- To Reviewer #3: Thank you for your careful reading and thoughtful reviews.
- 01: Theorems 3 and 4. (i) Theorem 3: Theorem 3 shows that SD2 helps to reduce the overestimation bias compared
- with DDPG. We empirically show that SD2 does not underestimate and can reduce the absolute bias in Figure 4. It will
- be interesting to further study the theoretical problem in future work. (ii) Clarification of Theorem 4: We clarify the
- correctness of Theorem 4 as below. The left-hand side in Eq. (19) equals to $\mathbb{E}\left[\mathcal{T}_{TD3}(s')\right]$. Since TD3 uses target policy
- smoothing (which adds a sampled noise to the action) when estimating the value of s' in implementation, $\mathbb{E}\left[\mathcal{T}_{TD3}(s')\right]$
- is exactly the averaged Q-value and Eq. (19) holds.
- Q2: The rate in example 1. We present example 1 to show that our bound is tight when β is large. We will clarify this in 8
- the revised version to make this point clear.
- Q3: What if $\ln F$ is negative in Theorem 2? In the case where $\ln F$ is negative, the last term on the right-hand side of 10
- Theorem 2 still converges to 0, as $\ln F$ is bounded for any given positive ϵ . Thus, the error between the value function 11
- induced by the softmax operator and the optimal one can still be bounded and controlled.
- Q4: Clarifications of condition and definitions. (i) Condition on the action set A. It is required to be bounded, and we 13
- will clarify this point in the paper. (ii) Definition of bias. As defined in line 188 in the text, it denotes the difference 14
- between the estimated value of the next state induced by the operator \mathcal{T} and the true value of the next state. (iii) 15
- Definition of \mathcal{T}_{SD3} . The definition is given in Eq. (18) in the appendix, and we will formally define it in the main text. 16
- Q5: How is the performance of the proposed approximation method? The results in continuous 17
- control tasks can validate that the proposed practical approximation method achieves good
- performance. We also conduct an ablative experiment which studies the effect of noise clipping
- that we proposed for a robust estimate of the softmax Q-value in HalfCheetah-v2. As shown
- in the figure, SD3 outperforms its counterpart without using noise clipping as expected. We 21
- will discuss it in the paper. 22

- To Reviewer #4: Thank you for your careful reading and valuable comments, and we greatly appreciate your sugges-23 tions! We will clarify the details, include a high-level figure for the structure, and polish the figures to make the fonts 24
- larger in the revised version. 25

34

- Q1: A more fundamental view why softmax alleviates both over- and under-estimation problem. We appreciate the 26 suggestion, and it is an interesting direction to unify SD2 and SD3 into a same framework that leverages softmax and 27
- single or double critics to study the effects on value estimations. We will try to further investigate it in future research. 28
- Q2: Related works about ensemble methods. Thanks for the suggestion, we will definitely incorporate the discussion 29 and connection with ensemble methods in the paper.
- To Reviewer #6: Thank you for your detailed evaluation of our paper and thoughtful reviews, and the comments are greatly appreciated! We will restructure Section 4.2 to make it more clear.
- Q1: About the action space. (i) Requirement: Yes, the action space is required to be bounded. Thanks for pointing this 33
- out, and we will clarify this in the paper. (ii) Large action space: For large action space, the gap will also approach to $\epsilon/(1-\gamma)$ as β increases. It will be an interesting direction to further improve the theoretical bound. 35
- Q2: Clarifications of notations and the algorithm. Thanks for pointing these out, and we will clarify them in the revised
- version. (i) The term c in Theorem 3. Yes, it refers to the noise clipping in Section 4.2 (line 179), based on which we 37
- defined the SD2 operator. Theorem 3 proves that the SD2 operator defined in the paper with this form helps to reduce
- 39 the overestimation bias compared with DDPG. (ii) The (1-d) term in the algorithm box. The notation d refers to the
- boolean type done signal, i.e., whether the step is the end of an episode. (iii) Importance sampling in the algorithm box. 40
- We will elaborate the details for computing softmax with importance sampling in the algorithm box. 41
- To Reviewer #7: Thank you for your careful reading and thoughtful reviews. 42
- Q1: Clarification of the significance of Theorems 1 and 2. Thanks for the question. The reason why the theorem in Song 43
- et al. shows that the bound converges to 0 (which considers the discrete case) while the bound in our paper does not, is
- due to the critical difference between continuous and discrete action spaces, where we have discussed the difference in 45
- Appendix A.1.1. We show that for any $\epsilon > 0$, our bound can converge to $\epsilon/(1-\gamma)$, which can be arbitrarily close to 0. 46
- *Q2: Does the first term in the bias definition depends on* θ^{true} ? Please note that $\mathbb{E}\left[\mathcal{T}(s')\right]$ is determined by the target 47
- policy network and the target value network with parameter θ^- , and does not depend on θ^{true} . 48
- Q3: How to choose the parameter β ? For implementation, we use grid search to find the best value of β to trade-off 49
- between the bias and variance of value estimates, as discussed in lines 296-299 in the text. It is also interesting to study
- an adaptive scheduling strategy of β , and we leave it as a future work.