
We thank all the reviewers for their valuable comments, efforts, and time. As the reviewers highlight, we propose a simple1

(R1,R2,R4) yet effective (R1,R2) OOD detection method, supported by strong experimental supports (R1,R2,R3,R4)2

and with a clear presentation (R1,R2,R3,R4). We respond to each comment one-by-one in what follows.3

Common Responses4

(a) OOD-ness

Rot. Noise

50.6 75.7

(b) AUROC: DTD (in) vs. Textile (out)

SimCLR CSI (Rot.) CSI (Noise)

70.3 65.9 80.1

[R1/R4] Choice of the shifting transformations.5

Our principle is to choose shifting transformation6

that generates the most OOD-like samples. Here,7

to measure OOD-ness of a transformation, we use8

AUROC between in-distribution vs. transformed samples using vanilla SimCLR (as in line 235-246). Via this concrete9

selection scheme, we choose “rotation” (Rot.) for CIFAR/ImageNet (see Table 4). We remark the scheme can be used10

for any real-world image datasets. For example, under Describable Texture Dataset (DTD), Rot. is no longer a shifting11

transformation (as in line 247-257): the above tables show that (a) “Gaussian noise” (Noise) has higher OOD-ness than12

Rot. on DTD, and (b) our method (CSI) significantly benefit from using Noise instead of Rot in this case.13

AUROC on one-class CIFAR-10

Rot+Trans [1] GOAD [2] CSI (ours)

89.79±0.13 85.06±0.03 94.27±0.05

[R1/R3] Variance over multiple runs. As suggested by R1 and R3, we14

will include the variance of our results in the final draft, e.g., the right table15

presents the mean and standard deviation of the mean AUROC on one-class16

CIFAR-10 (averaged over 10 classes) over 5 runs.17

[R1/R4] Related work. Following suggestions of R1 and R4, we will add more discussions on related work, particularly18

on the connection of our method to the existing self-supervised approaches [1,2], e.g., auxiliary classifier (line 122).19

Individual Responses20

[R1] Fairness of comparison. We put our best efforts to fairly compare our method with the prior works, especially21

[1,2], e.g., we already have provided both the reported values from [1,2] and results from our re-implementations in22

Table 1. The only difference we aware of the experimental details is the use of different architecture, i.e., ResNet-18, for23

our method, but we have compensated this issue by using the same architecture in our re-implementations. Somewhat24

remarkably, our results on this smaller architecture outperform both results of prior methods with significant margins.25

[R1] Motivation on the norm in the scoring function. Intuitively speaking, the contrastive loss we minimize enforces26

the norm to increase, as it is an easier way to maximize cosine similarity (see Appendix I for more details). One of27

our key findings is that using the norm of the projection outputs as a score function is a surprisingly strong baseline,28

compared to other reasonable choices. We refer more discussions on other design choices in Appendix E, F, and G. For29

better presentation, we will add the relevant discussion in the main text following your suggestion.30

[R2] Editorial comments. We will revise our manuscript by clarifying all of the following points: (i) line 108-118:31

We will remark that Eq. (3) also uses the transformations for positive samples (SimCLR augmentations), which were32

implicitly defined in Eq. (2). (ii) line 116-118: We will add the navigation: linear evaluation paragraph in Section 3.33

(iii) line 207: We will rephrase the expression; we stated prior methods often fail, since they show 50% of AUROC (i.e.,34

random guess) under the Place-365 dataset. (iv) line 241-246: We will fix it to Table 5.35

[R3] Novelty. We believe the key novelty of our method belongs to mainly in two aspects: (i) We design a surprisingly36

effective OOD score functions applicable to any contrastive features, an emerging paradigm for representation learning,37

based on an extensive empirical justification. (ii) We report a novel observation that some existing input transformation38

techniques (e.g., rotation), i.e., shifting transformations, could further improve the contrastive features in terms of OOD39

detection, under our newly proposed contrastive training scheme. As also highlighted by R2, we believe our work could40

provide novel insights for both representation learning and OOD detection.41

[R3] Limited to the visual modality. Following the suggestion, we will revise our paper title to emphasize the visual42

domain we are focusing on in our experiments. Nevertheless, in principle, our key idea of contrasting transformed43

inputs is applicable to other domains, e.g., using Gaussian noise applicable for any data types, including temporal data.44

[R3] Why augmentation helps OOD detection? We claim some augmentations that largely shift data-distribution45

would behave like OOD, and contrasting them could help to learn a better discriminative features between in- vs.46

out-of-distribution (line 42-50,114-118). This hypothesis is validated by an extensive empirical study (line 235-246).47

[R3] Other comments. (i) Pre-train or scratch?: We train all models from scratch (both ours and others). (ii) Threshold:48

One can set the threshold from training data statistics, controlling the margin for precision/recall trade-off.49

[R4] Classification accuracy. Although classification is not our primary focus, we found that our method achieves50

comparable classification accuracy with SimCLR throughout our experiments, e.g., our method achieves test accuracy51

of 90.19%, while SimCLR shows 90.48%, under the linear evaluation protocol on CIFAR-10 (see line 260-262).52
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