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Abstract

A deep visual tracker is typically based on either object detection or template
matching while each of them is only suitable for a particular group of scenes.
It is straightforward to consider fusing them together to pursue more reliable
tracking. However, this is not wise as they follow different tracking principles.
Unlike previous fusion-based methods, we propose a novel ensemble framework,
named DTNet, with an online decision mechanism for visual tracking based on
hierarchical reinforcement learning. The decision mechanism substantiates an
intelligent switching strategy where the detection and the template trackers have to
compete with each other to conduct tracking within different scenes that they are
adept in. Besides, we present a novel detection tracker which avoids the common
issue of incorrect proposal. Extensive results show that our DTNet achieves state-
of-the-art tracking performance as well as a good balance between accuracy and
efficiency. The project website is available at https://vsislab.github.
io/DTNet/.

1 Introduction

As a fundamental task in computer vision, visual tracking aims to estimate the trajectory of a specified
object in a sequence of images. Inspired by the success of deep learning in general computer vision
tasks, recent visual tracking algorithms mostly used deep networks, particularly CNNs which extract
deep representations for various scenes. Among these deep trackers are two dominant tracking
schemes. The first one treats tracking as a detection task, which typically builds a deep network to
distinguish the foreground target from the background [5, 25, 39]. The second one regards tracking as
a template matching task and addresses it via a matching network such as Siamese network, which
learns a general similarity function to obtain the image patch best matching the target [11, 15, 29].

The detection tracker continuously updates the network online with the image patch detected as the
target by itself. The diverse appearances of the patches lead to a good adaptability of the tracker while
the continuous update is inefficient for real-world tracking. Also, albeit occasionally, an incorrect
detection in a frame which represents a noisy appearance of the target could mislead the tracker.
The template tracker utilizes the initial appearance of the target as a fixed template to conduct the
matching operation, which runs efficiently at the cost of adaptability.

Either the detection or the template tracker is merely suitable for a particular group of scenes. For
instance, as shown in the top row of Fig. 1, due to the temporal occlusion within a frame, the detection
tracker incorrectly captures the bicycle as the target in that frame and cannot recover from it in the
succeeding frame. By contrast, the template tracker is robust to the temporal occlusion as it always
looks back to the real target in the initial frame for delivering the matching. On the other hand, it
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Figure 1: Failure cases of the detection and the template tracker caused by temporal occlusion and
temporal deformation. The leftmost column shows the initial frames of the two videos.

is easy to understand that, as shown in the bottom row of Fig. 1, the template tracker is not reliable
with the temporal deformation of the target while the detection tracker works well with it. Some
recent works investigated various fusion schemes to pursue better performance [2, 17, 20, 34, 40].
However, directly fusing the two types of trackers together is not wise as they follow different
tracking principles and thus cannot converge to each individual optimum simultaneously during
training. Hence, it might be better to make them co-exist for handling different scenes alternatively.

Differing from previous fusion-based methods, this paper presents a framework of decision learning
for the ensemble of the two types of trackers where we explore how to automatically and intelligently
switch between them for tracking in different scenes. Specifically, our method makes the two trackers
compete with each other through a hierarchical reinforcement learning (HRL) framework so that
it can make a proper online decision to choose the tracker which captures the target better in the
current scene. This idea is based on the common observation as shown in Fig. 1 that different types
of trackers are merely good at tracking the targets in a particular group of frames.

We name the ensemble framework DTNet as it comprises a decision module and a tracker module as
illustrated in Fig. 2. The decision module starts with a switch network that encodes the image patch
inheriting from the previous frame and the target in the initial frame to decide whether the detection or
the template tracker should be selected for the current frame. It is followed by a termination network
which estimates the output of the tracker to generate a probability of terminating the current tracker.
The switch and the termination networks in fact form a “Actor-Critic” structure [21]. Such intelligent
switching between the two trackers repeats till all frames of the video are processed. We provide a
specifically designed scheme for jointly training the decision and the tracker modules end-to-end via
HRL.

Furthermore, to improve the detection tracker, a fully-convolutional classifier is learned to differentiate
the target from the distracting content, Since it does not rely on a number of candidate proposals to
predict the bounding boxes of the target, it actually avoids the issue of the incorrect prediction of such
proposals that could mislead the tracker. The contributions of this paper are summarized as follows.

• We propose an ensemble framework which learns an online decision for visual tracking
based on HRL where the detection and the template trackers compete with each other to
substantiate a switching strategy.

• We develop a novel proposal-free detection tracker, which does not require the proposal of
candidate bounding boxes of the target and thus make the discriminating course flexible.

• Our method demonstrates the state-of-the-art performance on several benchmarks. The abla-
tion studies show that the decision mechanism composed of the switch and the termination
networks can effectively select the proper trackers for different scenes.
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Figure 2: Overview of the DTNet

2 Related Work

Detection trackers. Trackers based on object detection in each video frame usually learn a classifier
to pick up the positive candidate patches wrapping around previous observation. Nam and Han [25]
proposed a lightweight CNN to learn generic feature representations by shared convolutional layers
to detect the target object. Han et al. [14] selected a random subset of branches for model update
to diversify learned target appearance models. Fan and Ling [13] took into account self-structural
information to learn a discriminative appearance model. Song et al. [30] integrated adversarial
learning into a tracking-by-detection framework to reduce overfitting on single frames. However,
the occasional incorrect detection in a frame is still prone to contaminate and mislead the target
appearance models.

Template trackers. Trackers based on template matching have recently gained popularity due to its
efficiency, which learns a similarity function to match the target template with the image patch in
the searching region of each frame. Tao et al. [31] utilized Siamese network in an offline manner to
learn a matching function from a large set of sequences, and then used the fixed matching function to
search for the target in a local region. Bertinetto et al. [4] introduced a fully convolutional Siamese
network (SiamFC) for tracking by measuring the region-wise feature similarity between the target
object and the candidate. Wang et al. [36] incorporated an attention mechanism into Siamese network
to enhances its discriminative capacity and adaptability. However, these trackers are prone to drift
when the target suffers the variations such as shape deformation and color change in appearance due
to the fixed appearance of the template without an online update.

Fusion-based trackers. There exist some trackers adapting fusion strategies. The MEEM algorithm
[40] proposed a multi-expert tracking framework with an entorpy regularized restoration scheme. And
Li et al. [20] introduced a discrete graph optimization into the framework to handle the tracker drift
problem. Wang et al. proposed MCCT [35] which selected the reliable outputs from multiple feature
to refine the tracking results. Bertinetto et al. [3] combine two image patch representations that
are sensitive to complementary factors to learn a model robust to colour changes and deformations.
However, it is not easy to fuse multiple trackers significantly different in principle, as they can
hardly converge to each individual optimum simultaneously during training. Unlike the fusion-based
methods above, our method aims to learn an online strategy to decide which tracker should be used
for each individual frame.

3 Method

As shown in Fig. 2, the proposed framework consists of two modules: the decision module and
the tracker module. As the key component of the entire framework, the former contains the switch
network and the termination network, which work together to alternatively select the template or the
detection tracker which compete with each other in the tracking task and jointly form the tracker
module. In the decision module, the switch network encodes an image patch Φt inheriting from the
previous frame It−1 and the initial template Φ∗, and then outputs a binary signal to select a tracker.
A tracker can estimate the location of the target for the current frame It. The termination network
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estimates the output of the tracker and generates a probability to decide if the framework should keep
using the current tracker or terminate it, which makes the decision module avoid oscillating between
the two trackers especially when they have similar accuracy. Note that if the termination network
decides to terminate, it merely indicates that the current tracker in use does not work well while it
does not necessarily means that the other tracker can performs better. Thus in this case, the switch
network will still select a new tracker from the two candidate trackers instead of blindly switching to
the other tracker currently not in use. Fig. 2 illustrates all of the 4 possible switching situations of the
framework.

3.1 Decision Module

Given a set of states S and actions A, the Markovian options w ∈ Ω consist of three components [1]:
an intra-option policy π : S × A→ [0, 1], a termination condition β : S+ → [0, 1], and an initiation
set I ⊆ S. Here we assume that ∀s ∈ S, ∀w ∈ Ω : s ∈ I (i.e., the trackers are both available in all
states). If an option ω is taken, then actions are selected according to πω until the option terminates
stochastically according to βω . For controlling the switch of tracker in an HRL manner, the decision
module utilizes the termination policy together with the policy over options corresponding to the
trackers. Let QΩ denote the switch network which can be viewed as a function subject to option Ω
parameterized with its network weights θ and the termination network βΩ,ν . A termination probability
which decides if the current tracker in use should be terminated is estimated by βΩ,ν depending on
option Ω and its network weights ν. Specifically, we define QΩ as below to evaluate the value of
option ω in a manner of hierarchical reinforcement learning:

QΩ(s, w; θ) = r(s, w) + γU(s′, ω), (1)

where r(s, w) denotes the reward that the agent receives after implementing ω representing the option
for selecting a particular tracker. γ is the discount factor and U(s′, ω) is the value of executing ω
on a new state s′ related to the termination probability βω,ν , which is computed by combining the
outputs of the switch and the termination networks:

U(s′, ω) = (1− βω,ν(s′))QΩ(s′, w) + βω,ν(s′)VΩ(s′), (2)

where βω,ν(s′) is the termination probability on the state s′, and VΩ is the optimal of the switch
function which can be found by searching for the maximum of the switch function QΩ over option ω:

VΩ = max
ω

(QΩ(s′, ω)). (3)

If the current option, expressed as ωgood, works well, the agent will not terminate it, which means
that βω,ν is close to 0. Thus based on Eq. (2), we have U(s′, ωgood) ≈ QΩ(s′, ωgood). If it is not
a good option, according to Eq. (3), we have VΩ = QΩ(s′, ωgood). In this case, the agent tends to
terminate the current option, which means that βω,ν is close to 1. Thus according to Eq. (2), we also
have U(s′, ωgood) ≈ QΩ(s′, ωgood) as desired. Note that U(s, ω) is differentiable. Its gradient with
respect to the weights ν of the termination network is expressed as:

∂U(s′, ω)

∂ν
= −∂βω,ν(s′)

∂ν
(QΩ(s′, ω)− VΩ(s′)) + (1− βω,ν(s′))

∂U(s′′, ω′)

∂ν
. (4)

A similar form as in Eq. (4) can be derived by expanding U(s′′,ω′)
∂ν recursively. Here the state-option

pairs (s, ω) in one time step is involved in the calculation. As shown in Fig. 2, the switch network
QΩ(s, ω) acting as the ‘Critic’ evaluates the value of options and provides the updating gradients
for the network termination network βω,ν , which essentially acts as the ‘Actor’ and evaluates the
performance of the tracker in use to decide if it should be terminated in the current frame so that the
agent could optionally switch to the other tracker for the next frame. The weights θ of the switch
network are learned the Bellman equation and the details will be given in Section 3.3.

3.2 Tracker Module

Template tracker. We adopt SiamFC [4] as the template tracker. The standard Siamese architecture
takes as input an image pair containing an exemplar image z and a candidate image x. The image
z represents the object of interest (e.g., an image patch centered on the target object in the first
video frame), while x is typically larger and represents the searching area in the subsequent video
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Figure 3: Architecture of the proposed FCT tracker

frames. The features of z and x are extracted by the same CNN ϕ parametrized with τ , which are
cross-correlated as:

fτ (z, x) = ϕτ (z) ? ϕτ (x) + b (5)
where b denotes a bias term which takes the value b∈R at every location, ? represents the operation
of convolution. Eq. (5) performs an exhaustive search for the pattern z over the image x. The goal is
to match the maximum value in the response map f to the target location.

Detection tracker. To build a tracker based on object detection while avoiding the expensive process
of proposal generation, we adopt a fully convolutional tracker, namely FCT, as shown in Fig. 3
which includes a classification branch and a regression branch. The classification branch predicts the
location of the target and while the regression branch a 4D vector indicating the distances from the
center of the target to the edges of its bounding box.

Given the feature map F∈RH×W×C of a backbone CNN and the sum s of all strides applied in
previous layers, each location (x, y) in F corresponds to (b s2c+ xs, b s2c+ ys) in image. And we
directly predict the class label and the regressed distances for each location in F [32].

It is possible that the same class of objects are considered as targets in one sequence but background
objects in another one. Due to such variations and inconsistencies, only using a typical classifier to
simply assign “1” to the target and “0” to the background for all sequences is likely to cause conflicts
across sequences [25]. Therefore, the proposed classification branch separates domain-independent
information from the last domain-specific layer to capture shared representations via shared layers.
Specifically, in each domain the location (x, y) is considered as a positive sample if it falls into
the groundtruth box and the class label c∗ is assigned 1. Otherwise, it is a negative sample (i.e.
background) and the class label c∗ is set to 0.

The regression branch outputs a 4D vector re∗ = (l∗, t∗, r∗, b∗) where l∗, t∗, r∗ and b∗ denote the
distances from the location of the target to the four edges of its bounding box as shown in Fig. 3. The
tracker finally outputs the classification score map c and the regression value re. The loss function
for training is given as below:

L(c, r) =
1

N

N∑
i=1

Lcls(ci, c
∗
i ) +

λ

N
[Where{c∗>0}]

N∑
i=1

Lreg(rei, re
∗
i ), (6)

where N denotes the total number of the video frames for training.

3.3 Joint Training of Decision and Tracker Modules

In this section, we detailed the joint training procedure of the DTNet, in which the decision and
the tracker modules are trained end-to-end. Given K training sequences, for the j-th one we
randomly extract a piece of training sequences Ij = {I1j , I2j , ..., ITj} with the corresponding
ground truth Gj = {G1j , G2j , ..., GTj} in order, and each pair of adjacent frames is subject to a skip
of n(0 6 n 6 5) frames with some probability. The initial target is sampled around the ground truth
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randomly in the first frame and regarded as the template. The switch network optionally evaluates the
features encoded in the template and the observation inheriting from the previous frame and then
selects a tracker. The reward during the switching process is defined as:

rt(s, ω) =


ηL ·DIoU , IF (Pt > thhi and P

∗
t < thlo)

ηL ·DIoU , IF (Pt < thlo and P
∗
t > thhi)

ηM ·DIoU , IF (Pt > thhi and P
∗
t > thhi)

ηS ·DIoU , IF (Pt < thlo and P
∗
t < thlo)

(7)

where Pt is the intersection-over-union (IoU) between the predicted bounding box Bt from the
selected tracker and the ground truth Gt and P ∗t is the IoU corresponding to the unselected tracker.
DIoU is the difference value between them. Actually, three cases are divided by the above setup of
reward: (1) One succeeds while the other fails; (2) Both succeed; (3) Both fail. Accordingly, three
enlarger coefficients are assigned in descending order, which leads to select the agent with higher
accuracy while guides the tracking competition. The samples are collected by the unselected tracker
respectively to update the corresponding network. In other words, we keep on training the worse one
to maintain the competitive relationship between the two trackers. A new state s′ is updated for the
current frame by the prediction. Then, the agent takes the probability of βω,ν(s′) to terminate the
previous option and re-evaluate the value of options.

For the switch module, the ‘Critic’ model QΩ(s, ω) can be learned using the Bellman equation [22],
the learning process is achieved by minimizing the following loss:

L =
1

N

N∑
i=1

(yi −QΩ(si, ωi; θ))
2 (8)

where yi = r(si, wi)+γ(1−βωi,ν(s′i)QΩ(s′i, ωi))+βωi,ν(s′i)VΩ(s′i). And the ‘Actor’ module βω,ν
updates as follows:

ν = ν − αν
∂βω,ν(s′)

∂ν
(QΩ(s′, ω)− VΩ(s′)). (9)

Please refer to Algorithm 1 in the supplementary material available at the website mentioned in the
abstract for the details of the whole training process.

4 Experimental Results

In this section, we conduct comparative evaluations on the benchmarks including OTB-2013 [37],
OTB-50 [38], OTB-100 [38], LaSOT [12], TrackingNet [24], UAV123 [23] and VOT18 [18] with three
considerations: 1) We compare the proposed DTNet with state-of-the-art trackers; 2) To demonstrate
the effectiveness of the switch module, we compare the DTNet with some of its variants by employing
different rackers; 3) We further compare our method with the trackers fused at the feature level to
demonstrate the advantage of the decision-based strategy. Apart from the experimental results shown
in this section, please refer to the website mentioned in the abstract for the supplementary results
including the online visualization of the decision module of the proposed DTNet and the comparison
with the state-of-the-art tracking methods.

Implementation details. We build the switch and the termination networks by three convolutional
layers and two fully connected layers, which receive the image patch of 84×84 as input. The
sequences from VID [28] and Youtube_BB [27] datasets are used to train the DTNet including the
decision and the tracker modules for 6 ×105 episodes with Adam optimizer. We set the capacity
of the replay buffer to 5000, the learning rate to 0.0001, the discount factor γ in Equ. 1 to 0.2, the
batch size to 128 and nκ is set to 3 ×105. For the ε-greedy algorithm, ε is set to 1 and decays to 0.1
gradually. The experiments were implemented in PyTorch on a computer with a 3.70GHz Intel Core
i7-8700K CPU and two NVIDIA GTX 1080Ti GPUs. The average tracking speed is 36 FPS.

Comparison with state-of-the-art trackers. We compare the DTNet (with FCT+SiamFC in this
version) with the state-of-the-art trackers including CNN_SVM [16], SiamFC [4], DSST [9], ECO [8],
SRDCF [10], SCT [6], HDT [26] and Staple [3]. In Fig. 4, we can observe that our DTNet achieves
state-of-the-art performance in terms of the success rate and the precision on the OTB-2013, OTB-50
and OTB-100 datasets. It is noteworthy that although DTNet performs slightly worse than ECO, it
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Figure 4: Results on OTB-2013, OTB-50 and OTB-100 in terms of success rate and precision

is much more efficient than ECO. The high performance of DTNet can be attributed to two aspects.
First, the decision module intelligently selects a proper tracker for each frame instead of fusing
two trackers that could conflict with each other. Second, we improve the original detection tracker
by considering the domain knowledge, and makes the discriminating course more flexible through
eliminating the candidate boxes.

Comparison with variants. We conduct ablation study to investigate the effectiveness of the DTNet.
By comparing the quantitative results listed in the top half of Table 1 with those in its bottom half, we
can see that the DTNet which combines two trackers always outperforms its ablated version which
merely uses one tracker no matter what a single tracker is used.

To further validate the effectiveness of the decision module of the DTNet, We have included a
manually designed rule based decision module for comparison. It is implemented by picking a
particular tracker based on the confidence score of tracking subject to the thresholds set manually.
The results are given in the eighth row of Table 1. Apparently, our automated decision module
significantly outperforms such a handcrafted one which relies on handcrafted thresholds for tracker
selection. Besides, our method is more efficient as it only performs each tracker once in the decision-
making process while the handcrafted module has to carry out both trackers and use their output
confidence scores for decision.

We also compare the DTNet with its variants by exploring different combinations of trackers including
ACT [5], FCT, ATOM [7], SiamFC [4], CFNet [33] and SiamRPN++ [19]. It is noteworthy that ACT,
FCT and ATOM are detection trackers while SiamFC, CFNet and SiamRPN++ are template trackers.
We always combine a detection tracker and a template tracker to form a variant of the DTNet for
comparison. The results show that the DTNet constantly outperforms each individual tracker in terms
of AUC and precision on different benchmarks, which demonstrate the effectiveness of the decision
module. Table 1 also clearly shows that the DTNet makes a good balance between the performance
and the efficiency compared with its variants which have different combinations of trackers.

Furthermore, our framework can be easily extended to more trackers. For instance, the results of
using three trackers including ACT, FCT and SiamFC are shown in the penultimate row of the Table 1.
Considering both accuracy and efficiency, we use two trackers in the proposed DTNet.

Visualization of the decision module. Fig. 5 shows the visualization of the decision module during
training where the outputs of the switch network, i.e. the Q values for the SiamFC and the FCT
trackers estimated via the HRL (see Eq. 1), are displayed on top of each frame. It can be seen that in
the first frame, the template tracker SiamFC works well while the detection tracker FCT outperforms
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Table 1: Comparison with the variants of DTNet on different benchmarks.

Method OTB2015 TrackingNet UAV-123 LaSOT VOT18 Speed↑
AUC↑ Prec.↑ AUC↑ Prec.↑ AUC↑ Prec.↑ AUC↑ Prec.↑ A↑ R↓ EAO↑ (fps)

ACT 0.625 0.859 0.533 0.578 0.512 0.708 0.339 0.301 0.518 0.344 0.296 30

FCT 0.616 0.812 0.541 0.593 0.542 0.697 0.351 0.327 0.493 0.349 0.278 41

SiamFC 0.582 0.771 0.531 0.571 0.493 0.575 0.336 0.339 0.503 0.585 0.188 86
CFNet 0.589 0.777 0.507 0.529 0.468 0.538 0.275 0.259 0.431 0.592 0.168 67

ATOM 0.661 0.867 0.703 0.648 0.642 0.825 0.515 0.576 0.590 0.204 0.401 30

SiamRPN++ 0.696 0.914 0.733 0.694 0.613 0.807 0.496 0.569 0.600 0.234 0.414 35

DiMP 0.660 0.859 0.723 0.666 0.643 0.821 0.532 0.581 0.594 0.182 0.402 57

Manually designed rule-based 0.544 0.716 0.416 0.402 0.453 0.618 0.283 0.302 0.470 0.682 0.158 19

DTNet (ACT+SiamFC) 0.649 0.875 0.541 0.580 0.519 0.710 0.352 0.342 0.520 0.329 0.303 26

DTNet (ACT+CFNet) 0.655 0.880 0.537 0.582 0.519 0.709 0.356 0.315 0.521 0.389 0.283 24

DTNet (FCT+CFNet) 0.643 0.861 0.546 0.601 0.513 0.697 0.353 0.332 0.496 0.338 0.283 32

DTNet (FCT+SiamFC) 0.660 0.891 0.610 0.583 0.533 0.731 0.360 0.341 0.518 0.277 0.300 36

DTNet (ACT+FCT+SiamFC) 0.665 0.893 0.621 0.585 0.539 0.726 0.364 0.342 0.521 0.287 0.298 23

DTNet (ATOM+SiamRPN++) 0.701 0.916 0.737 0.698 0.649 0.831 0.516 0.579 0.604 0.197 0.418 27

Q (SiamFC) = 4.12
Q (FCT) = 3.57

Q (SiamFC) = 1.73
Q (FCT) = 4.21

Q (SiamFC) = 1.10
Q (FCT) = 4.57
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Figure 5: Visualization of the decision module using three sample frames within the training phrase.

it in the second frame according to the Q value. Thus it leads to a high probability to terminate
the current template tracker and switch to the detection tracker. And in the third frame, since the
detection tracker outperforms the template tracker again, the termination probability remains low and
thus the detection tracker is still in use as desired.

Comparison with fusion-based trackers. We further compare our DTNet with some trackers based
on the fusion strategy. According to the quantitative results listed in Table 2, our method exhibits
the best performance among real-time trackers on all four datasets. By associating Table 1 with
Table 2, we find that although either FCT or SiamFC alone is outperformed by some state-of-the-art
fusion-based trackers such as HSME (on OTB-2013) and MCCT-H (on OTB-2013 and OTB-100), the
DTNet that combines them in a switching manner through the decision module performs significantly
better than them. Such a finding demonstrates that the switching-based combination delivered by the
decision module of the proposed DTNet is superior to the fusion-based combination that is broadly
adopted by the existing state-of-the-art trackers.
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Table 2: Comparison with the fusion-based trackers in terms of AUC

Benchmarks
Trackers Staple [3] BranchOut [14] HSME [20] MCCT-H [35] MEEM [40] DTNet

OTB-2013 0.600 - 0.671 0.664 0.566 0.681

OTB-50 - - - - 0.473 0.626

OTB-100 0.578 0.678 0.627 0.642 0.530 0.660

LaSOT 0.243 - - - 0.257 0.360

5 Conclusions

In this paper, we proposed an ensemble framework, namely DTNet, composed of a decision module
and a tracker module for visual tracking. By HRL, the decision module enables the detection tracker
and the template trackers that form the tracker module to compete with each other so that the DTNet
can switch between them for different scenes. Differing from the fusion-based methods, the DTNet
could learn an online decision to pick a particular tracker for a particular scene. Besides, we presented
a new proposal-free detection tracker, which does not require the proposal of candidate bounding
boxes of the target and thus makes the discriminating course flexible. Extensive results on several
benchmarks demonstrated the superiority of the proposed DTNet over existing methods.

Broader Impact

In this paper, the authors introduce DTNet which learns an online decision for switching to a proper
tracker to conduct visual tracking in the current video frame. Although this paper only validates the
efficacy of the decision learning framework in the specific scenario of visual tracking, it can actually
be extended to other video-based computer vision tasks such as person re-identification, motion
caption and action recognition, etc. It can be applied by defining a reward concerning the specific
task and replacing the two trackers used in this paper with some other algorithms. To this end, the
proposed DTNet could be of broad interest in different fields such as transportation industry, film
industry, sport industry, etc.

As a method for visual tracking, the DTNet can inevitably be used for monitoring and security
purpose. As a learning-based method, what the DTNet can track, a person or a pet, essentially
depends on the training data. Therefore, the risk of applying our method to some tasks that could
raise ethical issues can be mitigated by imposing a strict and secure data protection regulation such
as the GDPR. Without a sufficiently large amount of data of high quality that contain the particular
target, the DTNet cannot deliver a good tracking in the particular task.
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