
Appendices
A Proof of Upper Bound

In the proofs below we drop the superscript (n) for simplicity.

Proof of Lemma 2. Similar to Lemma 4.2 of [Jin et al., 2018], we can write down a recursive for-
mula for both (Qkh −Q

πk
h )(s, a) and (Qkh −Q

πk
h )(s, a), and perform a subtraction, which gives

[(Qkh −Q
πk
h )− (Qkh −Q

πk
h )](s, a) (8)

= α0
t

(
Qπkh −Q

πk
h

)
(s, a) (9)

+

t∑
i=1

αit

[
(V kih+1 − V

πk
h+1)− (V kih+1 − V

πk
h+1)

]
(skih+1) (10)

+

t∑
i=1

αit

[
[P̂ki − Ph][V πkh+1 − V

πk
h+1](s, a) + (rkih −E [rh] (skih , s

ki
h ))
]

(11)

+

t∑
i=1

αitbi. (12)

We now show that [(Qkh −Q
πk
h )− (Qkh −Q

πk
h )](s, a) ≥ 0 by induction on h = H,H − 1, ..., 1 and

k = 1, ...,K. It is easy to see that the first term of right-hand side α0
t

(
Qπkh −Q

πk
h

)
(s, a) ≥ 0 since

Qπkh = 0. For the second term, consider two cases:

(1) If maxaQ
ki
h+1(skih+1, a) ≥ H , then

[
(V kih+1 − V

πk
h+1)− (V kih+1 − V

πk
h+1)

]
(skih+1) = H−(V kih+1−

V πkh+1)(skih+1) ≥ 0.

(2) If maxaQ
ki
h+1(skih+1, a) < H , then

(V kih+1 − V
πki
h+1)(skih+1) = max

a

[
Qkih+1(skih+1, a)−Qπkih+1(skih+1, a)

]
(13)

≥ max
a

[
Qkih+1(skih+1, a)−Qπkih+1(skih+1, a)

]
(14)

≥ Qkih+1(skih+1, πki(s
ki
h+1))−Qπkih+1(skih+1, πki(s

ki
h+1)) (15)

= (V kih+1 − V
πki
h+1)(skih+1) (16)

where the first inequality is by the induction hypothesis.

Similar to the proof of Lemma 4.3 in [Jin et al., 2018], observe that (1 [ki ≤ K] ·[
[P̂ki − Ph][V πkh+1 − V

πk
h+1](s, a) + (rkih −E [rh] (skih , s

ki
h ))
]
)τi=1 is a martingale difference se-

quence. By Azuma-Hoeffding, we have that with probability 1− p/(SAHN):

∀τ ∈ [K],

∣∣∣∣∣
τ∑
i=1

αiτ (1 [ki ≤ K] ·
[
[P̂ki − Ph][V πkh+1 − V

πk
h+1](s, a) + (rkih −E [rh] (skih , s

ki
h ))
]
)

∣∣∣∣∣
≤ c′(H + 1)

2

√√√√ τ∑
i=1

(αiτ )2 · (logN + ι) ≤ c
√
H3(logN + ι)

τ
,

for some absolute constant c. Using a union bound, we see that with at least probability 1− p, the
following holds simultaneously for all (s, a, h, k, n) ∈ S ×A× [H]× [K]× [N ]:∣∣∣∣∣

t∑
i=1

αit(1 [ki ≤ K] · [P̂ki − Ph][V πkh+1 − V
πk
h+1](s, a))

∣∣∣∣∣ ≤ c
√
H3(logN + ι)

t
(17)
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Finally, since we choose bt = c
√

H3(logN+ι)
t , we have that the last two terms of [(Qkh − Q

πk
h ) −

(Qkh − Qπkh )](s, a) also adds up at least zero. Putting everything together, we have shown that
with probability at least 1 − p, [(Qkh − Qπkh ) − (Qkh − Qπkh )](s, a) > 0 for all (s, a, h, k, n) ∈
S ×A× [H]× [K]× [N ]. This concludes the proof.

Given Lemma 2, the proof of Theorem 1 follows from the proof sketch in the main text.

B Proof of Additional Properties of UCBZERO

We first give two lemmas:
Lemma 7. For any (s, a, h, k) ∈ S ×A× [H]× [K], let t = Nk

h (s, a), then we have

V kh(s) ≥ min(H, bt) (18)

Proof. We have, for any (s, a, h, k) ∈ S ×A× [H]× [K],

Qkh(s, a) = α0
tH +

t∑
i=1

αit

[
V kih+1(xkih+1) + bi

]
(19)

≥
t∑
i=1

αitbi ≥
t∑
i=1

αitbt = bt. (20)

Thus, V kh(s) ≥ min(H,maxaQ
k
h(s, a)) ≥ min(H, bt).

Lemma 8. With probability at least 1−p, for any (s, a, h, k) ∈ S×A× [H]× [K], let t = Nk
h (s, a),

then we have

Qkh(s, a) ≥
t∑
i=1

αit[PhV
ki
h+1](s, a) (21)

Proof. We have, for any (s, a, h, k) ∈ S ×A× [H]× [K],

Qkh(s, a) = α0
tH +

t∑
i=1

αit

[
V kih+1(xkih+1) + bi

]
(22)

≥
t∑
i=1

αit

[
PhV kih+1(s, a) + (P̂kih − Ph)V kih+1(s, a) + bi

]
(23)

w.p. 1-p
≥

t∑
i=1

αit

[
PhV kih+1(s, a)

]
(24)

The last inequality is by the same martingale bound as in the proof of Lemma 2.

Now, we are ready to prove Theorem 3.

Proof of Theorem 3: Let h∗, s∗, a∗ be given, and denote t∗ = NK
h∗(s

∗, a∗), b∗t = c
√
H3ι/t∗. Then,

by Lemma 7, we have

V Kh∗(s
∗, a∗) ≥ min(H, b∗t ) (25)

Now, by Lemma 8, we have that for any (s, a),

QKh∗−1(s, a) ≥
t∑
i=1

αit[Ph∗−1V
ki
h∗ ](s, a) (26)

≥
t∑
i=1

αitP (s∗|s, a) min(H, bi) (27)

= P (s∗|s, a) min(H, b∗t ) (28)
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Thus, we have

V h∗−1(s) = max
a

Qh∗−1(s, a) (29)

≥ max
a

P (s∗|s, a) min(H, b∗t ) (30)

= δh∗−1,h∗(s, s
∗) min(H, b∗t ) (31)

We now show by induction that for all h < h∗,

V h(s) ≥ δh,h∗(s, s∗) min(H, b∗t ) (32)

We again use Lemma 8 to get

Qh(s, a) ≥
t∑
i=1

αit[PhV
ki
h+1](s, a) (33)

≥
t∑
i=1

αit[
∑
s′∈S

P (s′|s, a)V kih+1(s′)] (34)

≥
t∑
i=1

αit[
∑
s′∈S

P (s′|s, a)δh+1,h∗(s
′, s∗) min(H, b∗t )] (35)

=
∑
s′∈S

P (s′|s, a)δh+1,h∗(s
′, s∗) min(H, b∗t ) (36)

Then,

V h(s) = max
a

∑
s′∈S

P (s′|s, a)δh+1,h∗(s
′, s∗) min(H, b∗t ) (37)

= δh,h∗(s
′, s∗) min(H, b∗t ), (38)

where in the last equality, we use the Bellman optimality equation w.r.t. δ, i.e.
δh,h∗(s

′, s∗) = maxa
∑
s′∈S P (s′|s, a)δh+1,h∗(s

′, s∗). Therefore, we have established that
V 1(s) ≥ δ1,h∗(s, s∗) min(H, b∗t ). This implies that

K∑
k=1

V k1(s1) ≥ Kδ(s∗) min(H, b∗t ) (39)

Furthermore, we know from the proof of Theorem 1 that

K∑
k=1

V k1(s1) ≤ O(
√
H5SAKι) (40)

When K ≥ Ω
(
H3SAι
δ(s∗)

)
,
∑K
k=1 V

k
1(s1) ≤ Kδ(s∗)H . Therefore, we have

Kδ(s∗)b∗t = Kδ(s∗)c
√
H3ι/t∗ ≤ O(

√
H5SAKι) (41)

This gives us

t∗ ≥ O(
Kδ(s∗)2

H2SA
). (42)

This holds for any s∗, a∗, h∗, establishing the results.

Proof of Theorem 4. First, notice that for any given rh(s, a, s′) out of a set of size HS2A, by the
proof of Theorem 1, we have

K∑
k=1

(V k1 − V ∗1 )(s1) ≤
K∑
k=1

V k1 ≤ O
(√

H5SAιK
)

(43)

13



Define Ṽ K1 = 1
K

∑K
k=1 V

k
1 (s1), then

0 ≤ Ṽ K1 − V ∗1 (s1) ≤ O

(√
H5SAι

K

)
≤ ε. (44)

Now, let (h∗, s∗, a∗, s′∗) be given. Define reward functions R(1), R(2) as

R
(1)
h (s, a, s′) =

{
1, if h = h∗, s = s∗, a = a∗, s′ = s′∗

0, otherwise
(45)

R
(2)
h (s, a, s′) =

{
1, if h = h∗, s = s∗

0, otherwise
(46)

Then, we observe that the corresponding V ∗(1)1 = δh∗(s
∗)Ph∗(s

′∗|s∗, a∗) and V ∗(2)1 = δh∗(s
∗).

Now, define

P̂ (s′∗|s∗, a∗) =
Ṽ
K(1)
1

Ṽ
K(2)
1

(47)

Next, we show that ‖P̂ (s′∗|s∗, a∗)− P (s′∗|s∗, a∗)‖ is small. In particular,

P̂ (s′∗|s∗, a∗) =
Ṽ
K(1)
1

Ṽ
K(2)
1

(48)

≤ δh∗(s
∗)Ph∗(s

′∗|s∗, a∗) + ε

δh∗(s∗)
(49)

= P (s′∗|s∗, a∗) +
ε

δh∗(s∗)
, (50)

P̂ (s′∗|s∗, a∗) =
Ṽ
K(1)
1

Ṽ
K(2)
1

(51)

≥ δh∗(s
∗)Ph∗(s

′∗|s∗, a∗)
δh∗(s∗) + ε

(52)

≥ δh∗(s
∗)Ph∗(s

′∗|s∗, a∗)− ε
δh∗(s∗)

(53)

= P (s′∗|s∗, a∗)− ε

δh∗(s∗)
. (54)

A union bound on all (h∗, s∗, a∗, s′∗) ∈ [H] × S × A × S completes the proof. Notice that the
sample complexity only changes by constant factor as log(N) = log(HS2A) ≤ 2 log(HSA).

C Proof of Lower Bound

We based our construction on the classic lower-bound construction for multi-armed bandits. For a
detailed introduction of the problem setting, please refer to [Mannor and Tsitsiklis, 2004]. We first
introduce some bandit notation: let n be the number of arms, p ∈ [0, 1]n represent the parameters
of the Bernoulli distribution of rewards associated with each arm. We let T` be the total number of
times that arm ` is pulled, and T =

∑n
`=1 T` be the total number of arm pulls. We also let I be the

arm that is selected at the end of the exploration phase.
Lemma 9. There exists a p ∈ [0, 1]n, n ≥ 2 such that for any fixed number of episodes K, there
exists N = O(2K) reward functions, so that with probability at least 0.5, no RL algorithm can learn
an ε-optimal policy with ε ≤ 0.08 for at least one reward function.

Proof. We construct a bandit with two arms ` = 1, 2. We consider two reward functions. The first
reward function is p with p1 = 0.1, p2 = 0 and the second reward function is q with q1 = 0.1,
q2 = Bernoulli(0.5). Thus, it is easy to see that the optimal arm corresponding to p and q are ` = 1
and ` = 2 respectively. We assume among the N reward functions we need to learn, N − 1 of them
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are q and only one is p. Next, we show that no learner is able to distinguish whether the instantiated
rewards are from p or q.

Let T2 be the number of episodes where arm 2 is taken in the K instantiated rewards. Then for each
of the N −1 reward function q, it has probability 0.5T2 to generate the same instantiated rewards with
r1. Note that 0.5T2 ≥ 0.5K , so the probability that at least one of the q generate the same instantiated
rewards as p is at least

1− (1− 0.5K)N−1 ≥ 1− e−0.5
K(N−1) (55)

Let N = d1 + 2K ln 2e, then the probability that the rewards can be generated by one of the q is at
least 0.5. Given such a reward configuration, let π̂ = (x, 1 − x) be the learned (stochastic) policy
where x is the probability of choosing arm 1. Then for reward function q, the optimality gap is

V ∗2 − V2(π̂) = 0.5− 0.1x− (1− x) ∗ 0.5 = 0.4x, (56)

while for reward function r1, the optimality gap is

V ∗1 − V1(π̂) = 0.1− 0.1x. (57)

One can see that regardless of p1, one of the above two gaps will be large, and the minimum of
max(V ∗2 − V2(π̂), V ∗1 − V1(π̂)) is achieved when p1 = 0.2, and the minimum value is 0.08.

Therefore with probability at least 0.5, no RL algorithm can learn ε-optimal policy with ε = 0.08.

Theorem 10. There exist some positive constant c1, c2, ε0, δ0, such that for every n ≥ 2, ε ∈ (0, ε0),
and δ ∈ (0, δ0), and for every (ε, δ)-correct policy on N tasks, there exists some p ∈ [0, 1]n such that

Ep [T ] ≥ c1
n

ε2
log

c2N

δ
(58)

Proof. The proof largely mimic the original proof of Theorem 1 in [Mannor and Tsitsiklis, 2004],
with the distinction in handling N tasks instead of 1. Consider a bandit problem with n+ 1 arms.
We also consider a finite set of n+ 1 possible reward functions p, which we refer to as “hypotheses”.
Under any one of the hypothesis, arm 0 has a Bernoulli reward with p0 = (1 + ε)/2. Under one
hypothesis, denoted H0, all other arm has pi = 1/2, which makes arm 0 the best arm. Furthermore,
for ` = 1, ..., n, there is a hypothesis

H` : p0 =
1 + ε

2
, p` =

1

2
+ ε, pi =

1

2
, for i 6= 0, `. (59)

which makes arm ` the best arm. We define ε0 = 1/8 and δ0 = e−4/8. From now on, we fix
ε ∈ (0, ε0), δ ∈ (0, δ0), N ≥ 1 and a policy, which we assume to be (ε/2, δ)-correct on N rewards.
If H0 is true, the policy must have a probability at least 1− δ of eventually stopping and selecting
arm 0. If H` is true, for some ` 6= 0, the policy must have a probability at least 1− δ of eventually
stopping and selecting arm `. These further hold simultaneously for N hypotheses. We denote PN` (·)
as the probability of some event that happens simultaneously under N H` hypotheses.

We define t∗ by

t∗ =
1

cε2
log

N

8δ
=

1

cε2
log

N

θ
(60)

where θ = 8δ and c is an absolute constant we will specify later. Note that θ < e−4 and ε ≤ 1/4.

We assume by contradtion that E [T1] ≤ t∗. We will eventually show that under this assumption, the
probability of selecting H0 under one of N H1 exceeds δ, thus violates (ε/2, δ)-correctness.

We now introduce some special events A, B and C. We define

A = {T1 ≤ 4t∗} (61)
B = {I = 0, i.e. the policy eventually pick arm 0} (62)

C =

{
max

1≤t≤4t∗
|Kt −

1

2
t| <

√
t∗ log(N/θ)

}
(63)

where Kt is the number of getting reward 1 if the first arm is pulled t times. Similar to the original
proof [Mannor and Tsitsiklis, 2004], we have the following lemmas.
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Lemma 11. PN0 (A) = P0(A) > 3/4, where PN0 (C) denotes the probability of event B under all of
N hypothesis H0.

This is directly due to the definition of A that is independent of rewards and the use of Markov
inequality.

Lemma 12. PN0 (B) > 3/4.

This is due to δ < e−4/8 < 1/4.

Lemma 13. PN0 (C) > 3/4.

This is due to the observation that Kt− t/2 is a martingale, and by applying Kolmogorov’s inequality.

Lemma 14. If 0 ≤ x ≤ 1 and y ≥ 0, then

(1− x)y ≥ e−dxy (64)

where d = 1.78

This is straightforward arithmetics. Please refer to the original proof in [Mannor and Tsitsiklis, 2004]
for the detailed proofs of the lemmas. Let S = A∩B ∩C, then we have PN0 (S) > 1/4. Now we are
ready to prove our main results. Let W be the history of the process (the number of arm pulls for each
arm in the exploration phase, and the sampled rewards in the policy-optimization phase). We define
L`(W ) to be the likelihood of a history W under reward function `. We denote K be a shorthand
notation for KT1

, the number of reward 1 instantiated on arm ` = 1. Observe that, given the history
up to time t− 1, the arm choice at time t has the same probability distribution under either hypothesis
H0 and H1; similarly, the arm reward at time t has the same probability distribution, under either
hypothesis, unless the chosen arm was arm 1. For this reason, the likelihood ratio L1(W )/L0(W ) is
given by

L1(W )

L0(W )
=

( 1
2 + ε)K( 1

2 − ε)
T1−K

( 1
2 )T1

(65)

= (1− 4ε2)K(1− 2ε)T1−2K (66)

Let TN1 (W ) be the likelihood that W appears under one of N hypothese H1. Since the instantiation
of rewards under each hypothesis is completely independent from one another, we have

LN1 (W ) = 1− (1− L1(W ))N (67)

≥ 1− 1

1 + L1(W )N
(68)

=
L1(W )N

1 + L1(W )N
(69)

By lemma 9, we have that in order for the policy to be ε, δ-correct, T1 ≥ log2(N). Thus, we have

L1(W ) ≤ (
1

2
+ ε)K(

1

2
− ε)T1−K (70)

≤ (
1

2
)T1 (71)

≤ 1

N
(72)

We then have

LN1 (W )

L0(W )
=

L1(W )N

1 + L1(W )N

1

L0(W )
(73)

≥ N

2

L1(W )

L0(W )
(74)

=
N

2
(1− 4ε2)K(1− 2ε)T1−2K (75)
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If event S occurred, then A occurred, and we have K ≤ T1 ≤ 4t∗, so that

(1− 4ε2)K ≥ (1− 4ε2)4t
∗

= (1− 4ε2)
1
cε2

log Nθ (76)

≥ e−(16d/c) log(N/θ) (77)

= (θ/N)16d/c (78)

We have used here Lemma 14, which applies because 4ε2 < 4/42 < 1/
√

2. Similarly, if event S has
occurred, then A ∩ C has occurred, which implies

T1 −K ≤ 2
√
t∗ log(N/θ) = (2/ε

√
c) log(N/θ). (79)

Therefore,

(1− 2ε)T1−2K ≥ (1− 2ε)(2/ε
√
c) log(N/θ) (80)

≥ e−(4d/
√
c log(N/θ)) (81)

= (θ/N)4d/
√
c (82)

Substituting the above into the main equation, we obtain

LN1 (W )

L0(W )
≥ N

2
(θ/N)(16d/c)+4d/

√
c (83)

By picking c large enough (c = 100 suffices), we obtain that L
N
1 (W )
L0(W ) ≥ θ/2 ≥ 4δ whenever the event

S occurs. More precisely, we have

LN1 (W )

L0(W )
1 [S] ≥ 4δ1 [S] (84)

where 1 [S] iss the indicator function of the event S. Then,

PN1 (B) ≥ PN1 (S) = EN1 [1 [S]] = EN0 [
LN1 (W )

L0(W )
1 [S]] ≥ EN0 [4δ1 [S]] = 4δPN0 (S) > δ. (85)

where we used the fact that PN0 (S) > 1/4. This contradict the assumption that the policy is
(ε/2, δ)-correct. Similarly, we must have E [T`] > t∗, for all arms ` > 0. Therefore, if we have an
(ε, δ)-correct policy, we must have E [T ] > (n/(4cε2)) log(N/8δ), which is of the desired form.

Now we are ready to prove theorem 5.

Proof of theorem 5. We consider an MDP M where the transition is defined as Ph(s′|s, a) = 1/S
for all (h, s, a, s′) and is known to the learner. Since the action has no control over the next-
state, this is equivalent to a collection of SH multi-armed bandits. Due to the uniform transition,
Pπh (s) = 1/S for any π, s, h, and so finding the ε-optimal policy amounts to finding an εs,h-optimal
policy for each bandit (s, h), such that

∑
s,h εs,h = Sε. Theorem 10 implies that it takes at least

Ω(A log(N/p)/ε2s,h) visits to a bandit s, h to find an εs,h-optimal action simultaneously for each
of N reward functions with probability at least 1 − p. It follows that the total number of samples
required Ω(

∑
s,hA log(N/p)/ε2s,h) is minimized when εs,h = ε/H for all (s, h), which gives a total

of at least Ω(H3SA log(N/p)/ε2)) samples, which translates to at least Ω(H2SA log(N/p)/ε2))
episodes.

D Proof of N -independent upper bound of UCBZERO in the Reward-free
Setting

Proof of Theorem 6. Fixing the transition kernel, we consider dividing all possible MDPs into a
set of equivalence classes based on different reward patterns. Specifically, given any M ∈ Z+, we
split the support of reward [0, 1] into M segments, Ii = [ i−1M , i

M ], ∀1 ≤ i ≤ M . For any MDP,
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the reward function rh(s, a) depends only on state s and action a, and for each (s, a) pair, the
corresponding reward must lie in one of the M segments, thus there are M |S|×|A| different patterns
of reward functions for each step h, characterized by a matrix Φh ∈ [M ]|S|×|A|, where each entry
Φh(i, j) ∈ [M ] is the segment that rh(i, j) lies in. Given that we have H steps, in total we will
have M |S|×|A|×H different reward patterns, denoted as Φ =

∏H
h=1 Φh. For each Φ, we next show

that learning any single reward function r ∈ Φ is enough to cover all other reward functions in Φ.
Specifically, assume we have learned a near-optimal policy πr that satisfies

V ∗r (s1)− V πrr (s1) < ε, (86)

where subscript r means the value function under reward function r and V πrr is the value function of
the learned policy. Then for any other r′ ∈ Φ different from r, we have

V ∗r′ − V
πr
r′ = V ∗r′ − V ∗r + V ∗r − V πrr + V πrr − V

πr
r′ . (87)

Note that

V ∗r′ − V ∗r = max
π

Eπ

[
H∑
h=1

r′h(sh, ah)

]
−max

π
Eπ

[
H∑
h=1

rh(sh, ah)

]

≤ max
π

Eπ

[
H∑
h=1

r′h(sh, ah)− rh(sh, ah)

]
≤ H

M
,

(88)

where the last inequality is due to r′h and rh lie in the same segment for all h. Same result holds for
V πrr −V

πr
r′ . LetM = H

ε . Then plug (88) back to (87), and also remember that V ∗r (s1)−V πrr (s1) < ε,
thus we have

V ∗r′ − V
πr
r′ <

H

M
+ ε+

H

M
=

2H

M
+ ε = 3ε, (89)

which shows that the policy learned on reward function r is also near-optimal for other reward
functions in the same equivalence class. Given that, it suffices for our UCBZero to successfully learn
a total of M |S|×|A|×H reward functions in order to cover all possible MDPs. Then simply applying
the conclusion in Theorem 1 concludes the proof.
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