
Appendices
A PI-SAC Implementation

Initial CEB training steps. After collecting initial experiences with a random policy (in Algo-
rithm 1), we optionally pre-train with the predictive information CEB objective (θe, θ̄e, ψe, ψb are
updated). The amount of initial CEB steps are selected empirically for each task (listed in Table 2).

Observation Horizon and Frame Stacking. As described in Section 3, we limit our observations
from −T + 1 to T (following [39, 27], we set T = 3). We construct the observational input to the
encoder and backward encoder as a T -stack of consecutive frames, where each frame is a [84×84×3]
RGB image rendered from the 0th DMControl camera. The pixel values range from [0, 255], and we
divide each pixel by 255.0.

Evaluation Setups. We evaluate our agent at every evaluation point by computing the average
episode return over 10 evaluation episodes. At test time, our policy is deterministic and uses the mean
of the policy distribution. For most of the experiments, we evaluate every 2500 environment steps
after applying action repeat for Cheetah, Walker, and Hopper tasks. For Ball in Cup, Cartpole, Finger,
and Reacher tasks, we evaluate every 1000 environment steps after applying action repeat.

SAC Implementation. Our SAC implementation is based off of TF-Agents [13]. It follows
the standard SAC implementation [16]. The performance and sample-efficiency match with the
benchmark results reported in [16].

A.1 Network Architecture

Encoder Networks. The convolutional encoder architecture consists of four convolution layers
with 3× 3 kernels, 32 channels, similar to the encoder architecture being used in [43, 39, 27]. We use
stride 2 at the first convolution layer and 1 in the rest. Filter Response Normalization and Thresholded
Linear Unit [38] are applied after each convolution layer. The output of the last convolution layer
is fed into a fully-connected layer which projects to a 50-d feature vector and followed by Layer
Normalization [2]. This gives us the 50-d zdet

e . As shown in Figure 1, we stop gradients from the actor
network, but allow the critic optimizer and the CEB optimizer to update the convolutional encoder.

Actor and Critic Networks. Implementations of actor and critic follow the standard SAC [16].
Both actor and critic are parameterized by MLPs with two 256-d hidden layers. The actor network
outputs mean and covariance for a parametric Gaussian distribution. And we use tanh as an
invertible squashing function to enforce the action bounds as in [16]. Inputs to the critic network is a
concatenation of zdet

e and action.

CEB Auxiliary Model. Our CEB forward and backward MLP encoders are parameterized by
MLPs with two 128-d hidden layers. Each MLP outputs 50-d mean followed by Batch Normalization
[21] for a multivariate Gaussian distribution, and we fix diagonal covariance at 1.0. Inputs to the
forward MLP is a concatenation of zdet

e and T future actions. Inputs to the backward MLP is a
concatenation of zdet

e and T future rewards.

A.2 Hyperparameters

Throughout these experiments we mostly use the standard SAC hyperparameters [16]. The hyperpa-
rameters that are fixed across all tasks are listed in Table 2. The size of the replay buffer is a smaller
105 due to high memory usage for storing image observations. The heuristic entropy target is set to
−dim(A)/2, a default value used in TF-Agents SAC implementation [13], where dim(A) is number
of dimensions of action. In our experiments the results are similar to using −dim(A), the default
used in [16].

The amount of action repeat (described in Section 4), initial collection steps, and initial CEB steps
for each task are listed in Table 2. The standard SAC takes 10,000 initial collection steps, but for
some of the tasks we take fewer steps of 1,000 in favor of sample efficiency.
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Table 2: Left: Global PI-SAC hyperparameters. Right: Per-task PI-SAC hyperparameters. PlaNet
tasks are indicated with (P).
Parameter Value

optimizer Adam [26]
batch size 256
actor learning rate λπ 3× 10−4

critic learning rate λQ 3× 10−4

alpha learning rate λα 3× 10−4

CEB learning rate λCEB 3× 10−4

discount (γ) 0.99
replay buffer size 105

entropy targetH −dim(A)/2
target smoothing

coefficient (τ ) 0.005

target update interval 1
initial log(α) 0.0
backward encoder

EMA update rate 0.05

observation horizon T 3

Task Action
Repeat

Initial
Collection Steps

Initial
CEB steps

Cartpole Swingup (P) 4 1000 5000
Cartpole Balance Sparse 2 1000 5000
Reacher Easy (P) 4 1000 5000
Ball in Cup Catch (P) 4 1000 5000
Finger Spin (P) 1 10000 0
Cheetah Run (P) 4 10000 10000
Walker Walk (P) 2 10000 10000
Walker Stand 2 10000 10000
Hopper Stand 2 10000 10000

B PI-SAC and SAC at Different Numbers of Gradient Steps
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Figure 8: Comparison of PI-SAC and SAC with image augmentation at different numbers of gradient
steps (gs) per environment step. We report results at 1 and 2 gradient steps, except that we show 1
and 4 gradient steps for Cheetah Run. PI-SAC consistently outperforms the SAC baseline.

Another way to improve sample efficiency in SAC and PI-SAC models is to increase the number of
gradient steps taken per environment step collected. In Figure 8, we see that PI-SAC outperforms the
SAC baseline while varying gradient steps, particularly on Ball In Cup Catch and Cheetah Run.
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C Comparison to SAC from States
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Figure 9: Comparison of PI-SAC (from pixels) to SAC from states (state-SAC) at different numbers
of gradient steps (gs) per environment step. We report results at 1 and 2 gradient steps for all tasks
except Cheetah Run, which uses 1 and 4 gradient steps. We use the action repeat values from Table 2
for state-SAC as well. PI-SAC performs comparably to state-SAC on most tasks.

It is interesting to compare PI-SAC agents, which are trained from pixels, to SAC agents that have
been trained from states. Generally, training from pixels is considered to be more challenging than
training from states. However, we find that PI-SAC performs comparably to SAC from states on most
tasks. On Cheetah Run and Finger Spin, PI-SAC significantly outperforms state-SAC, indicating that
those tasks benefit strongly from representations that model what will happen next, rather than simply
needing a precise description of the current state. In contrast, state-SAC has a noticeable sample
efficiency advantage over PI-SAC on Ball In Cup Catch, indicating that a precise description of the
current state that is stable throughout training is more important than learning to model what will
happen next.
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D Comparison of PI-SAC and Multiview Self-Prediction Agents
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Figure 10: Learning the predictive information outperforms multiview self-prediction (MVSP), which
is described in Section 4.2. We compare PI-SAC to using the MVSP auxiliary task on all 9 tasks.
Specifically, we show PI-SAC and MVSP results with and without predicting future rewards in the
auxiliary task. We use the default β = 0.01 for experiments in this figure.

In Figure 10 we present complete results of PI-SAC and Multiview Self-Prediction (MVSP) agents
with and without predicting future rewards in the auxiliary task as an extension to Figure 6. For these
experiments, we don’t sweep β for the MVSP models, and instead use the default β = 0.01 for all
models. In all cases, the PI-SAC models achieve equal or better performance. In general predicting
future rewards leads to performance improvements.
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E The Importance of Conditioning on Actions
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Figure 11: Standard PI-SAC that models environment dynamics p(s′|s, a) outperforms the version
that models p(s′|s) without conditioning on actions on most tasks. We use the default β = 0.01 for
experiments in this figure.

In Figure 11, we compare PI-SAC agents that predict the future conditioning on actions and those
are not conditioning on actions to shed lights on the importance of modeling environment dynamics
instead of temporal coherence. The former ones model environment dynamics p(s′|s, a) which is
independent of policy, whereas the latter ones instead capture temporal coherence of observations,
i.e. the marginal p(s′|s). Obviously, modeling p(s′|s) has its limitation in off-policy learning as it
fits to experience replay instead of the current policy [30]. As shown in Figure 11, conditioning on
actions empirically leads to better sample efficiency and/or returns on most tasks, except for being
slightly slower on Cartpole Balance Sparse. For the Cartpole Balance Sparse task, our conjecture is
that, because the p(s′|s) model is a simpler one without needing to consider actions and the Cartpole
starts right at where the goal is in this task, it is still able to learn information as useful for achieving
the goal as the p(s′|s, a) model and even slightly faster.
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F PI-SAC and SAC without Image Augmentation

0.00 0.05 0.10 0.15 0.20 0.25
Environment Steps (×106)

0

200

400

600

800

1000
Ep

iso
de

 R
et

ur
n

Ball In Cup Catch

PI-SAC (No Aug)
SAC (No Aug)
PI-SAC (Aug)

0.00 0.05 0.10 0.15 0.20 0.25
Environment Steps (×106)

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

Cartpole Swingup

PI-SAC (No Aug)
SAC (No Aug)
PI-SAC (Aug)

0.0 0.5 1.0 1.5 2.0
Environment Steps (×106)

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

Cheetah Run

PI-SAC (No Aug)
SAC (No Aug)
PI-SAC (Aug)

0.00 0.05 0.10 0.15 0.20 0.25
Environment Steps (×106)

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Finger Spin

PI-SAC (No Aug)
SAC (No Aug)
PI-SAC (Aug)

0.0 0.1 0.2 0.3 0.4 0.5
Environment Steps (×106)

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Reacher Easy

PI-SAC (No Aug)
SAC (No Aug)
PI-SAC (Aug)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Walker Walk

PI-SAC (No Aug)
SAC (No Aug)
PI-SAC (Aug)

0.00 0.05 0.10 0.15 0.20 0.25
Environment Steps (×106)

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Cartpole Balance Sparse

PI-SAC (No Aug)
SAC (No Aug)
PI-SAC (Aug)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

Hopper Stand

PI-SAC (No Aug)
SAC (No Aug)
PI-SAC (Aug)

0.00 0.05 0.10 0.15 0.20 0.25
Environment Steps (×106)

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

Walker Stand

PI-SAC (No Aug)
SAC (No Aug)
PI-SAC (Aug)

Figure 12: Comparison of PI-SAC and SAC both without image augmentation on all 9 tasks. We
perform 5 runs for experiments without image augmentation. PI-SAC without image augmentation
always matches or improves on the SAC baseline, but some tasks are only solved with the addition of
image augmentation.

In Figure 12 we compare PI-SAC agents with SAC and PI-SAC agents trained without image
augmentation on all nine tasks. This is the same setting as Figure 3. Learning the predictive
information without image augmentation is sufficient to significantly improve SAC agents for some
tasks, and is never detrimental compared to the SAC baseline. However, augmentation is essential
to solving Reacher Easy, Walker Walk, and Hopper Stand. On all tasks, having both the predictive
information and image augmentation performs the best.
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G Comparison of Contrastive and Generative PI-SAC
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Figure 13: Comparison of the standard contrastive version and PI-SAC and the generative version
of PI-SAC which directly predicts future observations and future rewards. The contrastive version
shows better sample-efficiency and performance than the generative version every task except Hopper
Stand, where the two approaches are essentially indistinguishable. The wall time per gradient step of
the contrastive models is about 30% faster than the generative models, even with the small number of
frames being predicted (3 future frames).

As shown in [7], under an assumption of a uniform distribution over the training examples, the
contrastive CatGen formulation (eq. (5)) approximates the decoder distribution:

b(z|y)∑K
k=1 b(z|yk)

≈ p(y|z) (11)

Instead of using CatGen in CEB, we can alternatively learn to predict y, the future observations and
future rewards. This gives a generative variant of PI-SAC. To predict the future observations for the
generative PI-SAC, we use a decoder network consisting of four transposed convolution layers with
features of (12, 64, 32, 3), kernel widths of (3× 3, 3× 3, 11× 11, 3× 3), and strides of (2, 2, 1, 2).
To predict the future rewards, we use an MLP with 50-d first hidden layer and 25-d second hidden
layer.

Figure 13 compares the standard contrastive version of PI-SAC to the generative variant. It shows that
the contrastive version is generally more sample-efficient and gives better performance. Additionally,
the generative version is slower to train in terms of wall time. These observations lead us to prefer
the contrastive CatGen formulation for PI-SAC.
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Figure 14: Left: Actor Representation PI-SAC system diagram. Right: Critic Representation
PI-SAC system diagram.

H Representation PI-SAC

The CEB representation, Z, can be used directly by either the actor, the critic, or both. Figure 14
show the system diagrams for actor and critic Representation PI-SAC models. For models that use
CEB representations for both actor and critic, it suffices to combine those systems so that there are
two separate CEB objectives, but with both objectives updating the same convolutional encoder
parameters (θe). In this setting, neither the actor nor the critic pass gradients back through the
convolutional encoder parameters. This an important difference from PI-SAC, where both the CEB
objective and the SAC critic objective contribute gradient information to the convolutional encoder
parameters. As shown in Figure 14, the actor or the critic use the mean of the forward encoder’s Z
distribution (zdet

e in the figures). It is also possible to train using samples from the distribution (z0 in
the figures). Empirically, we found that the results were qualitatively the same, but often with higher
variance in evaluation performance early in training, so we only present results using the mean of the
representation here.

Figure 15 shows results comparing Representation PI-SAC models to Dreamer on the same tasks
from the paper. In these experiments, no hyperparameters are changed between the different tasks.
All Representation PI-SAC models in Figure 15 are trained using the hyperparameters in Table 2,
action repeat of 2, 1000 initial collection steps, and 0 initial CEB steps. This makes the results directly
comparable to Dreamer, which also uses action repeat of 2 for all tasks and has no task-specific
hyperparameters.

Using a CEB representation for the actor, the critic, or both still gives much better sample efficiency
than Dreamer at 6 of the 9 tasks, but the lack of the full set of future actions as input to the forward
encoder in these models appears to make it more difficult for the agents to solve locomotion tasks
like Cheetah Run and Walker Walk. We also tested a critic Representation PI-SAC model variant that
allowed critic gradients to flow to the convolutional encoder parameters (as in PI-SAC), and found
that doing so improved performance on Cartpole Swingup and Reacher Easy, but substantially worse
on Ball In Cup Catch, Cartpole Balance Sparse, and Cheetah Run, and comparable on the remaining
four tasks. This indicates that the difficulty on the locomotion tasks we see here is not due to the lack
of critic gradients.

On most tasks, we found that actor Representation PI-SAC had the strongest performance and best
stability of the three Representation PI-SAC variants. In particular, its stability on Cartpole Balance
Sparse was remarkable: from 80,000 environment steps through 480,000 environment steps, all five
agents got perfect scores of 1,000 on all 10 evaluation trials that occurred every 10,000 environment
steps, for a total of 2,000 perfect evaluations in a row. In contrast, the other two variants (and
Dreamer) had substantial deviations from perfect scores throughout training. More exploration is
necessary to understand why actor Representation PI-SAC has this stability advantage.
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Figure 15: Representation PI-SAC models with action repeat of 2 and no task-dependent hyperpa-
rameter changes, making the experiments directly comparable to the Dreamer results. All curves are
5 runs.

I Discussion of Compression

As discussed in Section 4.3, compression is known to improve generalization [36, 3, 8]. For example,
in [36], the authors show that every additional bit in a representation Z requires four times as much
training data to achieve the same generalization, which may explain PI-SAC sample efficiency gains:

|I(Y ;Z)− I(Ŷ ;Z)| ≤ O

(
|Y |2I(X̂;Z)

√
N

)
(12)

Here, X̂ and Ŷ are the training observations and targets, Z is the learned representation, N is the
number of training examples, and X and Y are the observations and targets in the full distribution the
training examples are sampled from. Since we are trying to learn Z that maximizes I(Y ;Z) while
only observing X̂ and Ŷ , we want I(Ŷ ;Z) to be as close to I(Y ;Z) as possible. This bound makes
it clear that we can make the two close by either increasing N or decreasing I(X̂;Z).

Of course, one way to make that bound tight is to make Z independent of X̂ and Ŷ . In that case, all
of I(X̂;Z), I(Ŷ ;Z), and I(Y ;Z) converge to 0. To avoid this, we would like to learn the Minimum
Necessary Information (MNI), introduced in [7]. The MNI is defined as the equality:

I(X;Y ) = I(X;Z) = I(Y ;Z) (13)

Intuitively, this says that we are trying to find a representation Z that captures exactly the information
that is shared between X and Y . Learning such a Z corresponds to finding the maximum of I(Y ;Z)
while also having I(X;Z|Y ) = 0.4 This is basis of the CEB objective function which we apply here
to the problem of bounding the Predictive Information, as described in Section 2.

4And also having I(Y ;Z|X) = 0, but that can be enforced by having the Markov chain Z ← X → Y ,
which means that Z is a stochastic function of X only.
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