
8 Supplementary material

8.1 Expected free energy derivation

Here, we provide the steps needed to derive Eq. (8) from Eq. (7). The term (7b) can be re-written as:

EQ̃
[

logQ(sτ |π)− logQ(sτ |oτ , π)
]

=

= EQ(θ|π)Q(sτ |θ,π)Q(oτ |sτ ,θ,π)
[

logQ(sτ |π)− logQ(sτ |oτ , π)
]

= EQ(θ|π)

[
EQ(sτ |θ,π) logQ(sτ |π)− EQ(sτ ,oτ |θ,π) logQ(sτ |oτ , π)

]
= EQ(θ|π)

[
EQ(oτ |θ,π)H(sτ |oτ , π)−H(sτ |π)

]
,

where we have only used the definition Q̃ = Q(oτ , sτ , θ|π), and the definition of the standard (and
conditional) Shannon entropy.

Next, the term (7c) can be re-written as:

EQ̃
[

logQ(θ|sτ , π)− logQ(θ|sτ , oτ , π)
]

=

= EQ(sτ ,θ,oτ |π)
[

logQ(oτ |sτ , π)− logQ(oτ |sτ , θ, π)
]

= EQ(sτ |π)Q(oτ |sτ ,π) logQ(oτ |sτ , π)

− EQ(θ|π)Q(sτ |θ,π)Q(oτ |sτ ,θπ) logQ(oτ |sτ , θ, π)

= EQ(θ|π)Q(sτ |θ,π)H(oτ |sτ , θ, π)− EQ(sτ |π)H(oτ |sτ , π) ,

where the first equality is obtained via a normal Bayes inversion, and the second via the factorization
of Q̃. These two terms can be directly combined to obtain Eq. (8). With this expression at hand,
the only problem that remains is estimating these quantities from the outputs of all neural networks
involved. We provide some information here, in addition to that in Sec. 3.1.

For Eq. (8b), H(sτ |π) is estimated sampling from the transition network, and H(sτ |oτ , π) from
the encoder network (both parameterised with Gaussians, so entropies can be calculated from log-
variances). For the first term in Eq. (8c) we sample several θ from the MC-dropouts and several
sτ from the transition network; then average the entropies H(oτ |sτ , θ, π) (which are closed-form
since oτ is Bernoulli-distributed) over the (θ, sτ) samples. For the second term, we fix the θ and
sample multiple sτ (so that, effectively, p(o|s) =

∑
θ p(o|s, θ)p(θ) is approximated with a single MC

sample) and repeat the procedure. Although noisy, this estimator was found to be fast and suitable for
training. Finally, note that in both cases the quantities computed correspond to a difference between
the entropy of the average and the average of the entropies – which is the mutual information, a
known part of the EFE.

15

8.2 Glossary of terms and notation

Notation Definition
S Set of all possible hidden states
st Hidden state at time t, random variable over S
s1:t Sequence of hidden states, s1, .., st, random vari-

able over St
O Set of all possible observations
ot Observation at time t, random variable over O
o1:t Sequence of observations, o1, .., ot, random vari-

able over Ot
T Number of time steps in episode, positive integer
U Set of all possible actions
at Action at time t, random variable over U
Π Set of all allowable policies; i.e., sequences of

actions, subset of U t
π Policy as defined by (a1, a2, ..., aT), random vari-

able over Π
Pθs(st|st−1, at−1) Transition function; parameterized by θs
Pθo(ot|st) Likelihood/observation function; parameterized by

θo
Pθo,s(s1:T , a1:T−1, o1:T) Generative model; factorized form P (a1)P (s1)∏T

t=2 Pθs(st|st−1, at−1)
∏T
t=1 Pθo(ot|st)

Qφa(at) Approximate posterior over actions; parameterized
by φa. Dependency on st has been dropped fol-
lowing standard variational inference notation.

Qφs(st) Approximate posterior over hidden states; parame-
terized by φs. Dependency on ot has been dropped
following standard variational inference notation.

Qφ(s1:T , a1:T−1) Approximate posterior over actions and
hidden states with mean-field assumptions;∏T
t=1Qφs(st)Qφa(at)

− logPθ(ot) Negative log-likelihood; surprisal at time t
EQφ(st,at)

[
logQφ(st, at)− logPθ(ot, st, at)

]
Variational free energy or evidence lower bound at
time t. This can be decomposed to Eq. (5) using
the appropriate factorization.

Qφ(s1:T , a1:T−1, o1:T) Approximate posterior with mean-field assump-
tions;

∏T
t=1Qφs(st)Qφa(at)Pθo(ot|st)

EP (oτ |sτ ,θ)EQφ(sτ ,θ|π)
[

logQφ(sτ , θ|π) Expected free energy, defined on Π, for some
− logP (oτ , sτ , θ|π)

]
future time–point τ . This is derived by taking
an additional expectation P (oτ |sτ , θ) where θ
denotes random variable over learnt distribution
Pθ(.|π)

σ Softmax function or normalized exponential
P (π) Posterior distribution about policies via softmax

function of the summed (negative) expected free
energy over time; σ

(
−
∑
τ>tG(π, τ)

)
P (at) Posterior distribution about actions via summed

probability of all policies that begin with a particu-
lar action, at

Table 1: Glossary of terms and notation

16

8.3 Training Procedure

The model presented here was implemented in Python and the library TensorFlow 2.0. We initialized
3 different ADAM optimizers, which we used in parallel, to allow learning parameters with different
rates. The networks Qφs , Pθo were optimized using an initial learning rate of 10−3 and, as a loss
function, the first two terms of Eq. (4). In experiments where regularization was used, the loss
function used by this optimizer was adjusted to

Lφs,θo =− EQ(st)

[
logP (ot|st; θo)

]
+ γDKL

[
Qφs(st) ‖ P (st|st−1, at−1; θs)

]
+ (1− γ)DKL

[
Qφs(st) ‖ N(0, 1)

]
,

(11)

where γ is a hyper parameter, starting with value 0 and gradually increasing to 0.8. In our experiments,
we found that the effect of regularization is only to improve the speed of convergence and not the
behavior of the agent and, thus, it can be safely omitted.

The parameters of the network Pθs were optimized using a rate of 10−4 and only the second term of
Eq. (4) as a loss. Finally, the parameters of Qφa were optimized with a learning rate of 10−4 and
only the final term of Eq. (4) as a loss. For all presented experiments and learning curves, batch size
was set to 50. A learning iteration is defined as 1000 optimization steps with new data generated from
the corresponding environment.

In order to learn to plan further into the future, the agents were trained to map transitions every 5
simulation time-steps in dynamic dSprites and 3 simulation time-steps in Animal-AI. Finally, the
runtime of the results presented here is as follows. For the agents in the dynamic dSprites environment,
training of the final version of the agents took approximately 26 hours per version (on-policy, 700
learning iterations) using an NVIDIA Titan RTX GPU. Producing the learning and performance
curves in Fig. 3, took 10 hours per agent when the 1-step and habitual strategies were employed
and approximately 4 days when the full MCTS planner was used (Fig. 3A). For the Animal-AI
environment, off-policy training took approximately 9 hours per agent, on-policy training took 8 days
and, the results presented in Fig. 4 took approximately 4 days, using an NVIDIA GeForce GTX 1660
super GPU (CPU: i7-4790k, RAM: 16GB DDR3).

8.4 Training algorithm

The following algorithm is described for a single environment (batch = 1), to maintain notation
consistency with the main text, but can also be applied when batch > 1. This algorithm is exactly
the same for both Dynamic dSprites and Animal-AI environments. Finally, for either off-policy or
off-line training, the action applied to the environment (line 9) is drawn from a different policy or
loaded from a pre-recorded data-set respectively.

Algorithm 1 DAIMC on-policy training
1: for t = 1, 2, . . . ,max iterations do
2: Randomize environment and sample a new observation õt.
3: Run planner and compute prior policy P (at).
4: Compute Qφs(st) using õt.
5: Compute Qφa(at) using a sampled state s̃t ∼ Qφs(st).
6: Compute Dt = DKL

[
Qφa(at) ‖ P (at)

]
.

7: Apply a gradient step on φa using Dt as loss.
8: Compute ωt+1 from Eq. (10) using Dt.
9: Apply action ãt ∼ P (at) to the environment and sample a new observation õt+1.

10: Compute µ, σ from Pθs(st+1|s̃t, ãt).
11: Compute Qφs(st+1) using õt+1.
12: Apply a gradient step on θs using DKL

[
Qφs(st+1) ‖ N (µ, σ2/ωt)

]
.

13: Apply a gradient step on φs, θo using −EQ(st+1)

[
logPθo(ot+1|st+1)

]
+

DKL
[
Qφs(st+1) ‖ N (µ̃, σ̃2/ωt)

]
.

14: end for

17

8.5 Model parameters

In both simulated environments, the network structure used was almost identical, consisting of
convolutional, deconvolutional, fully-connected and dropout layers (Fig. 6). In both cases, the
dimensionality of the latent space s was 10. For the top-down attention mechanism, the parameters
used were α = 2, b = 0.5, c = 0.1 and d = 5 for the Animal-AI environment and α = 1, b = 25, c =
5 and d = 1.5 for dynamic dSprites. The action space was |A| = 3 for Animal-AI and |A| = 4 for
dynamic dSprites. Finally, with respect to the planner, we set cexplore = 1 in both cases, Tdec = 0.8
(when another value is not specifically mentioned), the depth of MCTS simulation rollouts was set
to 3, while the maximum number of MCTS loops was set to 300 for dynamic dSprites and 100 for
Animal-AI.

size: 31x31x32

kernel: 3

strides: (2, 2)

size: 15x15x32

kernel: 3

strides: (2, 2)

size: 31x31x32

kernel: 3

strides: (2, 2)

size: 7x7x64

kernel: 3

strides: (2, 2)

size: 3x3x64

kernel: 3

strides: (2, 2)

size: 256

R
e
L
U

R
e
L
U

R
e
L
U

R
e
L
U

R
e
L
U

R
e
L
U

rate: 0.5

size: 256

R
e
L
U

rate: 0.5

size: 256

R
e
L
U

rate: 0.5

size: 10 + 10

Conv2D

DeConv2D

Fully-connected

Dropout

size: 16x16x64

kernel: 3

strides: (2, 2)

size: 32x32x64

kernel: 3

strides: (2, 2)

size: 64x64x32

kernel: 3

strides: (2, 2)

size: 64x64x1

kernel: 3

strides: (2, 2)

size: 256
R
e
L
U

R
e
L
U

R
e
L
U

R
e
L
U

rate: 0.5

size: 256

R
e
L
U

rate: 0.5

size: 256

R
e
L
U

rate: 0.5

size: 512

R
e
L
U

rate: 0.5

size: 512

R
e
L
U

rate: 0.5

size: 512
R
e
L
U

rate: 0.5

size: 10+10

size: 128

R
e
L
U

size: 128

size: 4

R
e
L
U

size: 256

R
e
L
U

rate: 0.5

Q(s): P(o|s): P(s|s,a): Q(a|s):

input: 10input: 10+4input: 64x64x1 input: 10

Figure 6: Neural network parameters used for the dynamic dSprites experiments. For the Animal-AI
experiments, the only differences are: i) the input layer of the network used for Qφs(s) and output
layer for Pθo(ot|st) have shape (32, 32, 3), ii) the input layer of Pθs(st+1|st, at) has shape (10 + 3)
and iii) the output layer of Qφa(at) has a shape of (3), corresponding to the three actions forward,
left and right.

18

8.6 Examples of agent plans

A) Learning iteration: 2

B) Learning iteration: 700

Figure 7: Examples of consecutive plans in the dynamic dSprites environment during a single
experiment.

Figure 8: Examples of plans in Animal-AI environment. Examples were picked randomly.

19

8.7 Examples of traversals

si
si

C
orrelation

Fr
eq
u
en
cy

Figure 9: Latent space traversals for the full active inference agent optimized in the dynamic dSprites
environment. Histograms represent distribution of values for 1000 random observations. The graphs
on the right column represent correlation between each dimension of s and the 6 ground truth features
of the environment. This includes the 5 features of the dSprites dataset and reward, encoded in the
top pixels shown in s9.

20

