
We thank the reviewers for the positive reviews and valuable feedback. First, we provide general comments addressing1

remarks of multiple reviewers. Then, we reply to other remarks. We will update the manuscript accordingly.2

Connection to NTK (Raised by Rev. 1, 3, 4). The idea of the proof is to combine the PL-inequality in Lemma 4.13

with the fact that the matrices {F1,W3, . . . ,WL} stay full rank during training. To show the latter, we prove that the4

weights cannot move too far from initialization, see l. 192-195. Our non-convex optimization perspective allows us to5

consider more general settings than existing NTK analyses. In fact, if the width of one of the layers is constant, then the6

NTK is not well defined. On the contrary, our paper just requires the first layer to be overparameterized (i.e., all the7

other layers can have constant widths).8

Training data and generalization (Raised by Rev. 2, 3). As noted by Rev. 3, if xi = xj , then λF = 0. Thus,9

Assumption 3.2 cannot hold unless Φ = 0 (i.e., we initialize at a global minimum) or X = 0 (i.e., the GD iterates do10

not move). In general, if the data points are not parallel and the activation function is analytic and not polynomial, then11

λ∗ > 0 (and thus, λF > 0), see [15]. Furthermore, if xi and xj are close, then λF is small and, therefore, α0 is small.12

Thus, GD requires more iterations to converge to a global optimum. This happens regardless of the value of yi and13

yj . Providing results for deep pyramidal networks that depend on the quality of the labels is an outstanding problem.14

Solving it could also lead to generalization bounds, see e.g. “Fine-Grained Analysis of Optimization . . .” by Arora et al.15

Pyramidal network and spectrum of Wl (Raised by Rev. 1, 2). The pyramidal assumption is needed for Lemma 4.1.316

(l. 176). The key idea (see Lemma 4.3 in [27] for the proof) is that the norm of the gradient can be lower bounded by17

the smallest singular value of
∏L

p=3Ap with Ap = Σp−1(Wp ⊗ IN ) ∈ Rrp−1×rp . Assuming that r2 ≥ r3 ≥ . . . ≥ rL,18

one can further lower bound this quantity by the product of the smallest singular values of the Ap’s. This is where our19

assumption on the pyramidal topology comes from. Lemma 4.1 should be seen as providing a sufficient condition for a20

PL-inequality, rather than suggesting that such a PL-inequality holds only for pyramidal networks. Intuitively, if Wl has21

large minimum singular value and is well-conditioned, then GD will keep it away from the zero-measure set of low-rank22

matrices, in which case the loss satisfies the PL-inequality and has Lipschitz gradient, thus leading to convergence.23

Rev. 1. Initialization in Section 3.1: Concretely, one can use Xavier’s initialization for W1, pick W2 = 0 and24

[Wl]ij ∼ N (0, (28c)2/nl−1) under the extra assumption
√
nl−1 ≥ 2

√
nl for sufficiently large c. This fulfils our25

assumptions w.p. ≥ 1− 2
∑L

l=3 e
−nl−1/32. Another option is to pick Wl to be scaled identity matrices (or rectangular26

matrices whose left block is a scaled identity). Weakness 1: The reviewer is right. Lemma 4.1.4 is not used explicitly,27

it’s only meant to add an interpretation to Lemma 4.1.3. Weakness 2: Yes, λ2F and λ3F correspond to the second and28

third powers of λF . Our proof of Theorem 3.2 requires both lower bounds on λF . Cross-entropy loss: The challenge is29

that this loss may not satisfy our PL inequality. Oftentimes a different analysis is required, which leads to stronger30

assumptions on the data and weaker convergence guarantees, see e.g. [11, 22, 28, 36]. ReLU: Currently, ReLU does not31

work because (i) its derivative is not Lipschitz, which is needed to prove (19), and (ii) it can have zero derivative, while32

we need γ > 0 for the PL-inequality to hold. The second problem seems to us more fundamental, i.e. how to show a33

PL-inequality for ReLU and ensure that it holds throughout the trajectory of GD.34

Rev. 2. Clarifications: n1 < n2 is allowed; We will explicitly mention the condition
√
nl−1 ≥ 1.01(

√
nl + t) for35

the Xavier case; We will define the sub-gaussian norm. Case L = 2: Conditions (4)-(5) in Assumption 3.1 become36

λ2F ≥ 12 ‖X‖F
√

2Φ(θ0) max(λ̄1, λ̄2) and λ3F ≥ 24 ‖X‖2 ‖X‖F
√

2Φ(θ0)λ̄2. To satisfy the first condition, one can37

scale W 0
1 by a constant c, and set W 0

2 = 0. In fact, one can prove that λ2F scales with c2 for the class of activations38

in (2), whereas the RHS scales with c. Thus, when c is large enough, the first condition holds. Similarly, the second39

condition also holds. As for Theorem 3.2, the expressions for α0, Q0 and Q1 simplify as the quantities involving λl and40

λ̄l disappear for l ∈ [3, L]. About φ > 0: We haven’t worked out our bounds explicitly for this assumption, but this is41

an interesting direction. One idea is to follow an approach similar to Appendix B of [29] to relate λF to φ. Overloaded42

notation: Yes, it is intended. We want to apply the lemma for any upper bounds of λ̄l.43

Rev. 3. Weakness 2: The same result holds if the data has unit norm and the weights of the first layer are scaled up44

by a factor
√
d. The scaling of xi is chosen so that 〈xi, wj〉 ∼ N (0, 1), wj being the weight of the first layer. If this45

is not the case, one would need to extend the Hermite analysis of Lemma D.3 in Appendix D.2. Lines 171-172: The46

PL-inequality follows from the same argument of Lemma 4.3 in [27]. We apologize for the confusion. Line 177: Part 447

of Lemma 4.1 basically follows from part 3 by setting the gradient on the LHS to zero and, in the RHS of l. 176, W248

only appears implicitly via the Σl’s matrices. Lines 194-198: Thanks! We will mention this. We will also fix the typos.49

Rev. 4. Double descent: Thanks for an intriguing question. It is indeed possible (or even likely) that pyramidal networks50

exhibit a nonmonotonic behavior in the test loss (double descent or even more complicated multi-scale phenomena as51

in “The Neural Tangent Kernel in High Dimensions. . .” by Adlam and Pennington). One way forward is to study the52

spectrum of the feature matrices at the different layers by extending the analysis of the paper mentioned above to the53

pyramidal architecture. We regard this as a challenging (yet very interesting) open direction.54


