Appendices

A Proof of Upper Bound
In the proofs below we drop the superscript (n) for simplicity.

Proof of Lemma Similar to Lemma 4.2 of [Jin et al., 2018|], we can write down a recursive for-

mula for both (QF — Q7*)(s,a) and (QF — Q7*)(s, a), and perform a subtraction, which gives
[(@F — Q") — (@) — Q7")](s,a) ®)
= o (Qp - QF) (s.a) ©)
t
+ 3o [(Vhey = Vis) = Vit = Vi) | (shs) (10)
=1
t . JE—
+ 3 af [P - BV — Vikl(s.0) + (0 ~ Bl (5,80 an
=1
t .
+> ajb. (12)
=1

We now show that [(QF — Q7*) — (QF — Q7*)](s,a) > 0 by induction on h = H H-1,..,1and
k=1,..., K. Itis easy to see that the first term of right-hand side o/} ( W= Qn ) (s,a) > 0 since

»* = 0. For the second term, consider two cases:
ki ki i ™ ™ ki _ ki
(1) If max, Qh+1(8h+17a) > H, then {(Vh+1 th,-l) ( ht1 Vh-;k-1)] (Sh+1) = H_(Vh+1_
Vhﬂf1)(5h+1) > 0.

(2) If max, Q). (s, a) < H, then

(‘72;1 - ‘72?1)(82;1) = méix [@5;1(82;1, a) - @Zrl(sﬁil, a)} (13)
> max [Qf (sh1,0) — Qi (551, 0)| (14)
z QZi—&-l(Sziﬁ—l’ Tk, (5];?}1)) - szl(sfl;l’ﬂki(szi—&-l)) (15)
= (Vi = Vi) (sii) (16)

where the first inequality is by the induction hypothesis.

Similar to the proof of Lemma 4.3 in [Jinetal, 2018], observe that (1[k; < K] -
[[Pk —Pu][Vih, — Vi (s,a) + (ry —E [ry)] (sﬁ’,slfl’))] )I_, is a martingale difference se-
quence. By Azuma-Hoeffding, we have that with probability 1 — p/(SAHN):

vr €| Za kb < K- [[]P —Pu[Vih, — Vik (s, a) + () — E [r] (sgﬁ,s;jm))})‘
< @ i(ai)z ~(logN +¢) <c 7H3(logTN *to),

i=1

for some absolute constant c. Using a union bound, we see that with at least probability 1 — p, the
following holds simultaneously for all (s,a, h,k,n) € S x A x [H] x [K] x [N]:

_ H3(log N
Zat k< K] [P~ BVT, — Vi) )| < o TOBNED g
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Finally, since we choose b; = C\/@, we have that the last two terms of [(QF — Q%) —
(Qz — Q7F)](s,a) also adds up at least zero. Putting everything together, we have shown that

with probability at least 1 — p, [(QF — Q") — (QF — Q7*)](s,a) > 0 for all (s,a,h,k,n) €
S x A x [H] x [K] x [N]. This concludes the proof. m

Given Lemma 2] the proof of Theorem [I|follows from the proof sketch in the main text.

B Proof of Additional Properties of UCBZERO

We first give two lemmas:
Lemma 7. Forany (s,a,h,k) € S x A x [H] x [K], lett = NF(s,a), then we have

V¥ (s) > min(H, b;) (18)

Proof. We have, for any (s,a, h,k) € S x A x [H] x [K],

t
Qh(s.0) = alH+Y o} [V (hiy) +bi] (19)
1=1
> ) ajbi =) ajby = by (20)
i=1 i=1

Thus, V5 (s) > min(H, max, Q% (s,a)) > min(H, b;). m

Lemma 8. With probability at least 1 —p, for any (s,a, h, k) € S x Ax [H] x [K], lett = N[ (s, a),
then we have

¢
Qr(s,a) > Z thh-ﬂ s, a) (1)

Proof. We have, for any (s,a, h, k) € S x A x [H] x [K],

Qﬁ(&a) = H+ Zat [ il $h+1) + b} (22)
t
> Z [PLV S (s,0) + (B = PV (5,0) + b (23)
wp. 1-p_t. .
> >l [PVl (s.a) 4
i=1

The last inequality is by the same martingale bound as in the proof of Lemmal[2] m

Now, we are ready to prove Theorem 3]

Proof of Theorem B} Let h*, s*,a* be given, and denote t* = N/ (s*, a*), b; = cy/H31/t*. Then,
by Lemma(7} we have

VE (s*,a*) > min(H, b}) (25)
Now, by Lemma we have that for any (s, a),
t
Q_i(s,a) > Y aj[Pye 1 V}i](s,0) (26)
i=1
> Zat s*|s, a) min(H, b;) 27
= ( *|s,a) min(H, b}) (28)
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Thus, we have

Viea(s) = mgxéh*—l(saa) (29)
> max P(s*|s,a) min(H, by) (30)
= 6h*71,h* (S, S*)mln(H, b:) (31)
We now show by induction that for all b < h*,
Vi(s) > 6ppe(s,s") min(H, b}) (32)
We again use Lemma [§]to get
¢
Qn(s,a) > Y oi[PhV),](s,a) (33)
i=1
> Zat > P(s|s,a) Vi (5)] (34)
s'eS
> Zai[z P(s'|s,a)d0p41 (s, ") min(H, b )] (35)
i=1  s'eS
= Y P(s'[s,a)0n 11,1+ (s, s*) min(H, b}) (36)
s'eS
Then,
Vi(s) = maxzP(s’|s,a)5h+1,h*(s’,s*)min(H,b:) (37)
a
s’esS
= Opp(s',s") min(H, b}), (38)
where in the last equality, we use the Bellman optimality equation w.r.t. J, i.e.
Onn+(s'ys*) = max, ) g P(s']s,a)0n41,n+(s,s*). Therefore, we have established that

V1(8) > 81 p=(s,8*) min(H, b} ). This implies that

K
> VE(s1) = Ko(s*) min(H, b;) (39)
k=1
Furthermore, we know from the proof of Theoremmthat
K
Vi(s1) < O(VHSSAKL) (40)
k=1

When K > Q (H SAL) S VH(s1) < K&(s*)H. Therefore, we have

Ko(s*)b; = Ké(s*)en/H3/t* < O(VHSSAKL) 41)
This gives us
oo KO(s)?
> .
t*O(HQSA) (42)

This holds for any s*, a*, h*, establishing the results. m

Proof of Theoremd| First, notice that for any given 7, (s, a, s') out of a set of size HS?A, by the
proof of Theorem |1} we have

K K
Z(Vl ZV’fS (v 5SALK> (43)
=1

k=1
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Define V{¥ = £ 5" | V/(s1), then

- H5SA
osle—Vl*(sl)soo/ I‘j L) <e. (44)

Now, let (h*, s*, a*, s"*) be given. Define reward functions R™"), R() as

(1) N 1, ifh=h*s=s%a=a*s =s* 4
By (s,0,87) = {O7 otherwise (45)
2) N 1, ifth=h*s=s" 4
By (s,a.8) = {0, otherwise (46)

Then, we observe that the corresponding Vi = 6+ () Pp- (s"*|s*,a*) and V;'® = G- (s7).
Now, define

. ‘71K(1)
P(s™|s*,a") = = 47)
VIK(Q)
Next, we show that || P(s"*|s*,a*) — P(s'*|s*, a*)]| is small. In particular,
) K
P(s*|s*,a*) = =L (48)
VE®
* Ik| ok ok
< Opx (8%) Ppx (8™ ]s*,a*) + € (49)
(5}1*(8*)
£
= P(s™|s*,a*) + ———, (50
(&1 ) dn~(s*)
) K
P(s™|s*,a*) = (5D
VE@
. *\ P . /x| % *
> o (S ) h (S |S @ ) (52)
5h* (S*) +e€
* Ix | ok kY
> Opr (8*) P+ (s™]8*,a*) — ¢ (53)
5h*(8*)
5
= P(s*|s*,a") — . (54
(51 0) = 5

A union bound on all (h*, s*,a*,s™) € [H] x S x A x S completes the proof. Notice that the
sample complexity only changes by constant factor as log(N) = log(HS2A) < 2log(HSA). m

C Proof of Lower Bound

We based our construction on the classic lower-bound construction for multi-armed bandits. For a
detailed introduction of the problem setting, please refer to [Mannor and Tsitsiklis, 2004]. We first
introduce some bandit notation: let n be the number of arms, p € [0, 1]” represent the parameters
of the Bernoulli distribution of rewards associated with each arm. We let T} be the total number of
times that arm / is pulled, and T = Z?:l Ty be the total number of arm pulls. We also let I be the
arm that is selected at the end of the exploration phase.

Lemma 9. There exists ap € [0,1]", n > 2 such that for any fixed number of episodes K, there
exists N = O(2%) reward functions, so that with probability at least 0.5, no RL algorithm can learn
an e-optimal policy with € < 0.08 for at least one reward function.

Proof. We construct a bandit with two arms ¢ = 1, 2. We consider two reward functions. The first
reward function is p with p; = 0.1,p> = 0 and the second reward function is ¢ with ¢; = 0.1,
g2 = Bernoulli(0.5). Thus, it is easy to see that the optimal arm corresponding to p and g are £ = 1
and ¢ = 2 respectively. We assume among the IV reward functions we need to learn, N — 1 of them
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are ¢ and only one is p. Next, we show that no learner is able to distinguish whether the instantiated
rewards are from p or q.

Let 75 be the number of episodes where arm 2 is taken in the K instantiated rewards. Then for each
of the N — 1 reward function ¢, it has probability 0.572 to generate the same instantiated rewards with
r1. Note that 0.572 > 0.5% so the probability that at least one of the ¢ generate the same instantiated
rewards as p is at least

1—(1—055)N"1 > 1 g 055(N-1) (55)
Let N = [1 + 2% In 2], then the probability that the rewards can be generated by one of the ¢ is at

least 0.5. Given such a reward configuration, let # = (x,1 — x) be the learned (stochastic) policy
where z is the probability of choosing arm 1. Then for reward function ¢, the optimality gap is

Vo —Vo(mr) =05-0.1z — (1 —x) *0.5 = 0.4z, (56)
while for reward function r, the optimality gap is
Vi —=Vi(x) =0.1-0.1z. (57)

One can see that regardless of p;, one of the above two gaps will be large, and the minimum of
max (V5" — Va(#t), Vi* — Vi (7)) is achieved when p; = 0.2, and the minimum value is 0.08.

Therefore with probability at least 0.5, no RL algorithm can learn e-optimal policy with € = 0.08. m

Theorem 10. There exist some positive constant ¢y, ca, €, 0o, such that for everyn > 2, € € (0, ¢q),
and 6 € (0,60), and for every (g, §)-correct policy on N tasks, there exists some p € [0, 1]™ such that

CQN

n
Ep [T] Z C1 ? log T (58)

Proof. The proof largely mimic the original proof of Theorem 1 in [Mannor and Tsitsiklis, 2004],
with the distinction in handling NV tasks instead of 1. Consider a bandit problem with n + 1 arms.
We also consider a finite set of n 4 1 possible reward functions p, which we refer to as “hypotheses”.
Under any one of the hypothesis, arm 0 has a Bernoulli reward with py = (1 + £)/2. Under one
hypothesis, denoted Hy, all other arm has p; = 1/2, which makes arm 0 the best arm. Furthermore,
for / =1, ..., n, there is a hypothesis

1 1 1
Hiipo= 25, po==te pi==fori £0,L (59)
2 2 2
which makes arm ¢ the best arm. We define ¢g = 1/8 and 6y = e /8. From now on, we fix

e € (0,e0), 6 € (0,00), N > 1 and a policy, which we assume to be (¢/2, §)-correct on N rewards.
If Hy is true, the policy must have a probability at least 1 — § of eventually stopping and selecting
arm 0. If H is true, for some ¢ # 0, the policy must have a probability at least 1 — ¢ of eventually
stopping and selecting arm ¢. These further hold simultaneously for NV hypotheses. We denote PKN )
as the probability of some event that happens simultaneously under N H, hypotheses.

We define t* by
. 1 N

N
"= —log
ce

1
L — oo — 60
85 e °9 (00)
where 6 = 83 and c is an absolute constant we will specify later. Note that § < e+ and e < 1/4.

We assume by contradtion that E [T;] < ¢*. We will eventually show that under this assumption, the
probability of selecting H under one of N H; exceeds 4, thus violates (¢/2, §)-correctness.

We now introduce some special events A, B and C. We define

A = {Th <4*} (61)

B = {I =0,i.e. the policy eventually pick arm 0} (62)
1

c = {1212%* K — §t| </t log(N/G)} (63)

where K is the number of getting reward 1 if the first arm is pulled ¢ times. Similar to the original
proof [Mannor and Tsitsiklis, 2004, we have the following lemmas.
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Lemma 11. P} (A) = Py(A) > 3/4, where PN (C) denotes the probability of event B under all of
N hypothesis H.

This is directly due to the definition of A that is independent of rewards and the use of Markov
inequality.

Lemma 12. P (B) > 3/4.

Thisisduetod < e /8 < 1/4.
Lemma 13. P} (C) > 3/4.

This is due to the observation that K; — ¢/2 is a martingale, and by applying Kolmogorov’s inequality.
Lemma 14. If0 <z < 1landy > 0, then

(1—x)¥ > e 9oy (64)
where d = 1.78

This is straightforward arithmetics. Please refer to the original proof in [Mannor and Tsitsiklis, 2004]]
for the detailed proofs of the lemmas. Let S = AN BN C, then we have P}" (S) > 1/4. Now we are
ready to prove our main results. Let 11/ be the history of the process (the number of arm pulls for each
arm in the exploration phase, and the sampled rewards in the policy-optimization phase). We define
L¢(W) to be the likelihood of a history W under reward function ¢. We denote K be a shorthand
notation for K7, the number of reward 1 instantiated on arm ¢ = 1. Observe that, given the history
up to time ¢ — 1, the arm choice at time ¢ has the same probability distribution under either hypothesis
Hjy and Hi; similarly, the arm reward at time ¢ has the same probability distribution, under either
hypothesis, unless the chosen arm was arm 1. For this reason, the likelihood ratio Ly (W')/Lo(W) is
given by

Liw)  G+afG-—oh F
Lon) — o O)n ©
= (1-45)K1 —2e) 2K (66)

Let T}Y (W) be the likelihood that TV appears under one of N hypothese H;. Since the instantiation
of rewards under each hypothesis is completely independent from one another, we have

LY(W) = 1—(1—Li(w)N (67)
1

= 1_1+L1(W)N (68)
_ Li(W)N

T 1+ L(W)N 69)

By lemma@, we have that in order for the policy to be £, d-correct, 77 > log, (V). Thus, we have
1 1

Li(W) < (5 + e)K(5 S (70)
1
< " (71)
< 5 (72)
‘We then have

LN (W) Li(W)N 1 )

Lo(W) L+ Li(W)N Lo(W)

N Li(W)

= T (W) 74
= ga —4e)K (1 —2¢) 2K (75)



If event .S occurred, then A occurred, and we have K < T; < 4t*, so that

(1—4)K > (1 - 4% = (1 —4e2)azlos s (76)
> ef(lﬁd/c) log(N/0) (77)
_ (Q/N)lﬁd/c (78)

We have used here Lemma which applies because 4c2 < 4/4% < 1//2. Similarly, if event S has
occurred, then A N C has occurred, which implies

Ty — K < 2y/t*log(N/0) = (2/e/c) log(N/6). (79)
Therefore,

(1 _ 2€)T1_2K > (1 _ 25)(2/5@) log(N/0) (80)
> ¢ (4d/Velog(N/0)) (81)
= (9/N)*Ve (82)

Substituting the above into the main equation, we obtain

LYW) _ N

> - 0 N (l6d/0)+4d/\/5 83
By picking c large enough (¢ = 100 suffices), we obtain that ﬁv((‘fvv)) > 60/2 > 46 whenever the event

S occurs. More precisely, we have
LY(W)
Lo(W)
where 1 [S] iss the indicator function of the event S. Then,
LY(W)
Lo(W)

1[S] > 451 [S] (84)

PN(B) > PV(S) =EY[1[S]] = E{'[ 1[S]] > E{'[401 [S]] = 40PV (S) > 6. (85)
where we used the fact that P (S) > 1/4. This contradict the assumption that the policy is
(e/2, 6)-correct. Similarly, we must have E [T}] > ¢*, for all arms ¢ > 0. Therefore, if we have an
(g, 8)-correct policy, we must have E [T] > (n/(4ce?)) log(IN/86), which is of the desired form.

Now we are ready to prove theorem 5}

Proof of theorem[5] We consider an MDP M where the transition is defined as Pj,(s'|s,a) = 1/S
for all (h,s,a,s’) and is known to the learner. Since the action has no control over the next-
state, this is equivalent to a collection of SH multi-armed bandits. Due to the uniform transition,
P7(s) =1/5 for any 7, s, h, and so finding the e-optimal policy amounts to finding an €, j,-optimal
policy for each bandit (s, h), such that 3 °_, 5, = Se. Theorem (10|implies that it takes at least
Q(Alog(N/p)/e?,,) visits to a bandit s,  to find an e, ,-optimal action simultaneously for each
of N reward functions with probability at least 1 — p. It follows that the total number of samples
required (Y, , Alog(N/p)/e? ;) is minimized when €, , = ¢/ H for all (s, h), which gives a total
of at least Q(H?3SAlog(N/p)/e?)) samples, which translates to at least Q(H2SAlog(N/p)/e?))
episodes. m

D Proof of N-independent upper bound of UCBZERO in the Reward-free
Setting

Proof of Theorem[6] Fixing the transition kernel, we consider dividing all possible MDPs into a
set of equivalence classes based on different reward patterns. Specifically, given any M € Z*, we

split the support of reward [0, 1] into M segments, I; = [, -2], V1 < i < M. For any MDP,
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the reward function 7,(s, a) depends only on state s and action a, and for each (s, a) pair, the
corresponding reward must lie in one of the M segments, thus there are M|S1*I41 different patterns
of reward functions for each step h, characterized by a matrix ®;, € [M] ISIXIAl where each entry
Dy (i,7) € [M] is the segment that 7, (¢, j) lies in. Given that we have H steps, in total we will

have MISIXIAIXH Gifferent reward patterns, denoted as ® = Hle ®,;,. For each ®, we next show
that learning any single reward function r € ® is enough to cover all other reward functions in ®.
Specifically, assume we have learned a near-optimal policy 7, that satisfies

Vi(s1) = Vi (s1) < e, (86)

where subscript 7 means the value function under reward function r and V7 is the value function of
the learned policy. Then for any other ' € ® different from r, we have

Vi VI =V - VAV - VIV -V (87)
Note that

=V =maxE,
™

H
Z 5, (Sh, ah)] —max E,

h=1

= H
/
E 73 (Sh, an) — Th(shaah)] < i
h=1

Zrh(sh,ah)]

h=1 (88)

<maxE;,
s

where the last inequality is due to 7, and ry, lie in the same segment for all 4. Same result holds for
V77—V Let M = £ Then plug back to (87), and also remember that V,*(s1)—V,™ (s1) < ¢,
thus we have I H o

=V <M+E+M— + e = 3¢, (89)
which shows that the policy learned on reward function 7 is also near-optimal for other reward
functions in the same equivalence class. Given that, it suffices for our UCBZero to successfully learn
a total of MISI¥IAIXH reward functions in order to cover all possible MDPs. Then simply applying
the conclusion in Theorem ] concludes the proof. m
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