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A Proofs in Section 4

A.1 Proof of Theorem 1

Theorem 1 Let C(Q, s, ε) = {a|a ∈ A, Q(s, a) ≥ maxaQ(s, a)− ε} and F (Q, s, ε) =∫
a∈C(Q,s,ε) 1da for any ε > 0 and any state s. The difference between the max operator and

the softmax operator satisfies

0 ≤ max
a

Q(s, a)− softmaxβ (Q(s, ·)) ≤
∫
a∈A 1da− 1− lnF (Q, s, ε)

β
+ ε. (1)

Proof. For the left-hand-side, we have by definition that

softmaxβ (Q(s, ·)) ≤
∫
a∈A

exp(βQ(s, a))∫
a′∈A exp(βQ(s, a′))da′

max
a′

Q(s, a′)da ≤ max
a

Q(s, a). (2)

For the right-hand-side, we first provide a relationship between the softmax operator and the log-
sum-exp operator lseβ (Q(s, ·)) (Eq. (9) in [4]) in continuous action spaces, i.e., lseβ (Q(s, ·)) =
1
β ln

∫
a∈A exp(βQ(s, a))da.

Denote the probability density function of the softmax distribution by pβ(s, a) =
exp(βQ(s,a))∫

a′∈A exp(βQ(s,a′))da′
. We have

lseβ (Q(s, ·))− softmaxβ (Q(s, ·))

=
ln
∫
a∈A exp(βQ(s, a))da

β
−
∫
a∈A

pβ(s, a)Q(s, a)da

=

∫
a∈A pβ(s, a)(ln

∫
a′∈A exp(βQ(s, a′))da′)da

β
−
∫
a∈A pβ(s, a)βQ(s, a)da

β

=

∫
a∈A−pβ(s, a) ln pβ(s, a)da

β
.

(3)

As pβ(s, a) is non-negative, we have that ∀a,−pβ(s, a) ln pβ(s, a) ≤ 1− pβ(s, a).

Note that
∫
a∈A pβ(s, a)da = 1. We have

lseβ (Q(s, ·))− softmaxβ (Q(s, ·)) ≤
∫
a∈A 1da− 1

β
. (4)
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Secondly, by the definition of the log-sum-exp operator and the fact that C(Q, s, ε) is a subset of A,
we have

lseβ (Q(s, ·)) =
ln
∫
a∈A exp(βQ(s, a))da

β

≥
ln
∫
a∈C(Q,s,ε) exp(βQ(s, a))da

β

≥
ln
∫
a∈C(Q,s,ε) exp (β(maxaQ(s, a)− ε)) da

β

≥ lnF (Q, s, ε) + β (maxaQ(s, a)− ε)
β

.

(5)

As a result, we get the inequality of the max operator and the log-sum-exp operator as in Eq. (6).

lseβ (Q(s, ·)) ≥ max
a

Q(s, a) +
lnF (Q, s, ε)− βε

β
. (6)

Finally, combining Eq. (4) and Eq. (6), we obtain Eq. (1).

Remark. In a special case where for any state s, the set of the maximum actions at s with respect
to the Q-function Q(s, a) covers a continuous set, ε can be 0 and the upper bound in Eq. (1) still

holds as F (Q, s, 0) > 0, which turns into
∫
a∈A 1da−1−lnF (Q,s,0)

β . Please also note that when Q(s, a)

is a constant function w.r.t. a, the upper bound will be 0 in this case as from Eq. (3), we get that
lseβ (Q(s, ·))− softmaxβ (Q(s, ·)) =

ln
∫
a∈A 1da

β and lseβ (Q(s, ·)) ≥ maxaQ(s, a) +
ln

∫
a∈A 1da

β .

A.1.1 Discussion of Theorem 1 and Results in [6].

A recent work [6] studies the distance between the max and the softmax operators in the discrete
setting. However, the proof technique in [6] is limited to discrete action space, and cannot be naturally
extended to continuous action space. Specifically, following the line of analysis in [6], the gap
between the max operator and the softmax operator is given by∫

a∈A
1
D exp(−βδ(s, a))δ(s, a)da∫

a∈A
1
D exp(−βδ(s, a))da

=

∫
a∈A−Am

1
D exp(−βδ(s, a))δ(s, a)da

c+
∫
a∈A−Am

1
D exp(−βδ(s, a))da

, (7)

where Am is the set of actions where the Q-function Q(s, ·) attains the maximum value, δ(s, a) =

maxa′ Q(s, a′) − Q(s, a), D =
∫
a∈A 1da, and c =

∫
a∈A

Ia∈Am

D da, where Ia∈Am
is the indicator

function of event {a ∈ Am}. Please note that the analysis in [6] requires that c > 0, which does
not always hold in the continuous case. As a result, the proof technique in [6] cannot be naturally
extended to the continuous action setting, and we provide a new and different analysis in Theorem 1.

A.2 Proof of Theorem 2

Theorem 2 For any iteration t, the difference between the optimal value function V ∗ and the value
function induced by softmax value iteration at the t-th iteration Vt satisfies:

||Vt−V ∗||∞ ≤ γt||V0(s)−V ∗(s)||∞+
1

1− γ
βε+

∫
a∈A 1da− 1

β
−

t∑
k=1

γt−k
mins lnF (Qk, s, ε)

β
.

(8)

Proof. By the definition of softmax value iteration, we get

|Vt+1(s)− V ∗(s)|
=|softmaxβ (Qt+1(s, ·))−max

a
Q∗(s, a)|

≤|softmaxβ (Qt+1(s, ·))−max
a

Qt+1(s, a)|+ |max
a

Qt+1(s, a)−max
a

Q∗(s, a)|.
(9)
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According to Theorem 1 and the fact that the max operator is non-expansive [5], we have

|Vt+1(s)− V ∗(s)| ≤
βε+

∫
a∈A 1da− 1− lnF (Qt+1, s, ε)

β
+ max

a
|Qt+1(s, a)−Q∗(s, a)|.

(10)

We also have the following inequality

|Qt+1(s, a′)−Q∗(s, a′)| ≤ γmax
s′
|Vt(s′)− V ∗(s′)|. (11)

Combining (10) and (11), we obtain

||Vt+1(s)− V ∗(s)||∞ ≤
βε+

∫
a∈A 1da− 1−mins lnF (Qt+1, s, ε)

β
+ γ||Vt(s)− V ∗(s)||∞.

(12)

Therefore, we have

||Vt(s)− V ∗(s)||∞

≤γt||V0(s)− V ∗(s)||∞ +

t∑
k=1

γt−k
βε+

∫
a∈A 1da− 1−mins lnF (Qk, s, ε)

β

≤γt||V0(s)− V ∗(s)||∞ +
1

1− γ
βε+

∫
a∈A 1da− 1

β
−

t∑
k=1

γt−k
mins lnF (Qk, s, ε)

β
.

(13)

B Softmax Helps to Smoooth the Optimization Landscape

B.1 Comparative Study on the Smoothing Effect of TD3 and SD3

We demonstrate the smoothing effect of SD3 on the optimization landscape in this section, where
experimental setup is the same as in Section 4.1 in the text for the comparative study of SD2 and
DDPG. Experimental details can be found in Section B.2.

(a) Performance comparison. (b) Scatter plot.

Figure 1: Analysis of smoothing effect of TD3 and SD3 in the MoveCar environment.

The performance comparison of SD3 and TD3 is shown in Figure 1(a), where SD3 significantly
outperforms TD3. Next, we analyze the smoothing effect of SD3 on the optimization landscape
by the same way as in Section 4.1 in the text. We obtain the scatter plot of random perturbation in
Figure 1(b). Specifically, φ0 and φ1 are policy parameters learned by TD3 and SD3 during training
from a same random initialization, where φ0 corresponds to a sub-optimal policy that determines to
move to the right at the initial position x0 while φ1 corresponds to an optimal policy that determines
to move to the left and is able to stay in the high-reward region. As demonstrated in Figure 1(b),
for TD3, we observe that blue triangles are around the origin, so the perturbations for its policy
parameters φ0 are close to zero. This implies that there is a flat region in LTD3 and can be difficult
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for gradient-based methods to escape from [1]. For SD3, as the perturbations for its policy parameters
φ1 with respect to LSD3 are all positive (orange circles), the point φ1 is likely a local optimum. To
demonstrate the critical effect of the softmax operator on the objective, we also evaluate the change
of the loss function LSD3 of SD3 with respect to parameters φ0 from TD3. As shown in Figure 1(b),
the green squares indicate that the loss LSD3 can be reduced following many directions, which shows
the advantage of optimizing the softmax version of the objective.

(a) Performance comparison. (b) Scatter plot.

Figure 2: Analysis of smoothing effect of TD3-K and SD3 in the MoveCar environment.

So far, we have demonstrated the smoothing effect of SD3 over TD3. We further compare SD3
and TD3-K (which is introduced in Section 5.1 in the text) to demonstrate the critical effect of the
softmax operator on the objective. The performance comparison is shown in Figure 2(a), where K is
the same as in SD3. As shown, although TD3-K performs better than TD3, SD3 still outperforms
TD3-K by a large margin in final performance. With the same way of random perturbation as in the
previous part, we demonstrate the scatter plot of the random perturbation in Figure 2(b). Similarly,
the evaluation of the change of the loss function LSD3 of SD3 with respect to parameters φ0 from
TD3-K (green squares) shows the critical effect of the softmax operator on the objective, as the loss
can be reduced following a number of directions.

B.2 Experimental Setup in the MoverCar Environment

Hyperparameters of DDPG and SD2 are summarized in Table 1. For TD3 and SD3, hyperparameters
are the same as in Table 2, except that we use N (0, 0.5) as in Table 1 for exploration to ensure that
the exploration noise is high enough during training to exclude the effect of lack of exploration. For
the TD3-K algorithm in Figure 2, K is the same as in SD3. We run all algorithms are 100 times
(with different random seeds 0-99).

Table 1: Hyperparameters of DDPG and SD2.
Hyperparameter Value

Shared hyperparameters (From [3])
Batch size 100
Critic network (400, 300)
Actor network (400, 300)
Learning rate 10−3

Optimizer Adam
Replay buffer size 106

Warmup steps 104

Exploration policy N (0, 0.5)
Discount factor 0.99
Target update rate 5× 10−3

Hyperparameters for SD2
Number of samples K 50
Action sampling noise σ̄ 0.2
Noise clipping coefficient c 0.5
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C Softmax Deep Deterministic Policy Gradients

C.1 The SD2 Algorithm

The full SD2 algorithm is shown in Algorithm 1.

Algorithm 1 SD2

1: Initialize the critic network Q and the actor network π with random parameters θ, φ
2: Initialize target networks θ− ← θ, φ− ← φ
3: Initialzie replay buffer B
4: for t = 1 to T do
5: Select action a with exploration noise ε ∼ N (0, σ) based on π
6: Execute action a, observe reward r, new state s′ and done d
7: Store transition tuple (s, a, r, s′, d) in B
8: Sample a mini-batch of N transitions {(s, a, r, s′, d)} from B
9: Sample K noises ε ∼ N (0, σ̄)

10: â′ ← π(s′;φ−) + clip(ε,−c, c)
11: softmaxβ (Q(s′, ·; θ−))← Eâ′∼p

[
exp(βQ(s′,â′;θ−))Q(s′,â′;θ−)

p(â′)

]
/Eâ′∼p

[
exp(βQ(s′,â′;θ−))

p(â′)

]
12: yi ← r + γ(1− d)softmaxβ (Q(s′, ·; θ−))
13: Update the parameter θ of the critic according to Bellman loss: 1

N

∑
s(Q(s, a; θ)− y)2

14: Update the parameter φ of the actor by policy gradient:
1
N

∑
s

[
∇φ(π(s;φ))∇aQ(s, a; θ)|a=π(s;φ)

]
15: Update target networks: θ− ← τθ + (1− τ)θ−, φ− ← τφ+ (1− τ)φ−

16: end for

C.2 Proof of Theorem 3

Theorem 3 Denote the bias of the value estimate and the true value induced by T as bias(T ) =
E [T (s′)]− E [Q(s′, π(s′;φ−); θtrue)]. Assume that the actor is a local maximizer with respect to the
critic, then there exists noise clipping parameter c > 0 such that bias(TSD2) ≤ bias(TDDPG).

Proof. By definition, we have

TDDPG(s′) = Q(s′, π(s′;φ−); θ−), TSD2(s′) = softmaxβ(Q(s′, ·; θ−)) (14)

Assume that the actor is a local maximizer with respect to the critic. There exists c > 0 such that
for any state s′, the action selected by the policy π(s′;φ−) at state s′ is a local maximum of the
Q-function Q(s′, ·; θ−), i.e.,

Q(s′, π(s′;φ−); θ−) = max
a∈Ac

Q(s′, a; θ−). (15)

From Theorem 1, we have that

softmaxβ(Q(s′, ·; θ−)) ≤ max
a∈Ac

Q(s′, a; θ−). (16)

Thus,
softmaxβ(Q(s′, ·; θ−)) ≤ Q(s′, π(s′;φ−); θ−), (17)

and we obtain TSD2(s′) ≤ TDDPG(s′). Therefore, bias(TSD2) ≤ bias(TDDPG).

C.3 Comparison of Estimation of Value Functions of DDPG and Deterministic SAC

Figure 3(a) shows the value estimates and true values of DDPG and Deterministic SAC, and Fig-
ure 3(b) demonstrates the corresponding bias of value estimations, from which we observe that
Deterministic SAC incurs larger overestimation bias in comparison with DDPG.
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(a) Value estimates and true values. (b) Bias of value estimations.

Figure 3: Comparison of estimations of value functions of DDPG and Deterministic SAC.

D Softmax Deep Double Deterministic Policy Gradients

D.1 Proof of Theorem 4

Theorem 4 Denote TTD3, TSD3 the value estimation functions of TD3 and SD3 respectively, then we
have bias(TSD3) ≥ bias(TTD3).

Proof. By definition, we have

TTD3(s′) = Q̂i(s
′, â
′
), TSD3(s′) = softmaxβ(Q̂i(s

′, â
′
)). (18)

Since

E
[
Q̂i(s

′, â
′
)
]

= E
[
softmax0(Q̂i(s

′, â
′
))
]
, (19)

it suffices to prove that ∀β ≥ 0,

softmaxβ

(
Q̂i(s

′, â
′
)
)
≥ softmax0

(
Q̂i(s

′, â
′
)
)
. (20)

Now we show that the softmax operator is increasing with β. By definition,

∇βsoftmaxβ (Q(s, ·))

=∇β

∫
a∈A e

βQ(s,a)Q(s, a)da∫
a′∈A e

βQ(s,a′)da′

=

∫
a∈A e

βQ(s,a)Q2(s, a)da×
∫
a′∈A e

βQ(s,a′)da′(∫
a′∈A e

βQ(s,a′)da′
)2 −

(∫
a∈A e

βQ(s,a)Q(s, a)da
)2(∫

a′∈A e
βQ(s,a′)da′

)2 .

(21)

From the Cauchy-Schwarz inequality, we have ∀β,∇βsoftmaxβ (Q(s, ·)) ≥ 0. Thus, softmaxβ
attains its minimum at β = 0.

E Experimental Setup

E.1 Hyperparameters

Hyperparameters of DDPG, TD3, and SD3 are shown in Table 2, where DDPG refers to ‘OurDDPG’
in [2]. Note that all hyperparameters are the same for all environments except for Humanoid-v2,
as TD3 with default hyperparameters in this environment almost fails. For Humanoid-v2, the
hyperparameters is a tuned set as provided in author’s open-source implementation [2] to make TD3
work in this environment. For SD3, the parameter β is 10−3 for Ant-v2, 5×10−3 for HalfCheetah-v2,
5× 10−2 for BipedalWalker-v2, Hopper-v2, and Humanoid-v2, 10−1 for Walker2d-v2, 5× 10−1 for
LunarLanderContinuous-v2, and a relatively large β = 5× 102 for Swimmer-v2.
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Table 2: Hyperparameters of DDPG, TD3, and SD3.

Hyperparameter All environments except Humanoid-v2for Humanoid-v2

Shared hyperparameters (From [3, 2])
Batch size 100 256
Critic network (400, 300) (256, 256)
Actor network (400, 300) (256, 256)
Learning rate 10−3 3× 10−4

Optimizer Adam
Replay buffer size 106

Warmup steps 104

Exploration policy N (0, 0.1)
Discount factor 0.99
Target update rate 5× 10−3

Noise clip 0.5

Hyperparameters for TD3 (From [3])
Target update interval 2
Target noise 0.2

Hyperparameters for SD3
Number of samples K 50
Action sampling noise σ̄ 0.2

E.2 The TD3-K Algorithm

We compare SD3 with TD3-K, a variant of TD3 that uses K samples of actions to evaluate the
Q-function, to demonstrate that using multiple samples is not the main factor for the performance
improvement of SD3. Specifically, TD3-K samples K actions a′ by the same way as in SD3
to compute Q-values, and take the min operation over the averaged Q-values, i.e., y1,2 = r +

γmini=1,2

(
1
K

∑K
j=1Qi(s

′, a′; θ−i )
)

.
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