
A More Technical Preliminaries412

For vectors u, v, we denote the entrywise product by u� v; that is, the vector such that wi = ui · vi413

for each i. For any symmetric matrix A 2 Rd⇥d, let exp(A) denote the matrix exponential of A.414

Definition A.1 (total variation distance). For probability distributions p, q, the total variation distance415

is defined as TV(p, q) = supE |p(E)� q(E)| = 1
2kp� qk1, where the supremum is over the set of416

measurable events.417

We write Un for the uniform distribution over [n].418

B Technical Details of Section 2419

B.1 Full Proof of Theorem 2.1420

To prove the main theorem (Theorem 2.1) of Section 2, we first claim the following set of guarantees421

provided by Algorithm 1.422

Lemma B.1 (analysis of filter). Let ✏ 2 (0, 1/10] and {xi}ni=1 be n points in Rd. Suppose there
exists ⌫ 2 Rd and w 2Wn,✏ such that

nX

i=1

wi (xi � ⌫) (xi � ⌫)> � �I

for some � > 0. Then, given {xi}ni=1, a failure rate � and ⇢ such that ⇢ � ⌧
(t)
i

for all i and t,423

Algorithm 1 finds w0 2Wn,✏ and ⌫
0 2 Rd such that424

nX

i=1

w
0
i
(xi � ⌫

0) (xi � ⌫
0)
> � 60�I, (B.1)

with probability at least 1� �.425

The algorithm terminates in T = O(⇢✏/�) iterations. Further, if T = O(poly(n, d)), then each426

iteration takes eO(nd log(1/�)) time.427

We first see how to prove Theorem 2.1 via Lemma B.1. Note that it requires to bound the width
parameter ⇢. To ensure the condition ⇢ � ⌧

(t)
i

for all i and t, observe that as kv(t)k = 1, we have

⌧
(t)
i

=
D
v
(t)
, xi � ⌫

(t)
E2
 kxi � ⌫

(t)k2.

Also, since ⌫
(t) is a convex combination of {xi}ni=1, we can set ⇢ to be the squared diameter of the428

input data {xi}ni=1. As the first step, we show that a (1� 2✏) fraction of the points lie within a ball429

of radius
p
d�/✏ under the spectral centrality condition. Then a (folklore) pruning procedure can be430

used to extract such set.431

Lemma B.2 (diameter bound). Let {xi}ni=1 be n points in Rd. Suppose there exists ⌫ 2 Rd and432

w 2 Wn,✏ such that
P

n

i=1 wi (xi � ⌫) (xi � ⌫)> � �I for some � > 0 and ✏ 2 (0, 1/2). Then433

there exists a ball of radius
p
d�/✏ that contains at least r = (1� 2✏)n points of {xi}ni=1.434

Proof. We show that there exists a ball of radius
p
d�/✏ that contains at least (1�3✏)n points. Note435

that the spectral centrality condition
P

n

i=1 wi (xi � ⌫) (xi � ⌫)> � �I implies that436

nX

i=1

Tr
�
wi(xi � ⌫)(xi � ⌫)>

�
 d�.

By the cyclic property of trace, we get437

nX

i=1

wikxi � ⌫k2  d�.
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Therefore, by Markov’s inequality,438

Pr
i⇠w

�
kxi � ⌫k2 � d�/✏

�
 ✏, (B.2)

where i ⇠ w denotes i drawn from the discrete distribution defined by w. Observe that since Wn,✏ is439

the convex hull of all uniform distributions over a subset of size (1� ✏)n, we have kw � Unk1  2✏.440

Thus, TV(w,Un)  ✏. Hence, using the definition of total variation distance, (B.2) implies that441

Pr
i⇠Un

�
kxi � ⌫k2 � d�/✏

�
 2✏, (B.3)

as desired.442

Lemma B.3 (folklore; see [21]). Let ✏ < 1/2 and � > 0. Let S ⇢ Rd be a set of n points. Assume443

there exists a ball B of radius r and a subset S0 ✓ S such that |S0| � (1� ✏)n and S
0 ⇢ B. Then444

there is an algorithm PRUNE(S, r, �) that runs in time O(nd log 1/�) and with probability 1 � �445

outputs a set R ✓ S so that S0 ✓ R, and R is contained in a ball of radius 4r.446

Using the lemmas above, we can immediately prove the main theorem.447

Proof of Theorem 2.1. Given S = {xi}ni=1,� and ✏, we first run the PRUNE(S, r, �/2) algorithm,
with r =

p
d�/✏. By Lemma B.2, the spectral centrality condition (†) implies there exists a ball

of radius r containing at least (1� 2✏)n points of S. Therefore, Lemma B.3 guarantees that it will
return a set R ✓ S of at least (1�2✏)n points contained in a ball of radius 4r. Hence by Lemma B.1,
given R, ⇢ = 16d�/✏ and failure rate �/2, Algorithm 1 finds w0 2W|R|,✏ and ⌫

0 2 Rd such that
X

i2R

w
0
i
(xi � ⌫

0) (xi � ⌫
0)
> � 60�I,

with probability at least 1� �/2. Let w00
i
= w

0
i

if i 2 R and w
00
i
= 0 otherwise. since 1

(1�✏)(1�2✏) 448

1
1�3✏ for ✏ < 1/3, we have w

00 2 Wn,3✏ Moreover,
P

n

i=1 w
00
i
(xi � ⌫

0) (xi � ⌫
0)> � 60�I , as449

desired.450

The overall procedure succeeds with probability at least 1�� by a union bound, since Algorithm 1 and451

PRUNE are both set up to have a failure rate at most �/2. Now for the run-time, PRUNE(S, r, �) takes452

O(nd log(1/�)) by Lemma B.3. Moreover, by Lemma B.1, Algorithm 1 runs in time eO(nd log(1/�)·453

T ) time, with T = O(⇢✏/�) being the iteration count. Since ⇢ = 16d�/✏, we have T = O(d), and454

this immediately yields the desired runtime.455

Analysis via regret minimization Now it remains to analyze Algorithm 1, proving Lemma B.1.456

We will cast the algorithm under the framework of regret minimization using multiplicative weights457

update (MWU). To see that, we consider {xi}ni=1 as the set of actions, w(t) as our probability458

distribution over the actions at time t, and we receive a loss vector ⌧ (t) each round. The weights are459

updated in a standard fashion. Further, the weights must lie in the constraint set Wn,✏ and thus the460

projection step. (Note that the algorithm is implementing both the player and the adversary.) The461

following is a classic regret bound of MWU for the online linear optimization problem.462

Lemma B.4 (regret bound [4]). Suppose ⇢ � ⌧
(t)
i

for every t and i. Then for any weight w 2463

Wn,✏, Algorithm 1 satisfies that464

1

T

TX

t=1

D
w

(t)
, ⌧

(t)
E
 1

T
(1 + ⌘)

TX

t=1

D
w, ⌧

(t)
E
+

⇢ · KL(w||w(1))

T⌘
, (B.4)

where any choice of step size ⌘  1/2.465

In addition, we claim the following lemma and delay its proof to the appendix (Lemma B.7).466

Lemma B.5. Under the centrality promise (†), for any w
0 2Wn,✏,467

k⌫ � ⌫(w0)k  1

1� 2✏

⇣p
2�+

p
✏kM(w0)k

⌘
, (B.5)

where ⌫(w0) =
P

i
w

0
i
xi and M(w0) =

P
i
w

0
i
(xi � ⌫(w0))(xi � ⌫(w0))>.468
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This type of inequality is generally known as the spectral signature lemmas from the recent algorith-469

mic robust statistics literature; see [35, 18].470

With these technical ingredients, we are now ready to analyze the algorithm.471

Proof of Lemma B.1. Notice first that since v
(t) is a 7/8-approximate largest eigenvector of M (t) =472 P

i
w

(t)
i

(xi � ⌫
(t))(xi � ⌫

(t))T , then for all t,473

X

i

w
(t)
i

⌧
(t)
i

=
X

i

wi

D
v
(t)
, xi � ⌫

(t)
E2

= v
(t)>

M
(t)
v
(t) � 7

8

���M (t)
���
2
. (B.6)

Let w be the good weights that satisfies our centrality promise (†). Summing over the T rounds and474

applying the the regret bound (Lemma B.4), we obtain that475

7

8T

TX

t=1

���M (t)
���
2
 1

T

TX

t=1

D
w

(t)
, ⌧

(t)
E
 (1 + ⌘)

1

T

TX

t=1

D
w, ⌧

(t)
E
+

⇢ · KL(w||w(1))

T⌘
.

The KL term can be bounded because w and w
(1) are both close to uniform. Indeed, it is a simple476

calculation to verify that KL(w||w(1))  5✏, using the fact wi  1/(1� ✏)n (Lemma B.8). Plugging477

in ⌘ = 1/2, we get478

7

8T

TX

t=1

���M (t)
���
2
 3

2T

TX

t=1

D
w, ⌧

(t)
E
+

10✏⇢

T
. (B.7)

Our eventual goal is to bound this by O(�). Note that the second term is easy to control—just set479

T = ⌦(⇢✏/�), and this will determine the iteration count and thus the runtime.480

The remaining is mostly tedious calculations to bound the first term. The reader can simply skip481

forward to (B.13). For those interested: we proceed by expanding the first term on the right-hand482

side,483

3

2T

TX

t=1

hw, ⌧ (t)i = 3

2T

TX

t=1

nX

i=1

wi

D
xi � ⌫

(t)
, v

(t)
E2

(B.8)

=
3

2T

TX

t=1

nX

i=1

wi

✓D
xi � ⌫, v

(t)
E2

+
D
⌫ � ⌫

(t)
, v

(t)
E2
◆

(B.9)

 3

2
�+

3

2T

TX

t=1

D
⌫ � ⌫

(t)
, v

(t)
E2

(B.10)

 3

2
�+

3

2T

TX

t=1

���⌫ � ⌫
(t)
���
2

2
, (B.11)

where (B.8) is by the definition that ⌧ (t)
i

=
⌦
v
(t)
, xi � ⌫

(t)
↵2

, (B.9) uses the definition of ⌫(t), (B.10)484

follows from the spectral centrality assumption (†), and (B.11) is by the fact that kv(t)k = 1. Since485

⌫
(t) =

P
n

i=1 w
(t)
i

xi, we can apply Lemma B.5 to bound k⌫ � ⌫
(t)k and it follows that486

3

2T

TX

t=1

���⌫ � ⌫
(t)
���
2

2
 3

2T

 
TX

t=1

25

2
�+

1

3

���M (t)
���
2

!
,

for ✏  1/10. Plugging the bound into (B.11), we obtain487

3

2T

TX

t=1

hw, ⌧ (t)i  3

2
�+

3

2T

 
TX

t=1

25

2
�+

1

3

���M (t)
���
2

!
=

81

4
�+

1

2T

TX

t=1

���M (t)
���
2
. (B.12)

Finally, substituting this back into (B.7), we see that488

7

8T

TX

t=1

���M (t)
���
2
 81

4
�+

1

2T

TX

t=1

���M (t)
���
2
+

10✏⇢

T
. (B.13)

14



Now if we set T = 10⇢✏/�, then the last term is �. Rearranging yields that 1
T

P
T

t=1

��M (t)
��
2
 60�.489

This shows that within T = O(⇢✏/�) iterations we have achieved our goal (B.1).490

Now it remain to argue the cost of each iteration. For approximating the largest eigenvector, the well-491

known power method computes a constant-approximation in O(nd log(1/↵)) time with a failure492

probability at most ↵ [29]. We set ↵ = �/T , and an application of union bound implies that all493

the T calls to the power method jointly succeed with probability at least 1 � �. This gives a total494

run-time of eO(nd log(1/�)), since T = O(poly(n, d)), and bounds the overall failure probability of495

the algorithm by �. Finally, we remark that the KL projection onto Wn,✏ can be computed exactly in496

O(n) time, by the deterministic procedures in [24, 45]. This completes the run-time analysis.497

B.2 Proof of a Spectral Signature498

Towards a proof of Lemma B.5, we need the following technical lemma.499

Lemma B.6. Let {xi}ni=1 be n points in Rd. Suppose there exists ⌫ 2 Rd and a set of good weights500

w 2Wn,✏ such that501
nX

i=1

wi (xi � ⌫) (xi � ⌫)> � �I. (B.14)

Then there exists a set G ✓ [n] of size (1� ✏)n such that502

1

(1� ✏)n

X

i2G

(xi � ⌫) (xi � ⌫)> � �I. (B.15)

Proof. Define w(T ) to be the uniform distribution over a subset T ✓ [n] of data. Let T denote the503

collection of all subsets of size (1 � ✏)n. Observe that the set of good weights Wn,✏ is simply the504

convex hull of {w(T ) : T 2 T }. Thus, for each i, we can rewrite wi =
P

T2T ↵Tw(T )i for some505

distribution ↵ over T . Then we get that506

nX

i=1

wi (xi � ⌫) (xi � ⌫)> =
nX

i=1

X

T2T
↵Tw(T )i (xi � ⌫) (xi � ⌫)>

=
X

T2T
↵T

nX

i=1

w(T )i (xi � ⌫) (xi � ⌫)>

=
X

T2T
↵TAT ,

where AT = 1
(1�✏)n

P
i2T

(xi � ⌫) (xi � ⌫)>. It follows that the spectral centrality condi-507

tion (B.14) is equivalent of508

X

T2T
↵TAT � �I.

Therefore, there must exist a G 2 T such that AG � �I , as we desired in (B.15).509

Lemma B.7. Let {xi}ni=1 be n points in Rd. Suppose there exists ⌫ 2 Rd and a set of good weights510

w 2Wn,✏ such that511
nX

i=1

wi (xi � ⌫) (xi � ⌫)> � �I. (B.16)

for some � > 0. Then for any w
0 2Wn,✏,512

k⌫ � ⌫(w0)k  1

1� 2✏

⇣p
�+
p
2✏�+

p
✏kM(w0)k

⌘
, (B.17)

where ⌫(w0) =
P

i
w

0
i
xi and M(w0) =

P
i
w

0
i
(xi � ⌫(w0))(xi � ⌫(w0))>.513

The lemma and its proof strategy is similar to the spectral signature lemma in robust statistics and is514

now somewhat standard in the literature; see, e.g., [21, 35].515
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Proof. First, by Lemma B.6, there exists a set G of data of size (1� ✏)n such that516

1

(1� ✏)n

X

i2G

(xi � ⌫) (xi � ⌫)> � �I. (B.18)

Let µG = 1
(1�✏)n

P
i2G

xi and B = [n] \G.517

Next, to bound k⌫ � ⌫(w0)k, we note518

k⌫(w0)� ⌫k22 =
X

i

w
0
i
h⌫(w0)� ⌫, xi � ⌫i

=
X

i2G

1

(1� ✏)n
h⌫(w0)� ⌫, xi � ⌫i+

X

i2G

✓
w

0
i
� 1

(1� ✏)n

◆
h⌫(w0)� ⌫, xi � ⌫i

+
X

i2B

w
0
i
h⌫(w0)� ⌫, xi � ⌫i (B.19)

We bound the three terms respectively as follows.519

(i) For the first term, by Cauchy-Schwarz,520
X

i2G

1

(1� ✏)n
h⌫(w0)� ⌫, xi � ⌫i = h⌫(w0)� ⌫, µG � ⌫i  k⌫(w0)� ⌫k · kµG � ⌫k.

By Jensen’s inequality and since AG � �I , we have for all unit u,521

hµG � ⌫, ui2 =

*
1

(1� ✏)n

X

i2G

xi � ⌫, u

+2

 1

(1� ✏)n

X

i2G

hxi � ⌫, ui2  �.

Thus, kµG � ⌫k 
p
�.522

(ii) For the second term, let ↵i = w
0
i
� 1/(1� ✏)n. Then523

 
X

i2G

↵i h⌫(w0)� ⌫, xi � ⌫i
!2


 
X

i2G

(1� ✏)n↵2
i

!
·
X

i2G

1

(1� ✏)n
h⌫(w0)� ⌫, xi � ⌫i2


 
X

i2G

(1� ✏)n↵2
i

!
· � · k⌫(w0)� ⌫k22 (B.20)


 
X

i2G

|↵i|
!

· � · k⌫(w0)� ⌫k22 (B.21)

 2✏� · k⌫(w0)� ⌫k22, (B.22)
where (B.20) is by the covariance bound that AG � �I , (B.21) follows since |(1� ✏)n↵i|  1,524

and (B.22) since
P

n

i=1 |↵i|  ✏/(1� ✏)  2✏.525

(iii) For the third term, we have526

X

i2B

w
0
i
h⌫(w0)� ⌫, xi � ⌫i =

X

i2B

w
0
i
h⌫(w0)� ⌫, xi � ⌫(w0)i+

 
X

i2B

wi

!
k⌫(w0)� ⌫k22


X

i2B

w
0
i
h⌫(w0)� ⌫, xi � ⌫(w0)i+ ✏ · k⌫(w0)� ⌫k22

By Cauchy-Schwarz,527
 
X

i2B

w
0
i
h⌫(w0)� ⌫, xi � ⌫(w0)i

!2


 
X

i2B

w
0
i

! 
X

i2B

w
0
i
· h⌫(w0)� ⌫, xi � ⌫(w0)i2

!

 ✏ ·
nX

i=1

w
0
i
h⌫(w0)� ⌫, xi � ⌫(w0)i2

= ✏ · (⌫(w0)� ⌫)
>
M(w0) (⌫(w0)� ⌫)

 ✏ · kM(w0)k2 · k⌫(w0)� ⌫k2
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Substituting the three bounds back into (B.19) immediately yields the result (B.17).528

B.3 Proof of the KL Divergence Bound529

Lemma B.8. Let p 2Wn,✏ and q be the uniform distribution over n points. Then KL(p||q)  5✏.530

Proof. The lemma follows from direct calculations. By definition of KL divergence,531

KL(p||q) =
X

i

pi log
pi

qi

=
X

i

pi log(npi)


X

i

1

(1� ✏)n
log

1

(1� ✏)

=
1

1� ✏
log

1

1� ✏

 5✏.

where the last inequality holds when 0 < ✏  1/2.532

B.4 Further Technical Comments533

Faster algorithm Under the same assumptions, the spectral sample reweighing problem can be534

solved in eO(nd log(1/�)) time, by adapting a matrix multiplicative weight scheme, due to Dong,535

Hopkins and Li [21]. The algorithm and its analysis generally follow from the proofs therein. The536

details can be found in Appendix G.537

As we can show in the corresponding sections, applying this procedure directly match the fastest538

known algorithms for both robust and heavy-tailed settings.539

Gradient descent analysis As we argued, Algorithm 1 is essentially an online linear optimization540

scheme, with the objective of minimizing
P

T

t=1hw(t)
, ⌧

ti. It is known that the multiplicative weights541

rule employed here can be seen an entropic mirror descent update [42]. Therefore, it is natural to542

ask whether an additive update/gradient descent procedure would solve the problem as well. In543

Appendix H, we provide such an analysis (Theorem H.3). More importantly, the resulting scheme544

is equivalent to the gradient descent algorithm analyzed by [9], and our analysis improves upon545

the iteration complexity from their work (in the concrete settings of robust mean estimation, under546

bounded second moment and sub-gaussian distributions).547

C Solving Robust Mean Estimation548

We now apply Algorithm 1 for the robust mean estimation problem. We focus on the bounded second549

moment distributions, where Algorithm 1 can be invoked in a black-box fashion. A slight variant of550

it can be used for the sub-gaussian setting, where we achieve a more refined analysis; see Appendix551

F.552

The problem is formally defined below.553

Definition C.1 (robust mean estimation). Given a distribution D over Rd with bounded covariance554

and a parameter 0  ✏ < 1/2, the adversary draws n i.i.d. samples D, inspects the samples, then555

removes at most ✏n points and replaces them with arbitrary points. We call the resulting dataset556

✏-corrupted (by an adaptive adversary).557

The goal is to estimate the mean of D only given the ✏-corrupted set of samples.558

Using a meta-algorithm for approximating the spectral sample reweighing problem, we will show559

the following. In particular, using Algorithm 1 matches the run-time and statistical guarantee of the560

original FILTER algorithm.561
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Theorem C.1 (robust mean estimation via sample reweighing). Let D be a distribution over Rd562

with mean µ and covariance ⌃ � �
2
I and ✏  1/10. Given an ✏-corrupted set of n = ⌦(d log d/✏)563

samples, there is an algorithm that runs in time eO(nd2) that with constant probability outputs an564

estimate bµ such that kbµ� µk  O(�
p
✏).565

Further, the algorithm is via a black-box application of Algorithm 1, which can be replaced by any566

algorithm solving the spectral sample reweighing problem (Definition 2.1).567

Information-theoretically, Theorem C.1 is near optimal. It is known that the sample complexity of568

d log d/✏ is tight, only up to the log factor. The estimation error O(
p
✏) is tight up to constant factor.569

Our analysis requires a set of deterministic conditions to hold for the input, which follow from570

Lemma A.18 of [16]. This is meant to obtain the desired spectral centrality condition and to bound571

the final estimation error.572

Lemma C.2 (deterministic conditions [16]). Let S be an ✏-corrupted set of ⌦(d log d/✏) samples573

from D with mean µ and covariance ⌃ � I . With high constant probability, S contains a subset G574

of size at least (1� ✏)n such that575

kµ� µGk  O(
p
✏) (C.1)

�����
1

|G|
X

i2G

(xi � µG) (xi � µG)
>

�����
2

 O(1), (C.2)

where µG = 1
|G|

P
i2G

xi.576

We now prove the main result of this section—using the meta-algorithm to solve the robust mean577

estimation problem. Observe that it suffices to prove the theorem with �
2 = 1. Without loss of578

generality, we can first divide every input sample by �, execute the algorithm and then multiply the579

output by �.580

Proof of Theorem C.1. First, we check that the centrality promise (†) is satisfied. This would ensure581

that we are in the setting of the spectral sample reweighing problem so that the meta-algorithm582

applies. Assume the conditions from Lemma C.2. Then suppose we let wi = 1/|G| if xi 2 G and583

wi = 0 otherwise, so we have that w 2 Wn,✏, and let ⌫ = µG and � = O(1). Observe that (C.2)584

is exactly the spectral centrality condition (†) . Then we can apply Theorem 2.1 and obtain that the585

algorithm will find ⌫
0 2 Rd and w

0 2Wn,3✏ such that586

M(w0) :=
nX

i=1

w
0
i
(xi � ⌫

0) (xi � ⌫
0)
> � O(1) · I

Furthermore, by definition of the algorithm, ⌫0 is a weighted average of the points {xi}ni=1; that is,587

⌫
0 = ⌫(w0) =

P
n

i=1 w
0
i
xi. This allows us again to apply the spectral signature lemma. In particular,588

Lemma C.5 implies589

kµG � ⌫
0k  1

1� 6✏

⇣p
6✏�+

p
3✏kM(w0)k

⌘
= O

�p
✏
�

since � = O(1) and kM(w0)k = O(1). Finally, by triangle inequality and (C.1),590

kµ� ⌫
0k  kµG � ⌫

0k+ kµ� µGk  O(
p
✏).

Therefore, the output ⌫0 estimates the true mean up to an error of O(
p
✏), as desired.591

Finally, the run-time guarantee follows directly from the statement of Theorem 2.1, since we apply592

the meta-algorithm in a black-box fashion. This completes the proof.593

Other algorithms To improve the computational efficiency, applying the same argument and using594

the matrix multiplicative weight algorithm (Theorem G.1), we can obtain a near linear time algorithm,595

which matches the fastest known algorithm for robust mean estimation [21, 10].596

Corollary C.3 (faster robust mean estimation [21]). Let D be a distribution over Rd with mean597

µ and covariance ⌃ � �
2
I and ✏ be a sufficiently small constant. Given an ✏-corrupted set of598

n = ⌦(d log d/✏) samples, there is a matrix multiplicative update algorithm that runs in time eO(nd)599

and with constant probability computes an estimate of error O(�
p
✏).600
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Since � = O(1) in the robust mean estimation problem under bounded covariance (Lemma C.2), our601

analysis of the gradient descent algorithm (Theorem H.3) implies the following.602

Corollary C.4 (robust mean estimation via gradient descent). Let D be a distribution over Rd with603

mean µ and covariance ⌃ � �
2
I and ✏ be a sufficiently small constant. Given an ✏-corrupted set of604

n = ⌦(d log d/✏) samples, there is a gradient-descent based algorithm that computes an estimate of605

error O(�
p
✏) with constant probability in eO(n2

d/✏) iterations.2606

A variant of the gradient descent-based algorithm can be used for robust mean estimation in the607

sub-gaussian setting as well; see Appendix H.2.608

C.1 Proof of the Spectral Signature609

Lemma C.5. Let {xi}ni=1 be n points. Suppose there exists a subset G ⇢ [n] of size (1 � ✏) such610

that 1
|G|

P
i2G

(xi � µG) (xi � µG)
> � �I for some � > 0, where µG = 1

|G|
P

i2G
xi. Then for611

any w 2Wn,✏,612

kµG � µ(w)k  1

1� 2✏

⇣p
2✏�+

p
✏kM(w)k

⌘
. (C.3)

Proof. The proof follows from the same argument of Lemma B.7, with ⌫ = µG. Observe that the613

first term in (B.19) becomes 1
|G|

P
i2G
hµ(w)� ⌫, xi � ⌫i, which equals 0 when ⌫ = µG, shaving614

the
p
� term in the final bound.615

D Technical Details of Section 3616

D.1 Proof of the Duality Theorems617

To pave way for the proofs, a key observation, first made by [8], is that the left-side of (spectral center)618

is an SDP objective. (This is because it is simply minimizing the maximum eigenvalue of
P

i
wi(xi�619

⌫)(xi � ⌫)>.) And strong duality allows us to swap the min and max, so620

min
w2Wk,✏

max
M

kX

i=1

wi

⌦
(xi � ⌫)(xi � ⌫)>,M

↵
= max

M

min
w2Wk,✏

kX

i=1

wi

⌦
(xi � ⌫)(xi � ⌫)>,M

↵
,

(D.1)
where the maximization is over the set of density matrices. Using this, we prove the following two621

propositions, showing (by contrapositives) that the two notions of centrality are equivalent. The622

constants in the statements are chosen only to serve the purpose of heavy-tailed mean estimation,623

and they can be tweaked easily by the same arguments.624

We are now ready for proving the duality theorems claimed in Section 3.625

Proof of Proposition 3.1. The assumption (3.2) immediately implies that626

kX

i=1

�
hxi � ⌫, vi2 � 100�

 
� 0.4k

This means that there are (at least) 0.4k points in {xi}ki=1 such that ti :=
⌦
(xi � ⌫)(xi � ⌫)>,M

↵
�627

100�, where M = vv
>. We call them outliers.628

Now by the SDP duality (D.1), we only need to show that for any feasible w the objective is at629

least �. Observe first that for a fixed M , the optimal w⇤ for the max-min objective is to put weight630

1/(1� ✏)k on the (1� ✏)k points with the smallest ti. Recall we set ✏ = 0.3. Hence, by pigeonhole631

principle, the support of w⇤ must have an overlap of size 0.1k with the outliers. It follows that632

kX

i=1

w
⇤
i

⌦
(xi � ⌫)(xi � ⌫)>,M

↵
� 0.1k · 1

(1� 0.3)k
· 100� � 10�.

2The 1/✏ dependence in the run-time can be removed by a simple bucketing trick due to [12]; also see
Lemma B.1 of [21].
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Since w
⇤ is the optimal choice, this completes the proof.633

The other direction is a bit more involved. The key idea is to round the maximizing PSD matrix M634

into a single vector v, via gaussian sampling, and this part of the argument is due to [12].635

Proof of Proposition 3.2. Strong duality (D.1) implies that there exists PSD M of unit trace such636

that637

kX

i=1

wi

⌦
(xi � ⌫)(xi � ⌫)>,M

↵
� �

for all w 2 Wk,✏. As we observed, the optimal w⇤ for a fixed M would put weights on the points638

with smallest value of ti =
⌦
(xi � ⌫)(xi � ⌫)>,M

↵
. The fact that the objective is large implies that639

there must be more than ✏k = 0.1k points with ti � �. Let B be this set of points such that ti � �.640

It remains to demonstrate a vector v such that641

kX

i=1

n
|hxi � ⌫, vi| � 0.1

p
�

o
� 0.01k. (D.2)

The idea is to round the PSD matrix M to a single vector v that achieves this inequality. The right642

rounding method is simply gaussian sampling. Namely, if we draw vM ⇠ N (0,M), then it can be643

shown that with constant probability v = vM/kvMk satisfies the property above.644

For that, we apply the argument from [12]. First let gi = hxi � ⌫, vM i for each i 2 [k]. Note that
gi is a mean-zero Gaussian random variable with variance �

2
i
= ti. A standard anti-concentration

calculation shows that for any i 2 B, Pr(|gi| � 0.5
p
�) � 1/2. Therefore, if we define

Y =
kX

i=1

n
|hxi � ⌫, vi| � 0.5

p
�

o
,

then by linearity of expectations we have EY � 0.05k. It follows from the Payley-Zigmund
inequality that Pr(Y � 0.01k) � 0.0018. Moreover, by Borell-TIS inequality (Theorem 7.1 of [31]),
we can bound that with probability at least 0.999,

kvMk  E kvMk+ 4
p
kMk 

p
Tr(M) + 4

p
Tr(M)  5,

since Tr(M) = 1. Combing these facts immediately prove (D.2).645

E Technical Details of Section 4646

E.1 Proof of Lemma 4.2647

The proof is via by a simple “pigeonhole + triangle inequality” argument.648

Proof of Lemma 4.2. Let v be the unit vector in the direction of µ� bµ. Then since bµ is an (✏, O(r2
�
))-649

combinatorial center with ✏ < 1/2, we have |hZi � bµ, vi|  r� for most Zi. Also, |hZi � µ, vi| 650

O(r�) for most {Zi}ki=1 by our assumption from Lugosi-Mendelson lemma. By the pigeonhole651

principle, there must be a Zj such that |hZj� bµ, vi|  O(r�) and |hZj�µ, vi|  O(r�). By triangle652

inequality,653

kbµ� µk = hµ� bµ, vi  |hZi � µ, vi|+ |hZi � bµ, vi|  O(r�).

as desired, and this completes the proof.654

E.2 Proof of Theorem 4.3655

Proof of Theorem 4.3. Let {Zi}ki=1 be the bucket means with k = d800 log(1/�)e and let � =656

3000r�. We assume that the true mean µ is a (0.01,�2)-combinatorial center of {Zi}ki=1. Suppose657

that we can obtain an ↵-factor approximation the spectral sample reweighing, with the input being658

{Zi}ki=1.659
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• Promise: First let’s check the spectral centrality condition holds. Since, by assumption, µ is a660

(0.01,�2)-combinatorial center of {Zi}ki=1, we have that for all unit v661

kX

i=1

{|hxi � µ, vi| � �}  0.01k.

Thus, Proposition 3.2 (with ⌫ = µ) implies that662

min
w2Wk,✏

max
M⌫0,Tr(M)=1

kX

i=1

wi

⌦
(xi � µ)(xi � µ)T ,M

↵
 100�2

,

where ✏ = 0.1. This means that there exists w 2Wk,✏ such that663

�����

nX

i=1

wi (xi � µ) (xi � µ)T
�����  100�2

.

• Output: Now the guarantee of an ↵-factor approximation for spectral sample reweighing (Defi-664

nition 2.1) is that we have bµ 2 Rd and w
0 2Wk,3✏ such that665

�����

nX

i=1

w
0
i
(xi � bµ) (xi � bµ)T

�����  100↵�2
.

It immediately follows that666

min
w2Wk,3✏

max
M⌫0,Tr(M)=1

kX

i=1

wi

⌦
(xi � bµ)(xi � bµ)T ,M

↵
 100↵�2

.

Now we can apply Proposition 3.1. Since ↵ is a constant by assumption, we obtain that for all667

unit v,668

kX

i=1

{|hxi � bµ, vi| � C(↵) · �}  0.4k, (E.1)

for some constant C(↵) = O(1) that depends on ↵. Therefore, we get that a majority of the669

points cluster around bµ, along any direction v, so it is a (0.4, O(�))-combinatorial center. It670

follows from Lemma 4.2 that kbµ� µk  O(r�), as � = O(r2
�
).671

Finally, note that the only condition of the argument is that the true mean is a combinatorial center,672

which occurs with probability at least 1� �, by Lemma 4.1.673

We remark that the exact constants we choose in the proof are immaterial, and no efforts have been674

given in optimizing them.675

E.3 Proof of Corollary 4.4676

Proof of Corollary 4.4. Given the input, we first compute the bucket means {Zi}2ki=1, which takes677

O(nd) time. Assume that the condition of the Lugosi-Mendelson structural lemma (Lemma 4.1)678

holds; that is, µ is a (0.01,�2)-combinatorial center of {Zi}ki=1, where � = 3000r� . We use the filter679

algorithm (Algorithm 1) with the input being a pruned subset of {Zi}ki=1 and apply its guarantees.680

Here, we will not use the pruning step (Lemma B.3), since it requires the knowledge of �. Instead,681

we first compute the coordinate-wise median-of-means bµ0 of {Zi}2ki=k+1 and the distances di =682

kZi � bµ0k for each i 2 [k]. We then sort the points by di (in descending order) and remove the top683

0.01k points in {Zi}ki=1 with large di. It can be shown that the remaining points has diameter at684

most O(
p
dr�); see Lemma E.1 of [32]. Let S the remaining points in {Zi}ki=1.685

For the run-time, we can apply the guarantee of the filter algorithm (Lemma B.1), given the input S686

and a failure probability �/3. Since the squared diameter is ⇢ = O(dr2
�
) and � = O(r2

�
), this gives a687

run-time of eO(k2d2), since k = O(log(1/�)).688
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We now have a constant-factor approximation for the spectral sample reweighing problem. By The-689

orem 4.3, this gives an estimate with the sub-gaussian error (4.1). Finally, the procedure’s success690

depends on the condition of Lugosi-Mendelson (Theorem 4.3), success of the pruning procedure, and691

the guarantees of constant-approximation of spectral sample reweighing (Theorem 2.1). The failure692

probability of each event can be bounded by �/3. Applying union bound completes the proof.693

E.4 Further Technical Comments694

Other algorithms for heavy-tailed mean estimation This argument also enables us to solve the695

heavy-tailed mean estimation problem using other approximation algorithms for the spectral sample696

reweighing problem. Let � = 3000r� . Recall that the argument for Theorem 4.3 shows that there is697

a (0.1, O(�2))-spectral center (which is the true mean µ). Moreover, the pruning step in the proof of698

Corollary 4.4 allows us to bound the squared diameter of a large subset of {Zi}ki=1 by ⇢ = O(d�2).699

This implies that the gradient descent-based algorithm that we analyze in Appendix H solves the700

heavy-tailed setting in O
�
kd

2
�

iterations.701

Corollary E.1 (heavy-tailed mean estimation via gradient descent). Assume the setting of Corol-702

lary 4.4. A black-box application of the gradient descent-based algorithm (Algorithm 4, Appendix H)703

solves the heavy-tailed mean estimation problem with optimal error rate within O(nd2) iterations704

and eO(n2
d
3) time.705

The quantum entropy scoring scheme (Appendix G), however, runs in eO(log(⇢/�)) number of706

iterations. Setting its failure probability to be �/3, we obtain the following, which matches the707

fastest-known algorithm for the problem [12, 32].708

Corollary E.2 (heavy-tailed mean estimation via quantum entropy scoring). Assume the setting of709

Corollary 4.4. A black-box application of the matrix multiplicative update algorithm (Algorithm 3,710

Appendix G) solves the heavy-tailed mean estimation problem with optimal error rate, in eO(1)711

iterations and eO(k2d) total run-time.712

F Extension to sub-gaussian distributions713

We now consider a variant of the filter algorithm (Algorithm 1) analyzed in Section 2. The difference714

is that instead of fixing the step size to be ⌘ = 1/2, we set it as ✏. That is, we will perform the715

multiplicative update less aggressively when there are few bad points. In addition, we require a716

stronger approximation for the largest eigenvector computation. This increases the the run-time717

by an O(poly(1/✏)) factor. For technical reasons, we also ask the algorithm to stop early if the718

weighted covariance has been reduced to a desired value. Formally, the algorithm is described by the719

pseudo-code below (Algorithm 2).720

Algorithm 2: Multiplicative weights for sub-gaussian robust mean estimation
Input: A set of points {xi}ni=1, an iteration count T , and parameter ⇢, �
Output: A set of weights w 2Wn,✏.

1 Let w(1) = 1
n n.

2 For t from 1 to T

3 Let ⌫(t) =
P

i
w

(t)
i

xi, M (t) =
P

i
w

(t)
i

(xi � ⌫
(t))(xi � ⌫

(t))T .
4 Let v(t) be a (1� ✏

2)-approximate largest eigenvector of M (t) (with kv(t)k = 1). Fail with
probability at most �/T .

5 If �(t) = v
(t)>

M
(t)
v
(t)  1, return w

(t).
6 Compute ⌧

(t)
i

=
⌦
v
(t)
, xi � ⌫

(t)
↵2

.

7 Set w(t+1)
i

 w
(t)
i

⇣
1� ✏⌧

(t)
i

/⇢

⌘
for each i.

8 Project w(t+1) onto the set of good weights Wn,✏ (under KL divergence).

9 Return w
(t⇤), where t

⇤ = argmint kM (t)k.
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First, we need a stronger spectral signature lemma.721

Lemma F.1 ([21]). Let S = {xi}ni=1 be an ✏-corrupted set of n samples from a sub-gaussian722

distribution over Rd, with mean µ and identity covariance. Suppose n � e⌦(d/✏2). If kM(w)k 723

1 + �, for some � � 0, then for any w 2Wn,2✏,724

kµ� µ(w)k  1

1� ✏

⇣p
✏�+ C✏

p
log(1/✏)

⌘
,

for some universal constant C > 0.725

Moreover, we assume that for all w 2Wn,2✏ we have726
�����
X

i2G

wi(xi � µ)(xi � µ)> � I

�����  � = O(✏ log(1/✏)). (F.1)

This condition holds with high probability over the draws of samples [14].727

Lemma F.2 (analysis of sub-gaussian filter). Let ✏ be a sufficiently small constant and {xi}ni=1 be n728

points in Rd. Assume the following (deterministic) conditions hold.729

(i) There exists ⌫ 2 Rd and w 2Wn,✏ such that730
�����

nX

i=1

wi (xi � ⌫) (xi � ⌫)>
�����  1 +O (✏ log (1/✏)) . (F.2)

(ii) If kM(w)k  1 + �, for some � � 0, then for any w 2Wn,✏,731

k⌫ � µ(w)k  1

1� ✏

⇣p
✏�+ C✏

p
log(1/✏)

⌘
, (F.3)

Then, given {xi}ni=1, a failure rate � and ⇢ such that ⇢ � ⌧
(t)
i

for all i and t, Algorithm 2 finds732

w
0 2Wn,✏ such that733

kM(w0)k  1 +O (✏ log (1/✏)) , (F.4)
with probability at least 1� �.734

The algorithm terminates in T = O(⇢/✏) iterations. Further, if T = O(poly(n, d)), then each735

iteration takes eO(nd log
�
1/�)/✏2

�
time.736

Proof of Lemma F.2. If the algorithm gets stopped early (at Line 5), then it means that

kM (t)k  �
(t)
/
�
1� ✏

2
�
 1/

�
1� ✏

2
�
 1 +O(✏2),

since v(t) is a
�
1� ✏

2
�

approximate largest eigenvector of M (t). Hence, in this case, we immediately737

achieves the goal (F.4).738

Now assume the algorithm did not stop early and so kM (t)k > 1 for all t. Then we have739

X

i

w
(t)
i

⌧
(t)
i

=
X

i

w
(t)
i

D
v
(t)
, xi � ⌫

(t)
E2

= v
(t)>

M
(t)
v
(t) �

�
1� ✏

2
� ���M (t)

���
2
, (F.5)

for all t. Since the step size ✏ < 1/2 and ⇢ � ⌧
(t)
i

for all i, t by assumption, we can apply the regret740

bound of MWU (Lemma B.4) and conclude that for w that satifies assumption (F.2),741

1� ✏
2

T

TX

t=1

���M (t)
���
2
 1

T

TX

t=1

D
w

(t)
, ⌧

(t)
E
 (1 + ✏)

1

T

TX

t=1

D
w, ⌧

(t)
E
+

⇢ · KL(w||w(1))

T ✏
. (F.6)

We now focus on bounding 1
T

P
T

t=1

⌦
w, ⌧

(t)
↵
.742

Claim F.3. In the setting above, we have743

1

T

TX

t=1

D
w, ⌧

(t)
E
 1 +O (✏ log(1/✏)) +

2✏

(1� ✏)2
1

T

TX

t=1

���M (t)
����

2✏

(1� ✏)2
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Proof. Note that744

1

T

TX

t=1

D
w, ⌧

(t)
E
=

1

T

TX

t=1

nX

i=1

wi

D
xi � ⌫

(t)
, v

(t)
E

=
1

T

TX

t=1

nX

i=1

wi

✓D
xi � ⌫, v

(t)
E2

+
D
⌫ � ⌫

(t)
, v

(t)
E2
◆

 1 +O (✏ log(1/✏)) +
1

T

TX

t=1

D
⌫ � ⌫

(t)
, v

(t)
E2

(F.7)

 1 +O (✏ log(1/✏)) +
1

T

TX

t=1

���⌫ � ⌫
(t)
���
2

2
, (F.8)

where (F.7) follows from the assumption (F.4). Now we apply assumption (F.3) to bound
��⌫ � ⌫

(t)
��2
2
.745

Since we may assume kM (t)k � 1 by the early stopping of Line 5, we have746
���⌫ � ⌫

(t)
���
2
 2

(1� ✏)2

⇣
✏

⇣���M (t)
���� 1

⌘
+ C

2
✏
2log(1/✏)

⌘

=
2✏

(1� ✏)2

���M (t)
����

2✏

(1� ✏)2
+O(✏2 log(1/✏)).

Substituting the bound back into (F.8) completes the proof.747

Using Claim F.3, the KL bound (Lemma B.8) and (F.6), we have748

1� ✏
2

T

TX

t=1

���M (t)
���
2
 2(1 + ✏)✏

(1� ✏)2
1

T

TX

t=1

���M (t)
���+ 1� 2(1 + ✏)✏

(1� ✏)2
+O(✏ log(1/✏)) +

5⇢

T
.

For sufficiently small ✏, we rearrange and divide through to obtain749

1

T

TX

t=1

���M (t)
���
2
 1 +O(✏ log(1/✏)) +O(✏) +

O(⇢)

T
.

Setting T = O(⇢/✏) completes the correctness proof. Finally, the per-iteration cost follows from the750

run-time of using power method to approximate the largest eigenvector.751

Using the lemma we can prove our main theorem.752

Theorem F.4 (sub-gaussian robust mean estimation, [14]). Let S = {xi}ni=1 be an ✏-corrupted set of753

n samples from a sub-gaussian distribution over Rd, with mean µ and identity covariance. Suppose754

n � e⌦(d/✏2). Given S, there is an algorithm that outputs bµ such that kbµ � µk  O (✏ log (1/✏))755

with high constant probability. The algorithm runs in time eO
�
nd

2
/✏

3
�

756

Proof. Let � = 0.01. We apply Algorithm 2 with a simple pruning procedure as a preprocessing. By757

standard concentration of sub-gaussian random vectors, with high constant probability, kxi � µk 758

r = O(
p
d log n) for all i 2 G. Hence, we apply PRUNE(S, r, �), and by Lemma B.3 it guarantees759

to terminate in O(nd) time and removes at most ✏n (bad) points.760

We feed the remaining (at least) (1� ✏)n points R ◆ G into Algorithm 2 with ⇢ = r
2. Notice that761

1
(1�✏)(1�✏) 

1
1�2✏ for ✏  1/2, so assumptions (i)-(ii) of Lemma F.2 are satisfied by the claim of762

(F.1) and Lemma F.1, respectively.763

It then follows from Lemma F.2 that Algorithm 2 outputs w0 2W|R|,✏ such that764
�����
X

i2R

(xi � µ(w0))(xi � µ(w0))>

�����  1 +O (✏ log(1/✏)) ,

where µ(w0) =
P

i2R
w

0
i
xi. Let w00

i
= w

0
i

if i 2 R and w
00
i
= 0 otherwise. We obtain w

00 2765

Wn,2✏ such that kM(w00)k  1 + O (✏ log (1/✏)). Applying the spectral signature (Lemma F.1)766

proves that µ(w00) attains the desired estimation error. Moreover, the run-time simply follows from767

Lemma F.2.768
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G Sampling reweighing via Matrix Multiplicative Update769

We now show that the spectral sample reweighing problem (Definition 2.1) can be solved in near770

linear time via a matrix multiplicative update scheme from the recent work of [21]. Our analysis will771

closely resemble the arguments therein.772

Theorem G.1. Let {xi}ni=1 be n points in Rd. Suppose there exists ⌫ 2 Rd and w 2 Wn,2✏ such
that

P
n

i=1 wi (xi � ⌫) (xi � ⌫)> � �I for some � > 0 and a sufficiently small ✏. Then, given
{xi}ni=1,�, the squared diameter ⇢ of the points and a failure rate �, there is a matrix multiplicative
weights-based algorithm (Algorithm 3) that, with probability at least 1 � �, finds w0 2 Wn,✏ and
⌫
0 2 Rd such that

nX

i=1

w
0
i
(xi � ⌫

0) (xi � ⌫
0)
> � O(�)I.

Further, the algorithm terminates in O(log(⇢/�)) iterations, where ⇢ is the squared diameter of the773

input points {xi}ni=1, and each iteration can be implemented in eO(nd log(1/�)) time.774

Remark G.1. In the following, we will consider an idealized version of the algorithm and omit the775

detail of implementing the numerical linear algebra primitives in eO(nd log(1/�)) time each iteration.776

The exact details can be found in [21].777

The algorithm is based on the matrix multiplicative weights update. For a sequence of PSD matrices778

M1 ⌫M2 ⌫ · · · ⌫Mt�1, we will apply the matrix multiplicative weight (MMW) update, given by779

MMW(M0,M1, · · · ,Mt�1) = exp

 
1

kM0k2

t�1X

k=1

Mk

!
/ tr exp

 
1

kM0k2

t�1X

k=1

Mk

!
. (G.1)

For technical reasons, we will not maintain a set of weights that is a probability distribution through-780

out. Instead, recall by Lemma B.6 that there exists a subset G of size (1� ✏)n such that AG � �I ,781

where AG = 1
(1�✏)n

P
i2G

(xi � ⌫) (xi � ⌫)>. Thus, our new notion of a good set of weights is782

that starting from the uniform distribution over n points, more weights are removed from [n] \ G783

than from G. Let wG, wB denote the restriction of G to the indices of vector w and B = [n] \G.784

Definition G.1 (mostly-good weight vector). Given {xi}ni=1 that satisfy the spectral centrality con-785

dition (†), let G be a subset of size (1 � ✏)n such that AG � �I . The set of mostly-good weight786

vectors is787

Cn,✏ =
⇢
w 2 Rn : 0  wi 

1

n
and

����
1

n
|G|�wG

���� 
����
1

n
|B| � wB

����

�

A crucial subroutine we use is a deterministic down-weighting scheme, directly from [21], that788

maintains the mostly-good property of the input weights.789

Lemma G.2 (1D Filter [21]). Let ⌘ 2 (0, 1/2), let b � 2⌘, and let w1, . . . , wm and ⌧1, . . . , ⌧m790

be non-negative numbers so that
P

m

i=1 wi  1. Let ⌧max = maxi2[m] ⌧i. Suppose there exist two791

disjoint sets G,B so that G [B = [m], and moreover,792

X

i2G

wi⌧i  ⌘� , where � =
nX

i=1

wi⌧i .

Then 1DFILTER(w, ⌧, b) runs in time O((1 + log ⌧max
b�

)m) and outputs 0  w
0  w so that:793

• more weight is removed from B than from G:
P

i2G
wi � w

0
i

P

i2B
wi � w

0
i
, and794

• the weighted sum of ⌧i is decreased:
P

m

i=1 w
0
i
⌧i  b�.795

The algorithm is formally described in Algorithm 3. Throughout let M (s) = M(w(s)) and M
(s)
t

=796

M(w(s)
t

), where M(w) =
P

n

i=1 wi(xi�µ(w))(xi�µ(w))>. The procedure runs by epochs, where797

each epoch s reduces the largest eigenvalue of M (s) by a constant factor. We will show that the798

inner loop achieves the reduction within O(log d) iterations while maintaining the invariant that the799

weights are mostly-good (Definition G.1).800
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Algorithm 3: Matrix multiplicative update for spectral sample reweighing (Definition 2.1)
Input: A set of points x1, . . . , xn, �, ⇢ and a failure rate �

Output: A point ⌫0 2 Rd and weights w0 2Wn,✏ that satisfy (2.1) up to a constant factor.

1 Let w(0) = 1
n
(1, 1, · · · , 1).

2 For s from 0 to O(log ⇢)
3 Compute �

(s) = kM (s)k.
4 If �(s)  300�
5 Return w

(s)
/kw(s)k1, µ(w(s)).

6 For t from 0 to O(log d)

7 Compute �
(s)
t

= kM (s)
t
k and terminate epoch if �(s)

t
 2

3�
(s)
0 .

8 Compute U
(s)
t

= MMW(M (s)
1 ,M

(s)
2 , · · · ,M (s)

t�1).
9 Compute

⌧
(s)
t,i

=
⇣
xi � µ

⇣
w

(s)
t

⌘⌘>
U

(s)
t

⇣
xi � µ

⇣
w

(s)
t

⌘⌘
(G.2)

10 Let w(s)
t+1 = w

(s)
t

if
P

i
w

(s)
t,i

⌧
(s)
t,i
 1

4�
(s)
1 ; otherwise w

(s)
t+1 = 1DFILTER(w(s)

t
, ⌧

(s)
t

).

11 Let w(s+1) = w
(s)
t

.

To start with the analysis, we first establish certain invariants of the algorithm. This requires the801

following lemma. The proof follows from exactly the same argument for Lemma B.7, which we802

omit for the sake of brevity.803

Lemma G.3. Let {xi}ni=1 be n points in Rd. Suppose there exists ⌫ 2 Rd and a mostly-good804

weight vector w 2 Cn,✏ such that
P

n

i=1 wi (xi � ⌫) (xi � ⌫)> � �I , for some � > 0. Then for any805

w
0 2 Cn,✏,806

k⌫ � ⌫(w0)k  1

1� 2✏

⇣
2
p
�+

p
✏kM(w0)k

⌘
, (G.3)

where ⌫(w0) =
P

i
w

0
i
xi and M(w0) =

P
i
w

0
i
(xi � ⌫(w0))(xi � ⌫(w0))>.807

Using this, we establish a key lemma of the inner loop of the algorithm.808

Lemma G.4. Let w 2 Cn,✏ be such that � = kM(w)k2 � 300� and U be a density matrix. Let809

⌧i = (xi � µ (w))> U (xi � µ (w)). If � � 1
4� and w

0 = 1DFILTER(w, ⌧, 1/4), then we have810

w
0 2 Cn,✏ and hM (w0) , Ui  1

4 hM(w), Ūi.811

Proof. Let ewi = 1/n if i 2 G and ewi = 0 otherwise. Let µ( ew) =
P

i
ewixi. Then for any unit812

vector u, we have813

hµ( ew)� ⌫, ui2 
*

1

(1� ✏)n

X

i2G

xi � ⌫, u

+2

 1

(1� ✏)n

X

i2G

hxi � ⌫, ui2  �.
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Thus, kµ( ew)� ⌫k22  �. Expanding the definition of ⌧i, we get814

X

i2G

wi⌧i =

*
X

i2G

wi (Xi � µ(w)) (Xi � µ(w))> , U

+


*

nX

i=1

ewi (Xi � µ(w)) (Xi � µ(w))> , U

+

=

*
nX

i=1

ewi (Xi � µ( ew)) (Xi � µ( ew))> , U

+
+ k ewk1 · (µ( ew)� µ(w))>U(µ( ew)� µ(w))

 hM( ew), Ui+ (1� ✏)kµ( ew)� µ(w)k22
 �+ 2kµ( ew)� ⌫k22 + 2kµ(w)� ⌫k22 (G.4)
 3�+ (5�+ 2✏kM(w)k) (G.5)

 1

30
kM(w)k = 1

30

X

i

wi⌧i, (G.6)

where (G.4) follows since M( ew) � AG � �I , (G.5) follows from Lemma G.4, and (G.6) uses our815

assumption that kM(w)k � 300� and the definition of ⌧i. This allows us to apply the guarantee of816

the 1D filter procedure (Lemma G.2) and get that817

hM (w0) , Ui =
*

nX

i=1

w
0
i
(Xi � µ(w)) (Xi � µ(w)) , U

+
=

nX

i=1

w
0
i
⌧i 

1

4

nX

i=1

wi⌧i =
1

4
hM(w), Ui.

Furthermore, w0 2 Cn,✏.This completes the proof.818

We are now ready to prove the main theorem of this section.819

Proof of Theorem G.1. Consider a fixed epoch and drop the super script for simplicity of notation.820

It is not hard to observe that M(wt+1) � M(wt) (see Lemma 3.4 [21]). Let ↵ = 1/kM(w0)k. A821

regret bound of matrix multiplicative weights [2] implies that822

�����

T�1X

t=0

M (wt+1)

�����
2


T�1X

t=0

hM (wt+1) , Uti+ ↵

T�1X

t=0

hUt,M (wt+1)i kM (wt+1)k2 +
log d

↵

 2
T�1X

t=0

hM (wt+1) , Uti+ kM (w0)k2 · log d

Now by definition of Line 10, we have hM (wt+1) , Uti  1
4 kM (w0)k2. Hence,823

T kM (wT )k2 

�����

T�1X

t=0

M (wt)

�����
2

 T · 1
2
kM (w0)k2 + kM (w0)k2 · log d.

Setting T � log d shows that the inner loop terminates in O(log d) iterations and reduces the largest824

eigenvalue of the covariance by, say, 4/5.825

Finally, to bound the number of epochs, we simply note that kM (0)k  ⇢. Therefore, O(log(⇢/�))826

epochs suffice drive the largest eigenvalue of kM (s)k down to O(�), since it is reduced geometrically827

each epoch.828

H Sample reweighing via Online Gradient Descent829

H.1 Regret analysis of gradient descent830

We now consider a gradient updated-based algorithm for solving the spectral sample reweighing831

problem (Definition 2.1). The analysis will be through the classic regret guarantee of online gradient832

descent for convex optimization [46]. Though the resulting run-time is higher than the MWU scheme833
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we analyzed in Section 2, it nonetheless betters the recent work of [9], where essentially the same834

gradient descent-based algorithm is studied.835

We will leverage the following regret guarantee of online gradient descent; the definition of the836

algorithm in the general setting can be found in standard text [23].837

Lemma H.1 (Theorem 3.1 [23], originally due to [46]). Let ft : K! R be the convex cost function838

revealed at iteration t, where K is a convex feasible set. Suppose ft is L-Lipschitz (in `2 norm) and839

kx0 � x
⇤k2  R for some x

⇤ 2 argminx2K
P

t
ft(x). The online gradient descent algorithm with840

step sizes ⌘t = R

L
p
t

achieves841

TX

t=1

ft(xt)�min
x2K

TX

t=1

ft(x) 
3

2
LR

p
T . (H.1)

Our algorithm implicitly defines the cost functions ft(w) =
⌦
w, ⌧

(t)
↵
, where the feasible set is842

Wn,✏, and implements the online gradient descent algorithm for the linear objective. Note that843

rft(w) = ⌧
(t), and the main difference of this algorithm from the MWU scheme (Algorithm 1) is844

that we use an additive/gradient-descent update, in lieu of the multiplicative update.845

Algorithm 4: Gradient descent for spectral sample reweighing (Definition 2.1)
Input: A set of points {xi}ni=1, an iteration count T , and step sizes ⌘t
Output: A point ⌫ 2 Rd and weights w 2Wn,✏.

1 Let w(1) = 1
n
(1, 1, · · · , 1).

2 For t from 1 to T

3 Let ⌫(t) =
P

i
w

(t)
i

xi, M (t) =
P

i
w

(t)
i

(xi � ⌫
(t))(xi � ⌫

(t))T .
4 Let v(t) be the top eigenvector of M (t) (with kv(t)k = 1).
5 Compute ⌧

(t)
i

=
⌦
v
(t)
, xi � ⌫

(t)
↵2

.
6 Set wi  wi � ⌘t⌧

(t).
7 Project w(t+1) onto the set of good weights Wn,✏ (under `2 distance).

8 Return ⌫
(t⇤)

, w
(t⇤), where t

⇤ = argmint kM (t)k.

Lemma H.2. Let ⇢ be the squared diameter of the inputs points {xi}ni=1. The cost function ft(·) is846 p
n⇢-Lipschitz (in `2 norm), for all t.847

Proof. Since ft is differentiable, we only need the bound krftk. We have that for all t and i,848

⌧
(t)
i

=
D
v
(t)
, xi � ⌫

(t)
E2
 kxi � ⌫

(t)k22  ⇢.

Therefore, krftk = k⌧ (t)k 
p
n⇢.849

Theorem H.3. Given {xi}ni=1 and ⌘t = R/L
p
t with L =

p
n⇢, R =

p
2, the online gradient850

descent algorithm (based on Algorithm 4) yields a constant-factor approximation for the spectral851

sample reweighing problem (Definition 2.1) in O(nd2/✏2) iterations and O(n2
d
3
/✏

2) total run-time.852

Proof. We first apply the PRUNE procedure of Lemma B.3 to bound the diameter. By Lemma B.2853

and the guarantee of PRUNE, we can have ⇢ = 16d�/✏. Then we apply Algorithm 4.854

We will use Lemma H.1 to analyze Algorithm 4. First, by Lemma H.2, we have L =
p
n⇢, and855

further, since the `2 diameter of the probability simplex can be (trivially) bounded by
p
2, R =

p
2.856

Moreover, observe for any t,857

ft

⇣
w

(t)
⌘
=
D
w

(t)
, ⌧

(t)
E
=
X

i

w
(t)
i

D
v
(t)
, xi � ⌫

(t)
E2

= v
(t)T

M
(t)
v
(t) =

���M (t)
���
2
.
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Let w 2 Wn,✏ be a weight that satisfies the spectral centrality condition. Then, from the regret858

guarantee (H.1),859

1

T

TX

t=1

���M (t)
���
2
 1

T

TX

t=1

D
w, ⌧

(t)
E
+

3LR

2
p
T

(H.2)

We bound the two terms on the right side individually.860

(i) A bound on the first term follows exactly from the calculations we did in the analysis of MWU861

algorithm (Algorithm 1). In particular, from (B.12) we have862

1

T

TX

t=1

hw, ⌧ (t)i  15�+
1

3T

TX

t=1

���M (t)
���
2
.

(ii) Observe that it suffices to set T = 3L2
R

2
/�

2 to bound the second term by �.863

Substituting the two bounds back into (H.2),864

1

T

TX

t=1

���M (t)
���
2
 16�+

1

3T

TX

t=1

���M (t)
���
2
. (H.3)

Rearranging and dividing through immediately yields the desired guarantee.865

Given that L =
p
n⇢, R =

p
2, we have that the iteration count T = 6n⇢2/�2. Since ⇢ = 16d�/✏,866

T = O(nd2/✏2). For the run-time, note that instead of computing the exact largest eigenvector, we867

can use power method to find an 7/8-approximate one. Observe that this suffices for our analysis868

of the method above. Finally, the Euclidean projection onto Wn,✏ can be computed in O(n log n)869

time [44]. This yields the desired run-time.870

H.2 Extension to sub-gaussian setting871

Theorem H.3 implies that a gradient descent-based algorithm (Algorithm 4) can be used for robust872

mean estimation under bounded covariance. We now extend the result to the sub-gaussian setting,873

showing that the same iteration and run-time complexity holds. The optimal estimation error we874

will aim for is O(✏
p
log(1/✏)). We assume the spectral signature Lemma F.1 and the deterministic875

condition (F.1).876

Algorithm 5: Gradient descent for sub-gaussian robust mean estimation
Input: A set of points {xi}ni=1, step sizes ⌘t, an iteration count T , and parameter ⇢
Output: A set of weights w 2Wn,✏.

1 Let w(1) = 1
n n.

2 For t from 1 to T

3 Let ⌫(t) =
P

i
w

(t)
i

xi, M (t) =
P

i
w

(t)
i

(xi � ⌫
(t))(xi � ⌫

(t))T .
4 Let v(t) be a

�
1� ✏

2
�
-approximate largest eigenvector of M (t) (with kv(t)k = 1). Fail with

probability at most �/T .
5 If �(t) = v

(t)>
M

(t)
v
(t)  1, return w

(t).
6 Compute ⌧

(t)
i

=
⌦
v
(t)
, xi � ⌫

(t)
↵2

.
7 Set wi  wi � ⌘t⌧

(t).
8 Project w(t+1) onto the set of good weights Wn,✏ (under `2 distance).

9 Return w
(t⇤), where t

⇤ = argmint kM (t)k.

In particular, we will analyze Algorithm 5 and prove the following set of guarantees.877

Lemma H.4. Let ✏ be a sufficiently small constant and {xi}ni=1 be n points in Rd. Assume the878

following (deterministic) conditions hold.879
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(i) There exists ⌫ 2 Rd and w 2Wn,✏ such that880

�����

nX

i=1

wi (xi � ⌫) (xi � ⌫)>
�����  1 +O (✏ log (1/✏)) . (H.4)

(ii) If kM(w)k  1 + �, for some � � 0, then for any w 2Wn,✏,881

k⌫ � µ(w)k  1

1� ✏

⇣p
✏�+ C✏

p
log(1/✏)

⌘
, (H.5)

Then, given {xi}ni=1, a failure rate � and ⇢ such that ⇢ � ⌧
(t)
i

for all i and t, Algorithm 5 finds882

w
0 2Wn,✏ such that883

kM(w0)k  1 +O (✏ log (1/✏)) , (H.6)

with probability at least 1� �.884

The algorithm terminates in T = O(n⇢2/✏2) iterations. Further, if T = O(poly(n, d)), then each885

iteration takes eO(nd log
�
1/�)/✏2

�
time.886

Proof. If the algorithm gets early stopped, then kM (t)k  1+O(✏2), so assumption (H.4) guarantees887

that µ(w(t)) achieves the desired bound (H.6). We now assume that kM (t)k > 1 for any t.888

By the regret bound (Lemma H.1) and the inequality
⌦
w

(t)
, ⌧

(t)
↵
�
�
1� ✏

2
� ��M (t)

��
2
, for a w that889

satisfies assumption (H.4)890

1� ✏
2

T

TX

t=1

���M (t)
���
2
 1

T

TX

t=1

D
w, ⌧

(t)
E
+

3LR

2
p
T
, (H.7)

where L =
p
n⇢ and R =

p
2. For the first term, note that we may apply Claim F.3 and obtain891

1

T

TX

t=1

D
w, ⌧

(t)
E
 1 +O (✏ log(1/✏)) +

2✏

(1� ✏)2
1

T

TX

t=1

���M (t)
����

2✏

(1� ✏)2

By setting T = 3L2
R

2
/✏

2 = O(n⇢2/✏2), we can bound the second term by O(✏)892

Substituting the bounds back into (H.7), we obtain893

1� ✏
2

T

TX

t=1

���M (t)
���
2
 1� 2✏

(1� ✏)2
+O(✏ log(1/✏)) +

1

T

TX

t=1

2✏

(1� ✏)2

���M (t)
���

For sufficiently small ✏, we can move the last term to the left side and divide through. This immedi-894

ately yields that895

1

T

TX

t=1

���M (t)
���
2
 1 +O(✏ log(1/✏)).

The run-time follows from the cost of computing (1� ✏
2)-approximate largest eigenvector via power896

iteration.897

Using the same argument for Theorem F.4, Lemma H.4 implies the following theorem.898

Theorem H.5. Let S = {xi}ni=1 be an ✏-corrupted set of n samples from a sub-gaussian distribution899

over Rd, with mean µ and identity covariance. Suppose n � e⌦(d/✏2). Then given S, there is an900

algorithm (based on Algorithm 5) that finds bµ such that with high constant probability kbµ � µk 901

O

⇣
✏
p
log(1/✏)

⌘
.902

The algorithm runs in eO(nd2/✏2) iterations and eO(n2
d
3
/✏

2) total time.903
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H.3 Equivalence with [9]904

The recent work of Cheng, Diakonikolas, Ge and Soltanolkotabi [9] studies a gradient-descent-based905

algorithm for solving the following non-convex formulation of robust mean estimation.906

min k⌃wk such that w 2Wn,✏.

where ⌃w =
P

n

i=1 wi(xi � µ(w))(x� µ(w))>. This is equivalent to907

min
w

max
u2Sd�1

F (w, u) = u
>⌃wu such that w 2Wn,✏.

The sub-gradient of F (w, u) with respect to w (for a fixed u) is given by908

rwF (w, u) = Xu�Xu� 2
�
w

>
Xu

�
Xu, (H.8)

where X 2 Rn⇥d is the data matrix whose the ith row is xi.909

Based on the observation, they consider and analyze an algorithm that computes a (approximately)910

maximizing u and performs a projected gradient descent on w each iteration.911

Since Algorithm 4 can be directly applied to the same robust setting (Corollary C.4), it is natural to912

consider the relationships between the two algorithms. Indeed, one can argue that they are essentially913

the same. First, we unpack our gradient update (i.e., the spectral scores) of iteration t. Note that914
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xi = X
T
w

(t), where � denotes entrywise product of vectors. Let Ct =915

w
(t)>

Xv
(t). Therefore, we can rewrite the gradient as916

rft(w(t)) = C
2
t
· n +Xv

(t) �Xv
(t) � 2Ct ·Xv

(t)

Note that the gradient (H.8) used in [9] is exactly the same as above, except without the term917

of all-one vector C2
t
· n. In the gradient update step, the additional term reduces the weight of918

every point uniformly by the same quantity C
2
t

. However, observe that by Pythagorean theorem,919

the (Euclidean) projection onto Wn,✏ can be decomposed into two (sequential) steps: (1) first an920

orthogonal projection onto the affine subspace containing Wn,✏, and then (2) a projection onto Wn,✏921

itself. Note that reducing each coordinate by the same quantity or not results in the same vector by922

the first step. Therefore, the two algorithms yield the same sequence of iterates (w(t))t.923
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