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Abstract

Additive models have attracted much attention for high-dimensional regression
estimation and variable selection. However, the existing models are usually lim-
ited to the single-task learning framework under the mean squared error (MSE)
criterion, where the utilization of variable structure depends heavily on a priori
knowledge among variables. For high-dimensional observations in real environ-
ment, e.g., Coronal Mass Ejections (CMEs) data, the learning performance of
previous methods may be degraded seriously due to the complex non-Gaussian
noise and the insufficiency of a prior knowledge on variable structure. To tackle
this problem, we propose a new class of additive models, called Multi-task Addi-
tive Models (MAM), by integrating the mode-induced metric, the structure-based
regularizer, and additive hypothesis spaces into a bilevel optimization framework.
Our approach does not require any priori knowledge of variable structure and suits
for high-dimensional data with complex noise, e.g., skewed noise, heavy-tailed
noise, and outliers. A smooth iterative optimization algorithm with convergence
guarantees is provided to implement MAM efficiently. Experiments on simulations
and the CMEs analysis demonstrate the competitive performance of our approach
for robust estimation and automatic structure discovery.

1 Introduction

Additive models [14], as nonparametric extension of linear models, have been extensively investigated
in machine learning literatures [1, 5, 34, 44]. The attractive properties of additive models include
the flexibility on function representation, the interpretability on prediction result, and the ability
to circumvent the curse of dimensionality. Typical additive models are usually formulated under
Tikhonov regularization schemes and fall into two categories: one focuses on recognizing dominant
variables without considering the interaction among the variables [21, 28, 29, 46] and the other aims
to screen informative variables at the group level, e.g., groupwise additive models [4, 42].

Although these existing models have shown promising performance, most of them are limited to
the single-task learning framework under the mean squared error (MSE) criterion. Particularly,
the groupwise additive models depend heavily on a priori knowledge of variable structure. In this
paper, we consider a problem commonly encountered in multi-task learning, in which all tasks share
an underlying variable structure and involve data with complex non-Gaussian noises, e.g., skewed
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Figure 1: A schematic comparison between previous groupwise models and MAM. (a) Data gener-
ating process. (b) Mean-based groupwise models with a priori knowledge of group structure, e.g.,
group lasso [33, 43] and group additive models [42]. (c) Mode-based MAM for robust estimation
and automatic structure discovery.

noise, heavy-tailed noise, and outliers. The main motivation of this paper is described in Figure 1.
As shown in Figure 1(a), the intrinsic variable structure for generating data is encoded by several
variable groups {G1, G2, ..., GL}, where some groups also contain inactive variables. For each task
t ∈ {1, ..., T}, the output is related to different dominant groups, e.g., G1, G2 for the first task. With
a prior knowledge of group structure, single-task groupwise models shown in Figure 1(b) aim to
estimate the conditional mean independently, e.g., group lasso [13, 22, 33, 43] and group additive
models [4, 16, 42]. All above models are formulated based on a prior knowledge of group structure
and Gaussian noise assumption. However, these requirements are difficult to be satisfied in real
applications, e.g., Coronal Mass Ejections (CMEs) analysis [20].

To relax the dependence on a prior structure and Gaussian noise, this paper proposes a class of
Multi-task Additive Models (MAM) by integrating additive hypothesis space, mode-induced metric
[6, 41, 10], and structure-based regularizer [12] into a bilevel learning framework. The bilevel
learning framework is a special kind of mathematical program related closely with optimization
schemes in [7, 12]. A brief overview of MAM is shown in Figure 1(c). The proposed MAM can
achieve robust estimation under complex noise and realize data-driven variable structure discovery.
The main contributions of this paper are summarized as below:

• Model: A new class of multi-task additive models is formulated by bringing four distinct
concepts (e.g., multi-task learning [2, 9], sparse additive models [3, 4, 18, 42], mode-induced
metric [10, 38], and bilevel learning framework [12, 32]) together in a coherent way to
realize robust and interpretable learning. As far as we know, these issues have not been
unified in a similar fashion before.

• Optimization: An optimization algorithm is presented for the non-convex and non-smooth
MAM by integrating Half Quadratic (HQ) optimization [24] and dual Forward-Backward
algorithm with Bregman distance (DFBB) [37] into proxSAGA [30]. In theory, we provide
the convergence analysis of the proposed optimization algorithm.

• Effectiveness: Empirical effectiveness of the proposed MAM is supported by experimental
evaluations on simulated data and CMEs data. Experimental results demonstrate that MAM
can identify variable structure automatically and estimate the intrinsic function efficiently
even if the datasets are contaminated by non-Gaussian noise.
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Table 1: Algorithmic properties (X-has the given information, ×-hasn’t the given information)

RMR [38] GroupSpAM [42] CGSI[26] BIGL[12] MAM (ours)
Hypothesis Space Linear Additive Additive Linear Additive

Learning Task Single-task Single-task Single-task Multi-task Multi-task
Evaluation Criterion Mode-induced Mean-induced Mean-induced Mean-induced Mode-induced
Objective Function Nonconvex Convex Convex Convex Nonconvex
Robust Estimation X × × × X

Sparsity on Grouped Features × X X X X
Sparsity on Individual Features X × × × X
Variable Structure Discovery × × X X X

Related works: There are some works for automatic structure discovery in additive models [26, 40]
and partially linear models [19, 45]. Different from our MAM, these approaches are formulated under
single-task framework and the MSE criterion, which are sensitive to non-Gaussian noise and difficult
to tackle multi-task structure discovery directly. While some mode-based approaches have been
designed for robust estimation, e.g., regularized modal regression (RMR) [38], none of them consider
the automatic structure discovery. Recently, an extension of group lasso is formulated for variable
structure discovery [12]. Although this approach can induce the data-driven sparsity at the group
level, it is limited to the linear mean regression and ignores the sparsity with respect to individual
features. To better highlight the novelty of MAM, its algorithmic properties are summarized in Table
1, compared with RMR [38], Group Sparse Additive Models (GroupSpAM) [42], Capacity-based
group structure identification (CGSI)[26], and Bilevel learning of Group Lasso (BiGL) [12].

2 Multi-task Additive Models

2.1 Additive models

Now recall some backgrounds of additive models [14, 42, 44]. For the sake of readability, we
summarize some necessary notations in Supplementary Material A.

Let X ⊂ RP be the input space and Y ⊂ R be the corresponding output set. We consider the
following data-generating model

Y = f∗(X) + ε, (1)
whereX ∈ X , Y ∈ Y , ε is a random noise, and f∗ is the ground truth function. For simplicity, denote
ρ(X,Y ) as the intrinsic distribution generated in (1). Under the Gaussian noise assumption, i.e.
E(ε|X = x) = 0, a large family of nonparametric regression aims to estimate the conditional mean
function f∗(x) = E(Y |X = x). However, the nonparametric regression may face low convergence
rate due to the so-called curse of dimensionality [18, 34]. This motivates the research on additive
models [14, 29] to remedy this problem.

Additive Models [14, 29]: Let the input space X = (X1, ...,XP )T ⊂ RP and let the hypothesis space
with additive structure be defined as

H =
{
f : f(u) =

P∑
j=1

fj(uj), fj ∈ Hj ,u = (u1, ..., uP )T , uj ∈ Xj
}
,

whereHj is the component function space on Xj . Usually, additive models aim to find the minimizer
of E(Y − f(X))2 inH. Moreover, groupwise additive models have been proposed with the help of a
prior knowledge of variable group, e.g., GroupSpAM [42] and GroupSAM [4].

Let {G1, G2, ..., GL} be a partition over variable indices {1, ..., P} such that Gl ∩Gj = ∅,∀l 6= j
and ∪Ll=1Gl = {1, ..., P}. In essential, the main purpose of GroupSpAM [42] is to search the
minimizer of

E(Y − f(X))2 +

L∑
l=1

τl

√∑
j∈Gl

E[f2
j (uj)] over all f =

L∑
l=1

∑
j∈Gl

fj ∈ H,

where τl is the corresponding weight for group Gl, 1 ≤ l ≤ L.

2.2 Mode-induced metric

Beyond the Gaussian noise assumption in [16, 29, 42], we impose a weaker assumption on ε, i.e.,
arg maxt∈R pε|X(t) = 0, where pε|X denotes the conditional density function of ε given X . In
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theory, this zero-mode assumption allows for more complex cases, e.g., Gaussian noise, heavy-tailed
noise, skewed noise or outliers.

Denote p(Y |X = x) as the conditional density function of Y given X = x. By taking mode on the
both sides of (1), we obtain the conditional mode function

f∗(x) = arg max
t∈R

p(t|X = x), (2)

where arg maxt∈R p(t|X = x) is assumed to be unique for any x ∈ X . There are direct strategy and
indirect strategy for estimating f∗ [31]. Generally, the direct approaches are intractable since the
conditional mode function cannot be elicited directly [15], while the indirect estimators based on
kernel density estimation (KDE) have shown promising performance [6, 10, 38, 41].

Now, we introduce a mode-induced metric [10, 38] associated with KDE. For any measurable function
f : X → R, the mode-induced metric is

R(f) =

∫
X
pY |X(f(x)|X = x)dρX (x), (3)

where ρX is the marginal distribution of ρwith respect toX . As discussed in [10], f∗ is the maximizer
of the mode-induced metricR(f). According to Theorem 5 in [10], we haveR(f) = pEf

(0), where
pEf

(0) is the density function of error random variable Ef = Y − f(X).

Define a modal kernel φ such that ∀u ∈ R, φ(u) = φ(−u), φ(u) > 0 and
∫
R φ(u)du = 1. Typical

examples of modal kernel include Gaussian kernel, Logistic kernel, Epanechnikov kernel. Given
{(xi, yi)}ni=1 ⊂ X × Y , an empirical version ofR(f) obtained via KDE [10, 27] is defined as

Rσemp(f) =
1

nσ

n∑
i=1

φ
(yi − f(xi)

σ

)
, (4)

where σ is a positive bandwidth. Then, denote the data-free robust metric w.r.t. Rσemp(f) as

Rσ(f) =
1

σ

∫
X×Y

φ
(y − f(x)

σ

)
dρ(x, y). (5)

Theorem 10 in [10] states thatRσ(f) tends toR(f) when σ → 0.

2.3 Mode-induced group additive models

Here, we form the additive hypothesis space based on smoothing splines [16, 23, 29, 46]. Let {ψjk :
k = 1, ...,∞} be bounded and orthonormal basis functions on Xj . Then the component function

space can be defined as B̄j =
{
f̄j : f̄j =

∑∞
k=1 βjkψjk(·)

}
with the coefficient βjk, j = 1, ..., P .

After truncating these basis functions to finite dimension d, we get

Bj =
{
fj : fj =

d∑
k=1

βjkψjk(·)
}
.

Denote ‖f‖2 :=
√∫

f2(x)dx. It has been illustrated that ‖fj − f̄j‖22 = O(1/d4) for the second

order Sobolev ball B̄j[46]. The mode-induced Group Additive Models (mGAM) can be formulated
as

f̂ = arg max
f=

∑P
j=1 fj ,fj∈Bj

{Rσemp(f)− λΩ(f)}, (6)

where λ is a positive regularization parameter and the structure-based regularizer

Ω(f) =

L∑
l=1

τl

√∑
j∈Gl

‖fj‖22 =

L∑
l=1

τl

√√√√∑
j∈Gl

d∑
k=1

β2
jk

with group weight τl. Denote Ψi =
(
ψ11(xi1), ..., ψ1d(xi1), ..., ψP1(xiP ), ..., ψPd(xiP )

)
and

β = (β11, ..., β1d, ..., βP1, ..., βPd)
T ∈ RPd. Given observations {(xi, yi)}ni=1 with xi =
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(xi1, ..., xiP )T ∈ RP , the mGAM can be represented as

f̂ =

P∑
j=1

f̂j =

P∑
j=1

d∑
k=1

β̂jkψjk(·)

with

β̂ = arg max
β∈RPd

{
1

nσ

n∑
i=1

φ
(yi −Ψiβ

σ

)
− λ

L∑
l=1

τl

√√√√∑
j∈Gl

d∑
k=1

β2
jk

}
. (7)

Remark 1. The mGAM is a robust extension of GroupSpAM from mean regression to mode regression.
When each group Gl, l ∈ {1, ..., L} is a singleton, our mGAM reduces to a robust version of SpAM
[29] by replacing the MSE with the robust mode-induced metric (3). In particular, our mGAM is
consistent with RMR [38] when each group is a singleton and all component functions are linear.

2.4 Multi-task additive models

To reduce the dependency of mGAM on a priori structure information, this section formulates MAM
by learning an augmented mGAM within a multi-task bilevel framework [11, 12, 25].

Let T be the number of tasks. Let X (t) = (X (t)
1 , ...,X (t)

P )T ⊂ RP and Y(t) ⊂ R be the input
space and the output space respectively associated with the t-th task. Suppose that observations
S(t) = {x(t)

i , y
(t)
i }2ni=1 ⊂ X (t) × Y(t) are drawn from an unknown distribution ρ(t)(x, y). Without

loss of generality, we split each S(t) into the training set S(t)
train and the validation set S(t)

val with the
same sample size n for subsequent analysis.

To quantify the groups {G1, ..., GL}, we introduce the following unit simplex

Θ =
{
ϑ = (ϑ1, ..., ϑL) ∈ RP×L

∣∣∣ L∑
l=1

ϑjl = 1, 0 ≤ ϑjl ≤ 1, j = 1, ..., P
}
,

where each element ϑjl can be viewed as a probability that identifies whether the j-th variable belongs
to group Gl. It is desirable to enjoy the property that ϑjl = 1 ⇒ j ∈ Gl and ϑjl = 0 ⇒ j /∈ Gl.
However, we cannot mine the sparsity within each group since

∑L
l=1 ϑjl = 1, j = 1, ..., P . Inspired

from [35], we introduce ν = (ν1, ..., νP )T ∈ [0, 1]P to screen main effect variables across all tasks,
where νj 6= 0 means the j-th variable is effective.

Denote Ψ
(t)
i =

(
ψ11(x

(t)
i1 ), ..., ψ1d(x

(t)
i1 ), ..., ψP1(x

(t)
iP ), ..., ψPd(x

(t)
iP )
)
. Given {S(t)

val}Tt=1 and
{S(t)

train}Tt=1, our MAM can be formulated as the following bilevel optimization scheme:

Outer Problem (based on validation set S(t)
val):

(ϑ̂, ν̂) ∈ arg max
ϑ∈Θ,ν∈[0,1]P

T∑
t=1

U(β̂(t)(ϑ), ν) with U(β̂(t)(ϑ), ν) =
1

nσ

n∑
i=1

φ
(y(t)

i −Ψ
(t)
i Tν β̂(t)(ϑ)

σ

)
,

where Tν is a linear operator for screening main effect variables across all tasks such
that Tν β̂(t)(ϑ) = (ν1β̂

(t)
11 (ϑ), ..., ν1β̂

(t)
1d (ϑ), ..., νP β̂

(t)
P1(ϑ), ..., νP β̂

(t)
Pd(ϑ))T ∈ RPd, and

β̂(ϑ) = (β̂(t)(ϑ))1≤t≤T is the maximizer of the following augmented mGAM:

Inner Problem (based on training set S(t)
train):

β̂(ϑ)=argmax
β

T∑
t=1

J(β(t)) with J(β(t))=
1

nσ

n∑
i=1

φ
(y(t)i −Ψ

(t)
i β(t)

σ

)
− µ

2
‖β(t)‖22−λ

L∑
l=1

τl‖Tϑlβ
(t)‖2,

where Tϑl
β(t) = (ϑ1lβ

(t)
11 , ..., ϑ1lβ

(t)
1d , ..., ϑPlβ

(t)
P1, ..., ϑPlβ

(t)
Pd)

T ∈ RPd is used for identifying
which variables belong to the l-th group, and the penalty term µ

2 ‖β
(t)‖22 with a tending-to-zero

parameter µ assures the strong-convex property for optimization.
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Finally, the multi-task additive models (MAM) can be represented as below:

f̂ (t) =

P∑
j=1

d∑
k=1

ν̂j β̂
(t)
jk (ϑ̂)ψjk(·), t = 1, .., T.

Let ϑ̂Thr and ν̂Thr be two threshold counterparts of ϑ̂ and ν̂, respectively. Similar with [12], ϑ̂Thr

is determined by assigning each feature to its most dominant group. For any j = 1, ..., P , ν̂Thr
j is

determined by a threshold u, i.e., ν̂Thr
j = 0 if ν̂j ≤ u, and ν̂Thr

j = 1 otherwise. Then the data-driven
variable structure can be obtained via Ŝ = (ϑ̂Thr

l � ν̂Thr)1≤l≤L, where� denotes Hadamard product.
Remark 2. If the hyper-parameter ν ≡ IP , the sparsity w.r.t individual features would not be taken
into account for MAM. In this setting, our MAM is essentially a robust and nonlinear extension of
BiGL [11] by incorporating mode-induced metric and additive hypothesis space.
Remark 3. Indeed, mGAM with an oracle variable structure is the baseline of MAM. In other words,
the inner problem with the estimated variable structure Ŝ aims to approximate the mGAM.

Algorithm 1: Prox-SAGA for MAM

Input: Data {S(t)
train, S

(t)
val}Tt=1, Max-Iter Z ∈ R, The number of groups L, Step-size ηϑ,

Step-size ην , ϑ(0), ν(0), λ, µ, Modal kernel φ, Bandwidth σ, Weights τl, l = 1, ..., L.
Initialization: at = ϑ(0), ct = ν(0), t = 1, ..., T , g(0)

ϑ = 0P×L, g(0)
ν = 0P .

for z = 0, 1, ..., Z − 1 do
1. Randomly pick set:

B(z) ⊂ {1, ..., T}, denote its cardinality as |B(z)|.
2. Compute β̂(k)(ϑ(z)) based on S(k)

train, ∀k ∈ B(z):
β̂(k)(ϑ(z))=HQ-DFBB(ϑ(z), λ, σ, µ, τ ; S(k)

train).
3. Update ϑ based on S(k)

val:

3.1): Gϑ = 1
|B(z)|

∑
k∈B(z)

(
hϑ(β̂(k)(ϑ(z)), ν(z))− hϑ(β̂(k)(ak), ν(z))

)
.

3.2): ϑ̄(z) = g
(z)
ϑ +Gϑ.

3.3): ϑ(z+1) = Pϑ(ϑ(z) − ηϑϑ̄(z)).

3.4): g(z+1)
ϑ = g

(z)
ϑ + |B(z)|

T Gϑ.
3.5): ak = ϑ(z), for every k ∈ B(z).

4. Update ν based on S(k)
val:

4.1): Gν = 1
|B(z)|

∑
k∈B(z)

(
hν(β̂(k)(ϑ(z)), ν(z))− hν(β̂(k)(ϑ(z)), ck)

)
.

4.2): ν̄(z) = g
(z)
ν +Gν .

4.3): ν(z+1) = Pν(ν(z) − ην ν̄(z)).

4.4): g(z+1)
ν = g

(z)
ν + |B(z)|

T Gν .
4.5): ck = ν(z), for every k ∈ B(z).

Output: ϑ̂ = ϑ(Z), ν̂ = ν(Z), β̂(t)(ϑ̂), t = 1, ..., T ;
Prediction function: f̂ (t) =

∑P
j=1

∑d
k=1 ν̂j β̂

(t)
jk (ϑ̂)ψjk(·), t = 1, ..., T ;

Variable structure: Ŝ = (ϑ̂Thr
l � ν̂Thr)1≤l≤L.

3 Optimization Algorithm

To implement the non-convex and nonsmooth MAM, we employ Prox-SAGA algorithm [30] with
simplex projection and box projection [8]. For simplicity, we define two partial derivative calculators:

−
T∑
t=1

∂U(β̂(t)(ϑ), ν)

∂ν
:=

T∑
t=1

hν(β̂(t)(ϑ), ν), −
T∑
t=1

∂U(β̂(t)(ϑ), ν)

∂ϑ
:=

T∑
t=1

hϑ(β̂(t)(ϑ), ν).

It is trivial to compute
∑T
t=1 hν(β̂(t)(ϑ), ν) since the parameter ν only appears explicitly in the upper

problem. The optimization parameter ϑ is implicit via the solution β̂(ϑ) of the inner problem. Hence,
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computing
∑T
t=1 hϑ(β̂(t)(ϑ), ν) requires us to develop a smooth algorithm HQ-DFBB (combining

HQ [24] and DFBB [37]) for the solution β̂(ϑ). For the space limitation, the optimization details
including HQ-DFBB and two partial derivative calculators are provided in Supplementary Material
B. Let PΘ be the projection onto unit simplex Θ, and Pν be the box projection onto [0, 1]P . The
general procedure of Prox-SAGA is summarized in Algorithm 1.

Remark 4. From Theorem 2.1 in [12] and Theorem 4 in [30], we know that Algorithm 1 converges
only if the iteration sequence generated by HQ-DFBB converges to the solution of the inner problem.
Detailed convergence analysis of HQ-DFBB is provided in Supplementary Material C.

4 Experiments

This section validates the effectiveness of MAM on simulated data and CMEs data. All experiments
are implemented in MATLAB 2019b on an intel Core i7 with 16 GB memory.

4.1 Simulated data analysis

Baselines: The proposed MAM is compared with BiGL [11] in terms of variable structure recovery
and prediction ability. In addition, we also consider some baselines, including Lasso [36], RMR [38],
mGAM, Group Lasso (GL) [43] and GroupSpAM [42]. Note that the oracle variable structure is a
priori knowledge for implementing mGAM, GL and GroupSpAM.

Oracle variable structure: Set the number of tasks T = 500, the dimension P = 50 for each
task and the actual number of groups L∗ = 5. We denote the indices of l-th group by Gl ={

1 + (l − 1)(P/L∗), ..., l(P/L∗)
}

, ∀l ∈ {1, ..., L∗}. In addition, we randomly pick V ⊂ {1, ..., P}
to generate sparse features across all tasks. For each j ∈ {1, ..., P} and l ∈ {1, ..., L∗}, the oracle
variable structure S∗ can be defined as S∗jl = 1 if j ∈ Vc ∩Gl, and 0 otherwise.

Parameter selection: For the same hyper-parameters in BiGL and MAM, we set Z = 3000,
µ = 10−3, M = 5, Q = 100 and σ = 2. We search the regularization parameter λ in the
range of {10−4, 10−3, 10−2, 10−1}. Here, we assume the actual number of groups is known, i.e.,
L = L∗. The weight for each group is set to be τl = 1,∀l ∈ {1, ..., L}. Following the same
strategy in [11], we choose the initialization ϑ(0) = Pϑ( 1

L IP×L + 0.01N (0P×L, IP×L)) ∈ RP×L

and ν(0) = (0.5, ..., 0.5)T ∈ RP .

Evaluation criterion: Denote f̂ (t), f∗(t) as the estimator and ground truth function respectively,
1 ≤ t ≤ T . Evaluation criterions used here include Average Square Error(ASE)= 1

T

∑T
t=1

1
n‖f̂

(t) −
y(t)‖22, True Deviation (TD)= 1

T

∑T
t=1

1
n‖f̂

(t)− f∗(t)‖22, Variable Structure Recovery Ŝ = (νThr�
ϑThr
l )1≤l≤L with the hard threshold value u = 0.5, Width of Prediction Intervals (WPI) and Sample

Coverage Probability (SCP) with the confidence level 10%. Specially, WPI and SCP are designed in
[41] for comparing the widths of the prediction intervals with the same confidence level (see Section
3.2 in [41] for more details).

Data sets: The training set, validation set and test set are all drawn from y(t) = f∗(t)(u(t)) + ε with
the same sample size n = 50 for each task, where u(t) = (u1, ..., uP )T ∈ RP is randomly drawn
from Gaussian distribution N (0P ,

1
2 IP ). The noise ε follows Gaussian noise N (0, 0.05), Student

noise t(2), Chi-square noise X 2(2) and Exponential noise Exp(2), respectively. We randomly pick
G(t) ⊂ {G1, ..., GL} s.t. |G(t)| = 2, and consider the following examples of ground truth function
f∗(t), 1 ≤ t ≤ T :

Example A [12]. Linear component function f∗(t)(u(t)) =
∑
Gl∈G(t)

∑
j∈Gl∩Vc u

(t)
j β

(t)
j , where the

true regression coefficient β(t)
j = 1 if j ∈ Gl ∩ Vc, otherwise β(t)

j = 0.

Example B. Denote f∗1 (u) = 2.5 sin(u), f∗2 (u) = 2u, f∗3 (u) = 2eu − e−1 − 1, f∗4 (u) = 8u2 and
f∗5 (u) = 3 sin(2eu). The nonlinear additive function f∗(t)(u(t)) =

∑
Gl∈G(t)

∑
j∈Gl∩Vc f∗l (u

(t)
j ).

Here, spline basis matrix for MAM, mGAM and GroupSpAM are constructed with d = 3. In the
data-generating process, we consider two cases of the number of inactive variables, i.e., |V| = 0
and |V| = 5. Due to the space limitation, we only present the results with Gaussian noise and
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Figure 2: Variable structure discovery for Example A under different noise and sparsity index V
(white pixel means the grouped variables and red pixel means the inactive variables). Top left panel:
Gaussian noise with |V| = 0. Top right panel: Student noise with |V| = 0. Bottom left panel:
Gaussian noise with |V| = 5. Bottom right panel: Student noise with |V| = 5.

Student noise in Table 2 and Figure 2. The remaining results, as well as several evaluations on the
impact of hyper-parameters, are provided in Supplementary Material D.1. From the reported results,
even without the structure information, the proposed MAM can provide the competitive regression
estimation with mGAM (given priori structure), and usually achieve better performance than these
competitors when the noise is non-Gaussian distribution. Specially, the actual number of groups
is assumed to be known in current evaluations, i.e., L = L∗. In Supplementary Material D.1, we
further verify the effectiveness of MAM for the general setting L > L∗.

Table 2: Performance comparisons on Example A (top) and Example B (bottom) w.r.t different
criterions.

Methods
|V| = 0 (Gaussian noise) |V| = 5 (Gaussian noise) |V| = 0 (Student noise) |V| = 5 (Student noise)

ASE TD WPI (SCP) ASE TD WPI (SCP) ASE TD WPI (SCP) ASE TD WPI (SCP)

MAM 0.0920 0.0914 0.0679(0.1015) 0.0801 0.0794 0.0595(0.1014) 1.0204 0.2467 0.1817(0.1014) 1.4279 0.2269 0.1796(0.1020)

BiGL 0.0715 0.0701 0.0616(0.1014) 0.0799 0.0793 0.0553(0.1027) 1.1097 0.3550 0.2061(0.1023) 1.4961 0.3544 0.2093(0.1017)

mGAM 0.0894 0.0885 0.0651(0.1011) 0.0795 0.0788 0.0611(0.1016) 1.0132 0.2441 0.1803(0.1015) 1.3828 0.2242 0.1725(0.1026)

GL 0.0683 0.0661 0.0620(0.1014) 0.0708 0.0684 0.0535(0.1011) 1.3252 0.3163 0.1935(0.1020) 1.4811 0.3576 0.1976(0.1020)

Lasso 0.2145 0.2138 0.1011(0.1013) 0.2204 0.2131 0.1080(0.1017) 3.8012 3.2412 0.5269(0.1021) 4.2121 3.5645 0.4899(0.1025)

RMR 0.2201 0.2196 0.1081(0.1020) 0.2224 0.2165 0.1108(0.1029) 1.9723 1.3241 0.3324(0.1022) 2.1518 1.3504 0.3451(0.1024)

MAM 0.7981 0.7972 0.2252(0.1044) 0.7827 0.7826 0.2155(0.1039) 0.9772 0.6943 0.2220(0.1038) 0.9145 0.6749 0.2218(0.1040)

BiGL 0.8307 0.8307 0.2318(0.1029) 0.7998 0.7934 0.2250(0.1027) 1.0727 0.7525 0.2414(0.1030) 1.0004 0.7405 0.2365(0.1034)

mGAM 0.7969 0.7967 0.2249(0.1042) 0.7787 0.7786 0.2121(0.1037) 0.9665 0.6842 0.2203(0.1038) 0.9135 0.6753 0.2226(0.1037)

GroupSpAM 0.7914 0.7916 0.2101(0.1033) 0.7604 0.7599 0.2085(0.1022) 0.9965 0.7142 0.2303(0.1048) 0.9521 0.7077 0.2294(0.1025)

GL 0.8081 0.8080 0.2241(0.1028) 0.7741 0.7708 0.2177(0.1029) 1.0501 0.7306 0.2335(0.1030) 0.9591 0.7202 0.2363(0.1029)

Lasso 2.5779 2.4777 0.3956(0.1027) 2.6801 2.6799 0.4259(0.1020) 3.8645 3.7612 0.5218(0.1020) 3.7443 3.5036 0.4963(0.1024)

RMR 1.5160 1.5061 0.3237(0.1028) 1.7654 1.6798 0.3184(0.1020) 1.9448 1.7294 0.3587(0.1025) 2.1085 2.0077 0.3329(0.1030)

4.2 Coronal mass ejection analysis

Coronal Mass Ejections (CMEs) are the most violent eruptions in the Solar System. It is cru-
cial to forecast the physical parameters related to CMEs. Despite machine learning approaches
have been applied to these tasks recently [20, 39], there is no any work for interpretable predic-
tion with data-driven structure discovery. Interplanetary CMEs (ICMEs) data are provided in The
Richardson and Cane List (http://www.srl.caltech.edu/ACE/ASC/DATA/level3/
icmetable2.htm). From this link, we collect 137 ICMEs observations from 1996 to 2016.
The features of CMEs are provided in SOHO LASCO CME Catalog (https://cdaw.gsfc.
nasa.gov/CME_list/). In-situ solar wind parameters can be downloaded from OMNIWeb Plus
(https://omniweb.gsfc.nasa.gov/). The in-situ solar wind parameters at earth is used to
represent the unknown solar wind plasma [20]. A total of 21 features are chosen as input by com-
bining the features of CMEs and in-situ solar wind parameters. Five physical parameters prediction
tasks are considered as outputs including CMEs arrive time, Mean ICME speed, Maximum solar
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wind speed, Increment in solar wind speed and Mean magnetic field strength. We split the data
of each task into training set, validation set and test set (with ratio 2 : 2 : 1) and adopt the same
settings in simulations. Table 3 demonstrates that MAM enjoy smaller average absolute error than
the competitors. In addition, the estimated structure (via MAM) is described in Figure 3. From
Figure 3 and Table 3, we know group G1 (including Mass, MPA, Solar wind speed, Vy) and group
G2 (including Acceleration and Linear Speed) are significant for most tasks. Particularly, G2 and
G7 (2nd-order Speed at final height) can be characterized as the factors that reflect the CMEs speed.
Table 3 shows that the groups G2 and G7 play an important role in CMEs arrive time prediction,
which is consistent with the results in [20]. In addition, the impact of hyper-parameter are displayed
in Supplementary Material D.2 due to the space limitation. Overall, the proposed MAM can achieve
the promising performance on prediction and structure discovery.

Table 3: Average absolute error and dominant group for each task.
Tasks CMEs arrive time Mean ICME speed Maximum solar wind speed Increment in solar wind speed Mean magnetic field strength

Methods AAE (h) Groups AAE (km/s) Groups AAE (km/s) Groups AAE (km/s) Groups AAE (nT ) Groups

MAM 9.07 G1 ,G2 ,G7 45.41 G1 ,G2 ,G3 ,G6 59.32 G1 ,G2 65.38 G1 ,G2 ,G3 3.47 G1
BiGL 11.09 - 53.75 - 46.51 - 89.97 - 5.21 -
Lasso 12.16 - 62.56 - 59.81 - 85.34 - 4.38 -
RMR 12.02 - 62.23 - 51.90 - 86.13 - 3.98 -

1 2 3 4 5 6 7 8 9 10
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Proton  density

Temperature

Flow pressure
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Figure 3: Variable structure Ŝ (white pixel=the grouped variables, red pixel=the inactive variables).

5 Conclusion

This paper proposes the multi-task additive models to achieve robust estimation and automatic
structure discovery. As far as we know, it is novel to explore robust interpretable machine learning
by integrating modal regression, additive models and multi-task learning together. The computing
algorithm and empirical evaluations are provided to support its effectiveness. In the future, it is
interesting to investigate robust additive models for overlapping variable structure discovery [17].

Broader Impact

The positive impacts of this work are two-fold: 1) Our algorithmic framework paves a new way for
mining the intrinsic feature structure among high-dimensional variables, and may be the stepping
stone to further explore data-driven structure discovery with overlapping groups. 2) Our MAM can
be applied to other fields, e.g, gene expression analysis and drug discovery. However, there is also a
risk of resulting an unstable estimation when facing ultra high-dimensional data.
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