (ZSL) [2, 13, 15, 39, 42] has attracted increasing attention, which
transfers knowledge from the seen categories to the unseen categories. A general paradigm of ZSL
is to align the image representations and category descriptions, e.g., category attributes [7, 25] and
text descriptions [14], in a joint embedding space. As the semantic information is shared across
two domains [7, 8, 39], the learned semantic-visual alignment from the seen domain can be directly
transferred to the unseen domain. Under this scheme, recent methods design elaborate visual encoders
and semantic interpreters for robust semantic-visual alignment. However, these ZSL methods just
consider the disjoint categories in the same granularities, e.g, transfer from “Albatross" to “Auklet".
When come to different granularities, e.g., transfer from “Albatross" to “Footed Albatross", these
methods suffer from a granularity gap, i.e., different granularities share an image space but have
different label domains.

3 Bi-granularity Semantic Preserving Network

3.1 Problem Formulation

The Hierarchical Granularity Transfer Learning (HGTL) targets to recognize sub(ordinate)-level
categories with only basic-level annotations and semantic descriptions of hierarchical categories.
Formally, we define the image as I , the basic-category as yb ∈ Yb, and sub-category as ys ∈ Ys.
As shown in Fig. 1, each image I has two categories, which are yb and ys. Nb and Ns are the class
numbers of Yb and Ys. Since Ys is the subordinate of Yb, Nb 6 Ns. a(·) denotes the semantic
descriptions for different categories, such as attributes [7, 25] or text descriptions [14]. Given a(yb)
and a(ys) along with their affiliation relationship, HGTL targets to train a model using basic-level data
pairs {I, yb}, that can predict both yb and ys for a testing image, and we propose the Bi-granularity
Semantic Preserving Network (BigSPN).

3.2 Basic-category Recognition

Due to unavailable sub-level annotation ys, BigSPN should first learn from the basic domain data
{I, yb}, and then leverage the affiliation relationship between a(yb) and a(ys) to transfer knowledge
to sub domain data. To this end, we first project the images and category descriptions of the basic
domain into a joint semantic space by:

Lsa =
∑
x

d[fv(x), g(a(yb))] + Lcls(fv(x), yb), (1)

where x is the image feature of I generated by backbone network, e.g., ResNet-101. yb is the
basic-annotation, and a(yb) is the corresponding category description. fv(·) is a visual encoder to
further refine x. g(·) is a semantic interpreter that can bridge the semantic-visual gap between fv(x)
and a(yb). d(·, ·) is a distance metric function, e.g., the cosine distance [1]. Lcls(fv(x), yb) is a
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Figure 2: The framework of the proposed Bi-granularity Semantic Preserving Network. GAP
indicates global average pooling. The basic-category label of the input image is omitted in Lsa. The
dashed arrows indicate the inference process, and ŷb and ŷs are the outputs of BigSPN for an input
image.

standard cross-entropy loss to prevent all fv(x) from being projected into a single point [51], which
is defined by−log exp(Wyb

fv(x))∑
y∈Yb

exp(Wyfv(x)) , where Wy is the classifier weight for class y.

By minimizing the semantic alignment loss Lsa, the basic-category recognition is converted into a
nearest neighbor searching problem by:

ŷb = arg min
y∈Yb

d[fv(x), g(a(y))], (2)

where g(a(y)) severs as the class anchors, and fv(x) denotes the input queries. The architectures of
fv(·) and g(·) are given in Fig. 2.

3.3 Transfer to Subordinate-category Recognition

With the well-trained fv(·) and g(·), we then explore the affiliation relationship between a(yb) and
a(ys) to recognize the sub-level categories. Since a(yb) and a(ys) share a common semantic space,
g(·) can be transferred to a(ys) to interpret the sub-category descriptions. However, fv(·) cannot be
directly transferred to the sub-domain, because Lsa of Eq. (1) has destroyed the intra-basic-category
differences, which is exactly crucial to distinguish its subordinate different categories. Therefore, we
target to learn a new visual encoder fpv(·) to specifically recognize sub-categories, by solving two
main challenges: a) how to design the architecture of fpv(·) to capture subtle inter-class divergence;
and b) without sub-category annotations, how to update the weights of fpv(x) to be aligned with
correct a(ys). To address these two issues, we develop a part-based visual encoder fpv(·) and a
subordinate entropy loss Lse.

3.3.1 Part-based Visual Encoder

To capture the subtle visual clues between sub-level categories, we leverage the multi-attention
mechanism to make fpv(·) automatically localize informative regions. The architecture of fpv(·) is
given in Fig. 2.

With the backbone image feature x ∈ RH×W×C (H , W , and C are the height, width, and channel),
we first project x into a compressed low dimensional feature z ∈ RH×W×D, where D � C. By
taking the feature z as input, we then generate K attentive features by:

zatt
k = Rk(z)� z, k ∈ [1,K], (3)

where � denotes the element-wise multiplication. Rk(z) ∈ RH×W×1 is the k-th generated attention
map, where the value of each pixel indicates the importance of corresponding feature vector in z.
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Eq. (2).

Rk(·) is implemented by two convolutions followed by a Sigmoid function. zatt
k ∈ RH×W×D is

the k-th attentive feature for the input z. Next, we fuse the attentive features zatt
k (k ∈ [1,K]) into a

global one, via pairwise bilinear pooling [17]:

zbp =

K−1∑
i=1

K∑
j=i+1

zatt
i ⊗ zatt

j , (4)

where ⊗ denotes the local pairwise interaction by a ⊗ b =
∑N

n=1 a
>
n bn, where an is the feature

vector at n-th pixel. Finally, zbp ∈ RD×D is reshaped to a feature vector by fpv(x) = vec.(zbp).

3.3.2 Subordinate Entropy Loss

With the sub-level representation fpv(x), a novel subordinate entropy loss Lse is designed to realign
fpv(x) with corresponding semantic embedding a(ys). Notably, the image-level annotations {I, ys}
is unavailable during training. The core motivation of Lse is that, although the exact sub-category ys
for x is unknown, we can obtain a sub-category candidate set by using the predicted basic-category
ŷb in Eq. (2).

As Ys is the subdivision of Yb, there is a mapping matrix between them, which is defined by
T ∈ RNb×Ns . The element at i-th row and j-th column of T indicates whether the j-th sub-category
is the subordinate of i-th basic-category. With T and predicted ŷb, we can obtain a sub-category
candidate set Ωb→s by:

Ωb→s = M(ŷb, T ), (5)

where M(·) is a mapping function that looks up table T in terms of ŷb. A visualized example of M(·)
is given in Fig. 3. When ŷb is predicted correctly, we can be sure that the unavailable ys of x belongs
to Ωb→s. Thus, we can design Lse by:

Lse =
∑
x

min
y∈Ωb→s

d[fpv(x), g(a(y))]. (6)

g(·) is fixed which has been well-trained in the basic-domain by Eq. (1).

In Eq. (6), Lse selects the most matched y in Ωb→s as the pseudo label to optimize fpv(x). As
shown in Fig. 3, Ωb→s is a candidate label set that contains the ground truth label of fpv(x). As
proved in previous works for multi-instance learning [22, 38, 47], using the most matched instance
in the candidate label set can produce a closed-form solution. An intuitive illustration is that, at the
beginning of training, Lse constrains fpv(x) to be recognized as one of Ωb→s. Then, the inherent
visual difference among Ωb→s makes fpv(x) matched with specific sub-category center g(a(y)),
where y ∈ Ωb→s. As the transferred g(a(ys)) can well describe sub-categories, fpv(x) can be
correctly clustered. After minimizing Eq. (6), the matching entropy between fpv(x) and Ωb→s is
minimized.

Consequently, compared with fv(x), the semantically realigned fpv(x) can better capture the inter-
class differences of sub-categories, resulting in more accurate granularity transfer recognition. The
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Table 1: Some statistics of the experimental datasets. Num. indicates the category numbers.

Datasets Attributes Basic Num. Sub Num. Train Test
CUB-HGTL 312 70 200 5,994 5,794
AWA2-HGTL 85 15 50 22,392 14,930
Flower-HGTL 1024 47 102 4917 3272
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Figure 4: The statistics of hierarchical categories in AWA2-HGTL.

inference function for the sub-category becomes:

ŷs = arg min
y∈Ωb→s

d[fpv(x), g(a(y))], (7)

where Ωb→s is obtained by M(ŷb, T ) in Eq. (5), and the overall objective for BigSPN is:

Lall = Lsa + λLse, (8)

where λ is a hyper-parameter, and BigSPN is an end-to-end trainable framework.

4 Experiments

4.1 Experimental Settings

Datasets. As the proposed Hierarchical Granularity Transfer Learning (HGTL) is a new task, we
construct three datasets with hierarchical categories and semantic descriptions, i.e., CUB-HGTL,
AWA2-HGTL, and Flower-HGTL, which are based on the existing datasets of Caltech-USCD Birds-
200-2011 [36], Animals with Attributes 2 [39], and Flower [26], respectively.

The CUB contains 200 sub-level bird species along with image-level annotations and category
attributes. By clustering the 200 sub-level species based on its specie name, we obtain 70 basic-level
categories and the affiliation relationship between two granularities. For each basic-level category, the
attribute is generated by averaging its subordinate categories. Finally, we construct the CUB-HGTL
dataset whose training set consists of three components: 1) images along with basic-level category
annotations; 2) attributes for 70 basic-categories and 200 sub-categories; and 3) affiliation relationship
between two category granularities.

In AWA2 and Flower datasets, we construct the hierarchical trees according to biology taxonomy
[31, 37] and cluster the sub-level categories of AWA2 and Flower into 15 and 47 basic-level categories,
respectively. Similar to CUB-HGTL, the category descriptions for AWA2-HGTL use the attributes
[39]. Differently, in Flower-HGTL, the category descriptions [2] use the wiki text, which are
embedded into vectors via word2vec. To split the train/val sets for AWA2-HGTL and Flower-HGTL,
we randomly divide the images of each sub-category by 3 : 2, and report the averaged performance
for multiple splits. The final data structures of AWA2-HGTL and Flower-HGTL are consistent with
CUB-HGTL. The complete category relationship of the three datasets is given in supplementary
material.

Implementation Details. The backbone network uses the ResNet-101 [11]. MSRA random initial-
izer is used to initialize the BigSPN. In terms of data augmentation, 448 × 448 random cropping
and horizontal flipping are applied to the input images. Specifically, Lsa and Lse are alternately
optimized for each data batch. The batch size is N = 12, and reduction channel is D = 256.
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Table 2: Results of Hierarchical Granularity Transfer Learning on three benchmarks in terms of basic-
and subordinate-level categories. R1 and R5 indicate the Rank-1 and Rank-5 accuracy.

CUB-HGTL AWA2-HGTL Flowers-HGTL
Granularity Basic_R1 Sub_R1 Sub_R5 Basic_R1 Sub_R1 Sub_R5 Basic_R1 Sub_R1 Sub_R5
Domain Adaptation 92.7 24.4 57.9 98.7 35.4 88.7 89.2 35.4 66.9
FGN[40] 93.7 26.9 60.7 94.3 45.1 90.9 86.0 36.2 65.0
GCNZ[34] 91.3 18.3 54.1 97.5 35.0 87.7 85.5 34.1 61.9
SPAEN[4] 92.7 27.0 62.9 98.5 45.2 91.1 89.1 38.5 67.7
VSE[51] 94.1 26.0 61.5 97.7 43.3 92.7 90.3 38.5 68.1
CosSoftmax[15] 93.5 26.3 63.7 98.8 39.7 91.9 86.5 36.7 65.4
BigSPN 93.3 32.8 69.9 98.3 52.0 95.4 88.7 43.0 70.9

Table 3: The effects of different visual encoders on CUB-HGTL. † indicates that basic visual encoder
fv is directly transferred to the sub-domain, i.e., fv†.

Methods Basic_R1 Sub_R1 Sub_R5
Basic : fv; Sub : fv† 92.7 24.4 57.9
Basic : fv; Sub : fv 93.1 30.1 68.1
Basic : fv; Sub : fpv 93.3 32.8 69.9
Basic : fpv; Sub : fpv 93.8 32.4 70.0

The SGD optimizer is used with initial lr = 0.001, momentum=0.9, and 180 training epoch. The
hyper-parameter is set by K = 4 and λ = 1, which will be analyzed later. During testing, the
center part is cropped, and the averaged horizontal flipping results are reported for both basic- and
subordinate categories.

Compared Methods. As described above, zero-shot learning (ZSL) methods are most related to
the HGTL task, thus we mainly compare our BigSPN with six recent ZSL methods: 1) Feature
Generation Network (FGN) [40] trains a powerful GAN [10] in the basic space, which can directly
generate massive visual representations of sub-categories using the sub category attributes; 2) Graph
Convolution Network for ZSL (GCNZ) [34] utilizes the graph convolution architecture to construct
g(·), which can better explore the semantic affiliation relationship between the two domains: 3) VSE
[51] also explores the local-part embedding to generate discriminative visual representations; and 4)
CosSoftmax [15] designs a cosine similarity based Softmax to enhance visual discrimination.

4.2 Comparisons

The results on CUB-HGTL, AWA2-HGTL, and Flower-HGTL are summarized in Table 2. In terms
of basic-category recognition, all experimental methods obtain comparable results because the inter-
class divergences among basic-categories are easy to explore. In terms of sub Rank-1 accuracy,
the performance of the compared methods has dropped a lot, e.g., the Sub_R1 is much lower than
Basic_R1, which shows that HGTL is a challenging problem. The reason is that, when the single
shared fv(·) of the compared methods is transferred to the sub-space, the minimized basic-category
divergence makes the subordinate categories hard to distinguish. Instead, BigSPN constructs two
separate visual encoders for basic-level and sub-level categories, which are learned via a shared
semantic interpreter and a subordinate entropy loss. Therefore, BigSPN can preserve the inter-class
divergence of subordinate categories, and surpasses the compared methods by 5.8%, 6.8%, and 4.5%
for CUB-HGTL, AWA2-HGTL, and Flowers-HGTL, respectively. This proves that the proposed
BigSPN is an effective baseline for the new HGTL task.

By evaluating different models on three datasets, we find that the knowledge of basic-categories can
be effectively transferred to the sub-categories, with the help of semantic knowledge. For example,
BigSPN obtains 52.0% Rank-1 accuracy on AWA2-HGTL dataset. This shows that the HGTL is a
feasible task in the real world and has not yet been studied by the existing researchers. In summary,
we can conclude that: a) the Hierarchical Granularity Transfer Learning is a feasible, practical, and
challenging task; and b) the BigSPN is an effective framework for Hierarchical Granularity Transfer
Learning.
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4.3 Ablation Studies

Effects of part-based visual encoder. One of the main differences between BigSPN and related
works is the newly learned part-based visual decoder for subordinate categories. We thus analyze its
effect and show the results in Table 3, by using different visual encoders for the two category domains.
When replacing the transferred fv(·)† with the newly learned fv(·), the sub Rank-1 accuracy is
improved from 24.4% to 30.1%. It proves that there exists a visual distribution difference between
two granularities, and using a single shared visual encoder cannot model the granularity gap. Then,
we replace the simple 1-layer fv(·) with the attentive visual encoder fpv(·), and find that the sub
Rank-1 accuracy is further improved from 30.1% to 32.8%. This shows that the proposed part-based
visual decoder fpv(·) can capture more subtle visual clues than the simple fv(·) for the sub-categories.
Finally, when we apply fpv(·) to both domains, no obvious gain is obtained for the sub-domain. In
summary, the part-based visual encoder plays a key component in BigSPN.

Effects of K in fpv(·). In terms of K, we summarize the evaluation results in Fig. 5 (a) and (b). It
can be seen that increasing K at the beginning can boost Rank-1 accuracy, and setting K = 4 obtains
a satisfied result with fewer attentions. Besides, we observe that using the bilinear pooling in Eq. (4)
obtains better performance than simply concatenating the features of zatt

k . Some generated attention
map from Rk(·) are visualized in supplementary material.

Effects of λ. Further, we evaluate the effects of Lse in Eq. (8), and report the results in Fig. 5 (c).
When λ is increased from 0 to 1, the performance is improved obviously. Thus, the subordinate
entropy loss Lse can effectively realign the new fpv(x) and corresponding as, without sub-level
annotations. When λ > 10, the performance drops slightly. Consequently, we find λ = 1 is suitable
for most cases.

Feature distributions from fv(·) and fpv(·). Finally, we give the feature distributions of both basic
and subordinate categories that are obtained from fv(·) and fpv(·). As shown in Fig. 6 (a), the
basic-category samples can be well clustered by fv(·) in two datasets. Moreover, we select four
feature clusters of Fig. 6 (a) and further color them according to their subordinate categories in Fig. 6
(b). It can be seen that the features from fv(·) cannot be separated apart in the sub-category domain.
By retraining the new part-based visual encoder fpv(·), the features have much clearer decision
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Figure 7: Some results obtained from fpv(·). We randomly select two attention maps generated by
Rk(·) for each image.

boundaries than that from fv(·). This proves the effectiveness of dual visual encoder architecture of
BigSPN, as well as the developed part-based visual encoder and subordinate entropy loss.

Visualized Attention Maps As illustrated in the main text, the fpv(·) can localize informative local
part regions to generate discriminative features. Here, we visualize some generated attention maps
for fpv(·) in Figure 7. From the results, by leveraging the attention mechanism, fpv(·) can effectively
localize the important regions. Specifically, different attention parts can localize complementary
regions, e.g., head and wing, which proved subtle visual clues to distinguish intra-class difference.

5 Conclusion

In this paper, we introduce a new task, named Hierarchical Granularity Transfer Learning (HGTL),
to recognize the sub(ordinate)-level categories with only basic-level image annotations and extra
semantic descriptions of hierarchical categories. Compared with existing tasks, HGTL enables a
model to generalize to different granularities without subordinate annotations. Furthermore, we
propose a novel framework, named Bi-granularity Semantic Preserving Network, that constructs two
separate visual encoders to capture specific distributions for respective basic- and sub-categories.
Experiments on three benchmarks prove that the proposed HGTL is a feasible and challenging task,
and the BigSPN is an effective framework to transfer knowledge between two granularities.

6 Broader Impact

This paper proposes a new visual recognition task, which is general to various recognition scenarios.
The positive impacts of this paper contain that: a) the proposed methods enable the data annotators
to only label the basic-level images, instead of fine-grained labels, which significantly reduce the
annotation difficulty and cost; and b) the proposed model is light and can be easily extended to most
existing backbones, which costs little extra computing resource. The negative impacts contain that: a)
the proposed HGTL requires abundant semantic annotations for the hierarchical categories, which
may be not easy to obtain; and b) the subordinate recognition performance is not so good yet, which
should be further improved to apply to practice scenarios.
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