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Abstract

Meta-learning improves generalization of machine learning models when faced
with previously unseen tasks by leveraging experiences from different, yet re-
lated prior tasks. To allow for better generalization, we propose a novel task
representation called model-aware task embedding (MATE) that incorporates not
only the data distributions of different tasks, but also the complexity of the tasks
through the models used. The task complexity is taken into account by a novel
variant of kernel mean embedding, combined with an instance-adaptive attention
mechanism inspired by an SVM-based feature selection algorithm. Together with
conditioning layers in deep neural networks, MATE can be easily incorporated
into existing meta learners as a plug-and-play module. While MATE is widely
applicable to general tasks where the concept of task/environment is involved, we
demonstrate its effectiveness in few-shot learning by improving a state-of-the-art
model consistently on two benchmarks. Source codes for this paper are available
athttps://github.com/VITA-Group/MATE.

1 Introduction

Human can often quickly learn new concepts after seeing only a few examples or having minutes
of experience. Prevalent deep neural networks, on the other hand, require enormous amount of
data to learn to generalize well [32]. To avoid overfitting, these gigantic deep learning models must
integrate prior knowledge like humans do. For example, we can quickly learn to distinguish between
several characters in a brand-new language we have never learned before because we can exploit past
experiences and concepts that we have acquired in our native language. In machine learning, computer
vision, and robotics, prior experience often comes in the form of fasks and their relationships. For
example, after teaching a robot to walk, we expect that it should be able to learn to run faster by
exploiting the related skills acquired from the previous task. Therefore, it is vital for more efficient
meta-learning to find a method that can summarize and make use of the prior experience.

The key of meta-learning, or learning to learn, is to learn an inductive bias for the new task using
data from previous tasks [3| 46]. In principle, machine learning problems can be viewed as a
problem of searching for the best hypothesis in a hypothesis space F that characterizes the inductive
bias. Maximum margin bias for support vector machine (SVM) [52] and minimum feature bias
for the feature selection algorithms [8] are examples of how the inductive bias can be incorporated.
Furthermore, the architectures of deep neural networks used, e.g., the popular 2D-convolution blocks
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and residual/dense connections [15}[18]], are now increasingly viewed as a form of inductive bias too
[51, 116l 9]]. Finding the most suitable inductive bias for the problem at hand not only ensures that
good solutions can be found by a learning algorithm, but can also expedite the learning.

In general, the structure of the hypothesis space F determines 1) its capacity; and thus 2) the
performance of the optimal hypothesis f* € JF; moreover, 3) the difficulty of identifying f* in
F. On the one hand, the family of deep networks characterizes a gigantic and special hypothesis
space which potentially contains good solutions, but is notoriously difficult to train. Training deep
networks from scratch on each task with limited amount of data often lead to overfitting. On the other
hand, let us consider an extreme case where the hypothesis space only contains one element, i.e.,
F = {f*} where f* denotes the optimal solution. This effectively reduces the sample complexity
to zero, i.e., no learning is required. In this sense, the core problem of meta-learning is to construct
a suitable hypothesis space that contains an optimal solution and is at the same time easy to learn.
Model-Agnostic Meta-Learning (MAML) [10] can be perceived as constraining the hypothesis space
to be within the neighborhood of the meta-parameters. Since the optimal parameters for different
tasks are assumed to lie in this neighborhood, they can be reached via a few steps of gradient decent.

The above reasoning implies our core idea to advocate in this paper: the model learned in each
task is itself part of the inductive bias. Knowing which models work best for previous tasks should
contribute to improving transferability to new tasks that employ similar models. A natural idea that
follows is to extract representations of the tasks, and to establish a relationship between the tasks and
their corresponding best models. Most previous works that either implicitly or explicitly leverage task
representations only refer to the data distribution when constructing the representation [35} 49], with
a recent exception in [1]]. However. we conjecture such might not suffice for sufficient inductive bias.

Take few-shot classification, which will be a main application scenario considered by this paper, as
an example. In a typical few-shot setting, due to the small class number as well as the small training
sample size, it is reasonable to assume a model will make more use of compact, essential features to
differentiate classes, compared to general classification with abundant training data covering vast
variations. For instance, a few-shot classifier might find it sufficient to classify dog and car, by
just examining ear and fur features. However, those “essential” features vary with tasks, e.g., the
same ear-and-fur feature will become no longer “essential” if learning a few-shot dog-cat classifier.
Therefore, in addition to the data distribution, the features that a classifier learns to focus on can
contribute complementary information to characterizing the tasks and constructing the embeddings.

1.1 Our Contributions

Framework. In order to inject the model inductive bias, we propose a model-aware task embedding
(MATE) framework which is generally applicable as a plug-in module to most meta-learning (single)
models. The proposed representation is based on the novel Hilbert space embedding of distributions
[43L 29] which can capture information of both data distribution and the model used in learning.
Although similar embeddings have been implicitly applied to meta-learning [1}35}!49]), our framework
is the first to: 1) be model-aware via the incorporation of the model information into the embedding,
instead of relying only on data distribution; 2) explicitly draw a connection between meta learning
and Hilbert space embedding of distributions [43| [29] from a theoretical perspective.

Methodology. For incorporating model information, we propose an instance-adaptive soft feature-
selection method inspired by a first-order variable selection method in [37]], which adaptively em-
phasizes essential features that vary per each task. We view it interpretable and generalizable to
meta-learning applications even beyond few-shot learning (a main study subject of this paper).

Experiments. We demonstrate that MATE can help the learning agent to adapt faster and better to
new tasks, thanks to the new model-aware inductive prior guiding to constrain the hypothesis space.
We illustrate that this new inductive bias is highly informative and adaptive across tasks, as a result of
the proposed instance-adaptive soft feature-selection. We empirically demonstrate on two few-shot
learning benchmarks that MATE improve up to 1% 5-shot accuracy, on top of a state-of-the-art meta
learner “backbones”, showing MATE to be generally effective and easy-to-use.

2 Related Works

Meta-Learning for Few-Shot Learning. Although this paper focuses specifically on few-shot
learning as the main application example, our method can be applied to general meta-learning



scenarios [31, 141} 147]. A popular line of works for meta-learning focuses on learning how to update
the learner’s model parameters [4} 15, 142]]. This approach has been applied to learning to optimize deep
neural networks [2} |17, 24] and dynamically changing recurrent neural networks [[14]. In [38]], the
authors suggest to learn both the weight initialization and optimizer for few-shot image recognition.

The next line of works in meta-learning are metric-based. Matching Network [53]] learns a feature
extractor and compares a pair of data using cosine similarity. It is applied to one-shot learning, where
every testing sample is compared to the reference sample in each class in the support set, i.e., the
training data we can refer to for model adaptation in one task. Prototypical Network [44]] extends
matching network to few-shot learning by comparing test samples with the prototypes, computed
as the class-conditional mean embeddings. Relation Network [45] learns the comparison metric
instead of using a pre-defined metric such as cosine similarity. Task Dependent Adaptive Metric
(TADAM) [35]] incorporates more adaptation to improve over [45]] during meta-testing by learning a
task-dependent metric. Lately, Category Traversal Module (CTM) [23]] focuses only on task-relevant
features by learning to correlate the prototypes of all classes. Our intuition of making the meta learner
model-aware echoes that of CTM [23]]. However, MATE’s methodology grounds its idea on the
Hilbert space embedding theory [43} 29], and has interpretability benefits from instance-adaptive soft
feature-selection inspired by first-order variable selection [37]]. As MATE injects model-aware task
representations by conditioning the backbones, while CTM acts as sample-feature post-processing,
the two might also be applied together in future work.

The last line of works are optimization-based approaches. MAML [10] is arguably one of the best-
known along this line. It learns a set of parameters that can be adapted to new tasks easily within a few
steps of gradient descent. More scalable variants of MAML include FOMAML [33] and Reptile [34].
Bayesian-MAML (B-MAML) [57]] further combines the gradient-based adaptation with variational
inference in a probabilistic framework to model more complex uncertainty beyond a simple Gaussian
approximation. [40] proposes a Latent Embedding Optimization (LEO) framework that decouples
the gradient-based adaptation procedure from the underlying high-dimensional parameter space, and
place the former in a lower-dimensional latent space. Lastly, alternative optimization-based methods
train a meta feature extractor followed by different base learners such as ridge or logistic regression
in [6,149]], and support vector machine (SVM) in [21]].

Task Embedding. To exploit information about task relationship, Taskonomy [58] explores the
structure of the space of tasks, focusing on the scenario of transfer learning in a curated collection
of 26 visual tasks. [49] computes pairwise task transfer distances to form a directed hierarchy. [[1]]
proposes Task2Vec, a task embedding based on the estimation of the Fisher information matrix
associated with parameters in the so-called probe network that is used to extract features from images,
along with metrics to evaluate task similarity with the proposed task embedding.

Notably, while Task2Vec is solely dependent on the task, [1]] extend their Task2Vec to Model2Vec
by applying a model-dependent additive correction term to the task embedding, which is optimized
to model the interaction between the task and model. However, the optimization for correction terms
require a set of models, while most recent meta-learning frameworks assume to learn a single model
(6L 105211 27, 140} 49], limiting the general applicability of [1]. Besides, [1] also did not discuss nor
experimentally benchmark on meta-learning tasks such as few-shot classification.

On a separate note, although many meta-learning frameworks [21} 40] have achieved impressive
results on few-shot learning benchmarks such as CIFAR-FS and minilmageNet [53]), task representa-
tion remains to be rarely exploited. This paper is motivated to close this gap: showing the importance
of task representation in meta-learning/few-shot classification, both theoretically and experimentally.

Domain Generalization. The goal of domain generalization is to generalize models to unseen
domains without knowledge about the target distribution [7]]. [28]] proposes to learn a data transforma-
tion that maps data from different domains to a shared low-dimensional subspace and that subspace
can be extended to unseen domains during testing. The idea of learning domain-invariant features has
also been proposed in [[13} 22} 55]]. [50] proposes to use MMD loss as a regularization to minimize
the distance of kernel mean embeddings of different tasks to learn a domain invariant representation.

3 MATE: Model-Aware Task Embeddings

Before diving into technical details of our new task representation, we first give an intuition at a
conceptual level as to why model information might improve task representation in meta-learning.



Figure 1: An illustration of model
awareness for meta-learning. Each
task is represented by a tuple 7) =
(MO, PY | AD), where model M)
is applied on data distribution Pl()l)
with some performance measure A®).
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l=1,..., Ny where M () denotes the model, Pg ) denotes the data distribution, and A®) denotes a
task-specific performance measure, e.g., classification accuracy, associated with the model M (). For

each task 4, we construct two task representations: <I>(Pg )) and @(Pg ), M®), The former relies only
on the data distribution, whereas the latter also takes the model into account. Provided with the new
task T* = (M*, P};) where M* may represent the potential model for that task, we construct the
representations ®(Pj)) and ®(Pjy, M*). Then, it is clear that when deciding which tasks among all

T® are most relevant to T* on the basis of A(!), it is impossible for ®(P},) and @(Pg)) to capture
aspects of the models M* and M) that might contribute to the task performance. On the other

hand, ®(P};, M*) and @(Pg ), M®) can capture this information through the joint representation,
as illustrated in Figure[I] Moreover, it allows us to assess the task complexity w.r.t. the model.

To formalize our definition, let T = (Pp, M) denote a task which consists of a data distribution
Pp = Pp(X,Y) over some input space X x ) and a model M mapping from X to an output space
Y. We assume that T is distributed according to some unknown distribution 2 (Pp, M) over the
product space of distributions Pp and the model M. Let ¢ : X — F be a feature map of X into
the feature space F and fj; : X — F a model-dependent bounded continuous function such that
far(xz); > 0forall index i and z € X.

Given any task T' = (Pp, M), we propose to represent it using the following conformal representation,

B(T) = / fe(z) © 6(x) dPp (x). )

where © is an elementwise multiplication. Note that ®(7") may also depend on Y through fj,.
Intuitively, the function fy; () acts as a reweighting function of the feature map ¢(x). Here, ¢ can
be a feature map associated with the kernel function or the last layer of deep neural networks. If ¢
corresponds to the canonical feature map of the characteristic kernel k : X x X — R, i.e., ¢(z) =
k(z,-), and k(z,z)|f(x)|? is bounded, the map defined by (1) is injective, i.e., the representation
®(T') captures all information about the task 7" [11, Lemma 2]. Note that (I)) can also be seen as a

classical kernel mean embedding with the conformal kernel k(z, /) = far(2) far (2 k(z, ') [54].

The intuition for (I)) is as follows. If fa;(x) = ¢ - 1 for some constant ¢ > 0 and 1 € F, the all-one
vector and ¢ in the feature space is the canonical feature map of the kernel k, then (I reduces to
a classical Hilbert space embedding of distributions, completely ignoring information about the
model M. In general cases, we expect fj; to inform the “hardness” of the task with respect to the
distribution P(X). Given an i.i.d sample x1, ..., x g, our representation can be estimated by

B(T) = 2= 3 Farlen) © o). @

k=1

The above representation, when f), is not present, is commonly used in domain adaptation [59] 25]],
domain generalization [13} 22} 28, 50|, and meta-learning [1} 35} 49]. Hence, the key novelty of
is on incorporating the model-dependent function f; into the representation.



3.1 Model-Aware Surrogate Functions

Recall that for all coordinates ¢ and € X for (1)) to be well-defined, we only require
fu(x); >0 and (fa(z) © é(x), fu(z) © ¢(x)) < .

Moreover, all information about the task is preserved if the kernel defined by the feature map ¢ is
characteristic. Here, we present our design of the fj; function to utilize the model information, which
otherwise cannot be captured solely using data distribution.

In a general framework of few-shot classification, a classifier works on top of the feature extractor ¢.
The classifier could be either optimization-based (e.g. SVM in [21]) or metric-based [44} 23]]. Given
a new task, the classifier is trained using features extracted from a small support set Dg: {¢(x)}zep. -
Then, we apply the trained classifier to predicting on the guery set D,. However, we argue that not
all features in ¢(x) are essential to one specific task, especially in few-shot classification where there
are only a very small number of classes and each class usually has less than 10 training samples.
Moreover, the essential features can vary significantly across different tasks. In constrast, the task
representation generated by the conventional Hilbert space embedding with fj; = ¢- 1 cannot capture
these variations due to absence of the classifiers’ own information.

Inspired by [21]] and [37], we propose to add an independent SVM classifier parameterized by w on
top of the feature extractor. We use the D: samples to solve the optimal w*, instead of the original
classifier. In order to incorporate the model information, we consider the following specific fa;:

Ol|w*|I3
9¢(x)

where c is a hyperparameter. In SVM, ||w*||3 is the optimal objective value, e.g., the optimal margin.
The fys function defined in (3)) then selects the dimensions that will account for the most significant
changes in the margin, if slightly perturbed. Ideally, the dimensions that are orthogonal to the margin
will be select as essential features because changes on those dimensions will affect the margin most.
Similar ideas to this SVM criteria were exploited by first-order methods in variable selection based
[37]. Our method can also be seen as an instance-adaptive soft feature selection or attention.

far(@) = c- ] , 3)

3.2 Sample-Task Feature Fusion

Assume that we extract both the sample feature ¢(z;) and the task feature ®(T'), where ®(T') is
constructed using (3). The most naive fusion approach is to concatenate them (CAT):

wcat (Zh T) = COTLCGt(Qﬁ(;Cﬁ, (i)(T)) (4)
However, this is very limited because it simply gives the same translation to all samples.

In this work, we use the task representation <i>(T) to modulate a part of the feature extractor ¢, simi-
larly to TADAM [35]. Our implementation adopts the FiLM conditioning layer [36]. Specifically,
A FiLM layer is defined as FiLM(z) = v © « + B8, where v = v(®(T)) and 3 = B(®(T")) are the
scaling and shifting parameters, that are both generated from <i>(T) through a small MLP network, In
practice, we place a FiLM layer after every batch normalization (BN) layer of a deep feature extractor.

Note that the learning of ®(7") and ¢ are dependent on each other. To initialize ®(T) at the first
place, we first extract task-independent samples features ¢(x) with default task representation, i.e.
all-zero task representation which yields identity FILM layers. Then we construct the model-aware
task representation CfD(T) as described in Sec. ﬁ At last, this task representation is used to update
the FilM layer and the feature extractor jointly. We also note that the injection of task representation
@(T) will cause a shift of statistics in the intermediate activations in ¢ and thus fail the BN layers
during validation or testing. Similar to [56], we craft two sets of BN layers (dual BN), one for
task-independent feature extraction with default task representation, and the other for task-dependent

feature extraction with runtime model-aware task representation é(T)

We adopt the episodic formulation in [S3]] for the N-way, K-shot task definition, where each episode

DO is a set of data samples independently drawn from the data distribution Pg). Episodes in a
dataset are divided into three sets — meta-training Si,,, meta-validation S|, and meta-testing
Sist- The meta-training and meta-validation sets are accessible during the meta-training phase, and
the trained model will be tested on the meta-testing set with unseen tasks over the same Pp In
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(a) SVM-based model-aware task embedding. (b) Classification with conditioned backbone.

Figure 2: Overview of the framework. MATE can be applied on top of general few-shot learning
framework with single feature extractor as a plugin module. (a) An SVM classifier is first appended
after the backbone ¢ and trained with the task-agnostic sample features. Then a set of weights f is
produced by the proposed instance-adaptive soft feature-selection (3)), which are then used to fuse all
sample features into the model-aware task embedding ®(7"). (b) the model-aware task embedding is
fed to condition the FiLM layers in the backbone feature extractor as adaptation to the current task.

each episode, the task consists of a support (or training) set and a query (or validation) set, i.e.,

DO = {Dgl), Dél)}. The model is trained to adapt to this specific task with data from Dgl). D,gl) is
used to evaluate the model’s generalization ability.
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The proposed method can be applied on top of most few-shot learning methods that have a “backbone’
feature extractor. As shown in Figure[2] a base model consists of a backbone feature extractor ¢ and
a classification head on top of it. This classification head could be comparison-based, optimization-
based e.g. a logistic regression or SVM classifier, or a small neural network.

To apply MATE, we first insert FiLM layers, which are conditioned by the representation of current
task @(T), after batchnorm layers in the backbone ¢, so that the backbone now takes two inputs
o(z, @(T) Then we run two passes through the extended backbone. In the first run, we use the
default task representation i.e. the all-zero vector that yields identity FiLM layers, meaning without
considering the representation of the task. These fask-unaware features are used to train an SVM
classifier as in [21]] and summarizes the task representation <i>(T) as shown in section Then a
second pass of ¢ is run with @(T) conditioning the FiLM layers. The whole framework is meta-
trained with loss function £. We will keep the loss function used by the base model as is, the specific
form of which depends on the choice of classification head in the base model. As MATE only makes
small changes to the base model and keep all other settings unchanged, it can be easily applied to
most of few-shot learning frameworks in a plug-in manner.

Dual batch normalization. The backbone ¢ will be run for two passes, one of which involves FILM
conditioned on the task representation. However, the conditioned FiLM can change the statistics of
intermediate features, such that batchnorm layers cannot estimate stably. We hence adopt the dual
batch normalization, originally proposed in [56] to separate clean and adversarial image statistics.
Here we use it for a new purpose of separating model-agnostic and model-aware feature statistics.

4 Experiments

In this section, we first describe the implementation details (Section 4.1), and then benchmark MATE
on two few-shot classification datasets, CIFAR-FS [6] and minilmageNet [53] (Sections 4.2 and 4.3).
We complement our quantitative results with a visualization of the embedding produced by MATE
compared to model-agnostic embeddings (see Supplementary). The implementation of this paper is
adapted from the official implementations of MetaOptNe

4.1 Implementation Details

Backbone feature extractor ¢. We mainly apply MATE on top of MetaOptNet [21]], due to its
state-of-the-art few-shot learning performance, which we aim to improve further. It uses a ResNet-12
[15] backbone as feature extractor. We faithfully follow the setting and regularization tricks such as
DropBlock [12], to avoid the overfitting risk. The output of the last residual layer is the sample feature
(without applying global averaging pooling). More details of ¢ are presented in Supplementary.

"https://github.com/kjunelee/MetalptNet
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Encoding FiLLM layers. FiLM layers are inserted into the backbone ¢ after each batchnorm layer

and the scaling and shifting parameters « and 3 are encoded from the task representation CiJ(T)
extracted according to (2) using a two-layer MLP network with LeakyReLU activation (with negative
slope 0.1) after each layer. The parameters - and 3 have the same dimensions as the channel numbers
of the input feature maps, and are applied to the input features channel-wise. FILM layers are encoded
with independent MLP networks with no weight sharing.

Optimizer. We identically follow the practice in [21] for fair comparison. We use stochastic gradient
descent (SGD) with momentum 0.9 and weight decay 0.0005. The SGD starts with an initial learning
rate of 0.1, that is decayed to 0.006 at epoch 20. The meta-training phase takes a total of 30 epochs,
each epoch consisting of 1,000 mini-batches. Each mini-batch samples 8 episodes.

Episode Setting. In each episode, we fix the number of classes at 5 (5-way), for both meta-training
and meta-testing phases, on both datasets. The query set in each episode contains 6 samples per class
during meta-training phase, and 15 samples per class for meta-testing. It was found in [21] that using
more shots in meta-training than in meta-testing (1- or 5-shot) leads to better accuracies. We follow
this practice to use 15-shot episodes for minilmageNet and 5-shot for CIFAR-FS. On both datasets,
We use a total number of 1,000 episodes during meta-testing and report the mean accuracy and its
standard deviation over all episodes.

Other Regularizations. We follow [21] identically in using regularization technique used during
meta-training, such as data augmentation, label smoothing (on minilmageNet), and early stopping.
The early stopping is applied at two levels: 1) we only compute 3 iterations when training SVM
during meta-testing; 2) we validate the model after each epoch, on 2,000 mini-batches of 5-way 5-shot
episodes sampled from the meta-validation set, to terminate training once the validation accuracy
starts to drop. We also leverage a regularization technique from [26]] to diversify the FILM parameters
~, B, avoiding collapse in training. We will introduce more details in the Supplementary.

4.2 Experiments on CIFAR-FS

CIFAR-FS [6] is a popular few-shot classification benchmark, designed to be more complicated than
the previous Omniglot [20] yet more compact than minilmageNet [53]. It is a variant of CIFAR-100
[19], by randomly splitting it into meta-training, meta-validation and meta-testing sets, containing 64,
16 and 20 classes, respectively. Each class in CIFAR-FS contains 600 images of size 32x32.

Comparison Methods. The results of 5-way classification on CIFAR-FS are shown in Table
We compare against a few competitive methods, including MAML [10], ProtoNets [44], Relation
Networks [45], R2D2 [6]], MetaOptNet [21] and RFS [48]]. In [21} 48], the authors report on two
settings: the former trained using the combined set of the meta-train and meta-validation set, while
the latter using only the meta-train set (hence the former would have better accuracy numbers on the
meta-test test due to seeing more data). All results reported in this paper follow the latter setting.

Table 1: Benchmarking results on the CIFAR-FS, compared with previous state-of-the-art works.
¢ Results reported by the original paper: using the the meta-train set only for the meta-training.
CIFAR-FS [6]

Model Backbone 5-way 1-shot 5-way 5-shot
MAML® [10] 32-32-32-32 58.9 + 1.9% 71.5 + 1.0%
Relation Networks® [45] | 64-96-128-256 55.0 £ 1.0% 69.3 + 0.8%
ProtoNets® [44] 64-64-64-64 55.5+0.7% 72.0 + 0.6%
ProtoNets [44] ResNet-12 71.35+0.73% 84.07 £ 0.51%
MATE + ProtoNets ResNet-12 71.49 £ 0.70%  84.71 £ 0.50%
R2D2° [6] 96-192-384-512 653 +£0.2% 79.4 +£0.1%
R2D2 [6] ResNet-12 7251 £0.72%  84.60 + 0.50%
MATE + R2D2 ResNet-12 72.59 +0.0.70% 85.04 £ 0.50%
MetaOptNet® [21] ResNet-12 72.0 £ 0.7% 84.2 +0.5%
MATE + MetaOptNet ResNet-12 72.3 £0.7% 85.2 £ 0.4%

Result analysis. Compared with MetaOptNet, “MATE+MetaOptNet” achieves slightly better 1-shot
accuracy (72.32% v.s. 72.0%), and much better 5-shot accuracy with an obvious gap (+1.00%) The
‘MATE+MetaOptNet” model reported in Table|l|uses its MetaOptNet counterpart to initialize the



weights, which makes sense because MATE is used as a plug-in method to improve the base model.
We will discuss this in an ablation study to be presented later.

In addition to comparing with ProtoNets [44] and R2D2 [[6] on their original small backbones,
we also compare with these two methods with larger convolutional backbones. Interestingly, We
find that once we try replace the backbone feature extractor with the same ResNet-12 used in
MetaOptNet, ProtoNets and R2D2 both show competitive results, and especially R2D2 already
performs better than MetaOptNet just by ensuring a fair backbone. Then, MATE can still consistently
provide improvements to both (enhanced) baselines: 1) applying MATE to ProtoNets+ResNet12
yields +0.64% 5-shot accuracy and slightly better 1-shot accuracy (+0.14%); 2) applying MATE to
R2D2+ResNet12 yields +0.44% 5-shot accuracy improvement and similar 1-shot accuracy (+0.08%).
These results also demonstrate that MATE consistently brings more notable gains to 5-shot accuracy
than to 1-shot, which is reasonable because we can obtain more accurate information about data
distribution on the task with more data and thus task representation of higher quality.

4.3 Experiments on minilmageNet

minilmageNet [53]] is a larger benchmark in which 100 classes are selected from ImageNet [39] and
each contains 600 RGB images. (downsampled to 84 x84). We follow the popular split in [38] to
employ 64 classes for meta-training, 16 for meta-validation and 20 for meta-testing.

We compare with a variety of recent methods, especially those that report on using ResNet-12 back-
bones, for fair comparisoré (see more in the Supplementary). To avoid any confusion, MetaOptNet'
in Table [2| are the results that we replicate to the best efforts with exactly the same setu;ﬂ After
active investigation on this mismatch and intensive communication with the authors of [21], we think
it appropriate to report both numbers. In view of the situation, we humbly suggest that comparing
our MATE against MetaOptNet! may help draw more fair and meaningful observations.

Due to much higher dimensionality of the features extracted from minilmageNet samples, we apply
one linear layer to the task representation to reduce the dimension before it is used to condition
the FiLM layers. Interestingly, we find that freezing this linear layer to its random initialization
helps stabilize the training, potentially avoiding overfitting. Results of 5-way classification on
minilmageNet are displayed in Table 2] Compared to the best MetaOptNet results that we’ve
replicated, MATE can improve the 1-shot accuracy for 0.44% and 5-shot accuracy for 0.76%.

Table 2: Benchmarking results on the minilmageNet, compared with previous state-of-the-art works.
¢ Results reported by the original paper: using the meta-train set only for the meta-training.

T Results replicated by us to the best effort, by strictly following the official descriptions.
minilmageNet [53]]

Model Backbone

5-way 1-shot 5-way 5-shot
Matching Networks® [53] 64-64-64-64 43.56 £0.84% 5531 £0.73%
MAML* [10] 32-32-32-32 48.70 £1.84% 63.11 +0.92%
ProtoNets® [44] 64-64-64-64 4942 +£0.78% 68.20 £ 0.66%
Relation Networks® [45]] 64-96-128-256 | 50.44 +0.82% 65.32 £ 0.70%

R2D2° [6] 96-192-384-512 | 51.20 £ 0.60%  68.8 £ 0.10%
LEO® [40] WRN-28-10 61.76 = 0.08% 77.59 +0.12%
SNAIL® [27] ResNet-12 5571 £0.99% 68.88 £+ 0.92%
AdaResNet® [30] ResNet-12 56.88 £ 0.62% 71.94 + 0.57%
TADAMY® [35]] ResNet-12 58.50 £ 0.30% 76.70 £ 0.30%
MetaOptNet® [21] ResNet-12 62.64 +£0.61% 78.63 + 0.46%
MetaOptNet! [21] ResNet-12 61.64 +£0.60% 77.88 + 0.46%
MATE + MetaOptNet ResNet-12 62.08 +0.64% 78.64 + 0.46%

2We did not include a few other methods using deeper backbones, e.g. [23] on ResNet-19, since we find
that: 1) MATE on ResNet-19 is prone to overfitting minilmageNet if not carefully tuned, while it is already
competitive with ResNet-12; and 2) re-implementing [23]] on ResNet-12 catastrophically drops its performance.

3We exactly reproduced MetaOptNet on CIFAR-FS, but were unable to close the gap on minilmageNet. The
only remaining differences lie in the software environment, and random seeds, which we cannot control.



4.4 Ablation study

We perform ablation study on MATE applied to MetaOptNet [21] to investigate the key components
of MATE method, from the following perspectives:

e Sample-task feature fusion. We compare two ways of feature fusion mentioned in Section
concatenation (CAT) and FiLM conditioning. Comparing “CAT+KME” and “FILM+KME”,
FiLM yields slightly better 1-shot accuracy and we also observe that FILM induces larger feature
variations in visualization. Here KME means kernel mean embedding, i.e. with fyy = 1.

e SVM-based feature attention. On top of FiLM conditioning, we compare naive KME- and
SVM-based task embedding. Combined with SVM-based feature attention with FILM, we see
obvious improvements in 1-shot and 5-shot accuracies (+0.6 % and +0.35% respectively).

e Other regularizations. We investigate several techniques that we adopt to avoid training over-
fitting or collapse. In : Load backbone means using a pre-trained backbone of the base model
(MetaOptNet) as the initialization; otherwise we use random initialization. Fix backbone means
only training the MLPs that conditions FILM layers and the model-aware branch of the DualBN,
while freezing the loaded backbone. FiLM regularization refers to the one from [26]. We see that
load backbone boosts 5-shot accuracy but also degrades the 1-shot one. Both fix backbone and
regularizationt on FiLM can recover the 1-shot accuracy but FiLM regularization improve the
5-shot accuracy remarkably more. Therefore, the last row configuration becomes our default one.

Table 3: Ablation study on MATE + MetaOptNet [21] to investigate key components of MATE.

. Load Fix FiLM
Cat FLM | KME SVM Backbone Backbone Regularization 1-shot 3-shot

v v 71.41% 84.40%
v v 71.55% 84.37%
v v 72.15% 84.72%
v v ve 72.01% 85.13%
v v v v 72.57% 84.76%
v v Ve v 72.32% 85.20%

5 Conclusion

This work introduces the model-aware task embedding (MATE), a novel representation that is able to
efficiently fuse data distribution and model inductive bias. Built on the Hilbert space embedding of
distributions, MATE introduces a model-dependent surrogate function to improve the current kernel
mean embedding, that can be incorporated into deep neural networks. We empirically show the
general effectiveness of MATE in two few-shot learning benchmarks. Our future work will integrate
MATE with more state-of-the-art meta learning models besides [21].

Broader Impact

Nowadays machine learning models requires training with a large number of samples. Humans, in
contrast, learn new concepts and skills much faster and more efficiently. Even a kid who has seen
cats and birds only a few times can quickly tell them apart. Inspired by that, meat learning aims
to design a machine learning model with similar properties — learning a new task fast over a few
training examples, via experiencing and summarizing generalizable rules from a family of similar
tasks. Meta learning is significant in at least two-folds: 1) to reduce the labeled samples needed by
training models to resolve certain task(s); and (2) to achieve open-end lifelong learning for a stream
of tasks by transferring the acquired knowledge.

Our MATE framework leverages a Hilbert space embedding framework and inject model awareness
to (in principle) any meta learning algorithm. It shows to help the learning agent to adapt faster and
better to new tasks, thanks to this new model-based inductive prior.
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