
Supplementary Material (Appendix)

Global Convergence of Deep Networks with One
Wide Layer Followed by Pyramidal Topology

A Mathematical Tools

Proposition A.1 (Weyl’s inequality, see e.g. [40]) Let A,B ∈ Rm×n with σ1(A) ≥ . . . ≥ σr(A)
and σ1(B) ≥ . . . ≥ σr(B), where r = min(m,n). Then,

maxi∈[r] |σi(A)− σi(B)| ≤ ‖A−B‖2 .

Lemma A.2 (Singular values of random gaussian matrices, see e.g. [41]) Let A ∈ Rm×n be a
random matrix with m ≥ n and Aij

iid∼ N (0, 1) . For every t ≥ 0, it holds w.p. ≥ 1− 2e−t
2/2

√
m−

√
n− t ≤ σmin (A) ≤ ‖A‖2 ≤

√
m+

√
n+ t.

Theorem A.3 (Matrix Chernoff) Let {Xi}ni=1 ∈ Rd×d be a sequence of independent, random,
symmetric matrices. Assume that 0 ≤ λmin (Xi) ≤ λmax (Xi) ≤ R. Let S =

∑n
i=1Xi. Then,

P (λmin (S) ≤ (1− ε)λmin (ES)) ≤ d
[

e−ε

(1− ε)1−ε

]λmin(ES)/R

∀ ε ∈ [0, 1),

P (λmax (S) ≥ (1 + ε)λmax (ES)) ≤ d
[

eε

(1 + ε)1+ε

]λmax(ES)/R

∀ ε ≥ 0.

B Proofs for General Framework (Theorem 3.2)

In the following, we frequently use a basic inequality, namely, for every A,B ∈ Rm×n, ‖AB‖F ≤
‖A‖2 ‖B‖F and ‖AB‖F ≤ ‖A‖F ‖B‖2 .

B.1 Properties of Activation Function (2)

Lemma B.1 Let σ : R→ R be given as in (2). Then,

1. σ is real analytic.

2. σ′(x) ∈ [γ, 1] for every x ∈ R.

3. |σ(x)| ≤ |x| for every x ∈ R.

4. σ′ is β-Lipschitz.

5. lim
β→∞

sup
x∈R
|σ(x)−max(γx, x)| = 0.

Proof: Let Ψ be the CDF of the standard normal distribution. Then, after some manipulations, we
have that

σ(x) = − (1− γ)2

2πβ
+

(1− γ)2

2πβ
exp

(
− πβ2x2

(1− γ)2

)
+ xΨ

(
β
√

2πx

1− γ

)
+ γxΨ

(
−β
√

2πx

1− γ

)
.

(24)

1. Since Ψ is known as an entire function (i.e. analytic everywhere), it follows from (24) that
σ is analytic on R.
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2. Note that Ψ′(z) = 1√
2π
e−z

2/2 and Ψ(−z) = 1−Ψ(z). Thus, after some simplifications,
we have that

σ′(x) = γ + (1− γ)Ψ

(
β
√

2πx

1− γ

)
. (25)

The result follows by noting that Ψ(·) ∈ [0, 1].

3. It is easy to check that σ(0) = 0. Moreover, σ is 1-Lipschitz and thus |σ(x)| = |σ(x) −
σ(0)| ≤ |x|.

4. We have that

σ′′(x) = β
√

2πΨ′

(
β
√

2πx

1− γ

)
≤ β.

Thus σ′ is β-Lipschitz.
5. Note that

β

1− γ

∫ ∞
−∞

exp

(
−πβ

2(x− u)2

(1− γ)2

)
du = 1,

which implies that

max(γx, x) =
β

1− γ

∫ ∞
−∞

max(γx, x) exp

(
−πβ

2(x− u)2

(1− γ)2

)
du.

Thus, the following chain of inequalities holds:

|σ(x)−max(γx, x)|

=

∣∣∣∣∣− (1− γ)2

2πβ
+

β

1− γ

∫ ∞
−∞

max(γu, u) exp

(
−πβ

2(x− u)2

(1− γ)2)

)
du

− β

1− γ

∫
max(γx, x) exp

(
−πβ

2(x− u)2

(1− γ)2

)
du

∣∣∣∣∣
≤ (1− γ)2

2πβ
+

β

1− γ

∫ ∞
−∞
|max(γu, u)−max(γx, x)| exp

(
−πβ

2(x− u)2

(1− γ)2

)
du

≤ (1− γ)2

2πβ
+

β

1− γ

∫ ∞
−∞
|x− u| exp

(
−πβ

2(x− u)2

(1− γ)2

)
du

=
(1− γ)2

2πβ
+

β

1− γ

∫ ∞
−∞
|v| exp

(
− πβ2v2

(1− γ)2

)
dv

=
(1− γ)2

2πβ
+ 2

β

1− γ

∫ ∞
0

v exp

(
− πβ2v2

(1− γ)2

)
dv

=
(1− γ)2

2πβ
+

1− γ
πβ

.

Taking the supremum and the limit on both sides yields the result.

�

B.2 Proof of (17) in Lemma 4.2

We prove by induction on l. Note that the lemma holds for l = 1 since

‖F1‖F = ‖σ(XW1)‖F ≤ ‖XW1‖F ≤ ‖X‖F ‖W1‖2 ,
where in the 2nd step we use our assumption on σ. Assume the lemma holds for l − 1, i.e.

‖Fl−1‖F ≤ ‖X‖F
l−1∏
p=1

‖Wp‖2 .
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It is easy to verify that it also holds for l. Indeed,
‖Fl‖F = ‖σ(Fl−1Wl)‖F by definition

≤ ‖Fl−1Wl‖F |σ(x)| ≤ |x|
≤ ‖Fl−1‖F ‖Wl‖2

≤ ‖X‖F
l∏

p=1

‖Wp‖2 by induction assump.

For l = L one can skip the first equality above, as there is no activation at the output layer. �

B.3 Proof of (19) in Lemma 4.2

We first prove the following intermediate result.

Lemma B.2 Let σ be 1-Lipschitz and |σ(x)| ≤ |x| for every x ∈ R. Let θa = (W a
l )Ll=1, θb =

(W b
l )Ll=1. Let λ̄l ≥ max(‖W a

l ‖2 ,
∥∥W b

l

∥∥
2
). Then, for every l ∈ [L],∥∥F al − F bl ∥∥F ≤ ∥∥Gal −Gbl∥∥F

≤ ‖X‖F λ̄1→l

l∑
p=1

λ̄−1
p

∥∥W a
p −W b

p

∥∥
2
.

Here, we denote λ̄i→j =
∏j
l=i λ̄l.

Proof: We prove by induction on l. First, it holds for l = 1 since∥∥F a1 − F b1∥∥F =
∥∥σ(Ga1)− σ(Gb1)

∥∥
F

by definition

≤
∥∥Ga1 −Gb1∥∥F σ is 1-Lipschitz

=
∥∥XW a

1 −XW b
1

∥∥
F

≤ ‖X‖F
∥∥W a

1 −W b
1

∥∥
2
.

Suppose the lemma holds for l − 1 and we want to prove it for l. We have∥∥F al − F bl ∥∥F =
∥∥σ(Gal )− σ(Gbl )

∥∥
F

definition

≤
∥∥Gal −Gb∥∥F σ is 1-Lipschitz

=
∥∥F al−1W

a
l − F bl−1W

b
l

∥∥
F

≤
∥∥F al−1W

a
l − F bl−1W

a
l

∥∥
F

+
∥∥F bl−1W

a
l − F bl−1W

b
l

∥∥
F

triangle inequality

≤
∥∥F al−1 − F bl−1

∥∥
F
‖W a

l ‖2 +
∥∥F bl−1

∥∥
F

∥∥W a
l −W b

l

∥∥
2

≤
∥∥F al−1 − F bl−1

∥∥
F
‖W a

l ‖2 + ‖X‖F

[
l−1∏
p=1

∥∥W b
p

∥∥
2

]∥∥W a
l −W b

l

∥∥
2

by (17)

≤
∥∥F al−1 − F bl−1

∥∥
F
λ̄l + ‖X‖F λ̄1→l−1

∥∥W a
l −W b

l

∥∥
2

≤ ‖X‖F λ̄1→l

l∑
p=1

λ̄−1
p

∥∥W a
p −W b

p

∥∥
2

induction assumption

�

Applying Lemma B.2 to the output layer yields:∥∥F aL − F bL∥∥F =
∥∥GaL −GbL∥∥F

≤ ‖X‖F λ̄1→L

L∑
p=1

λ̄−1
p

∥∥W a
p −W b

p

∥∥
2

≤
√
L ‖X‖F

λ̄1→L

minl∈[L] λ̄l
‖θa − θb‖2 Cauchy-Schwarz

�
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B.4 Proof of (18) in Lemma 4.2

‖∇Wl
Φ‖F = ‖vec(∇Wl

Φ)‖2

=

∥∥∥∥∥∥(Inl ⊗ FTl−1)

 L∏
p=l+1

Σp−1(Wp ⊗ IN )

 (fL − y)

∥∥∥∥∥∥
2

Lemma 4.1

≤ ‖Fl−1‖2

 L∏
p=l+1

‖Wp‖2

 ‖fL − y‖2 |σ′| ≤ 1

≤ ‖X‖F

 L∏
p=1
p 6=l

∥∥W k
p

∥∥
2

 ‖fL − y‖2 by (17).

�

B.5 Proof of (20) in Lemma 4.2

We start by showing the following intermediate result.

Lemma B.3 Let σ be 1-Lipschitz, and let |σ(x)| ≤ |x| and |σ′(x)| ≤ 1 hold for every x ∈ R. Let
θa = (W a

l )Ll=1, θb = (W b
l )Ll=1. Let λ̄l ≥ max(‖W a

l ‖2 ,
∥∥W b

l

∥∥
2
). Then, for every l ∈ [L],∥∥∥∥ ∂fL(θa)

∂ vec(W a
l )
− ∂fL(θb)

∂ vec(W b
l )

∥∥∥∥
2

≤ ‖X‖F λ̄1→Lλ̄
−1
l

L∑
p=l+1

λ̄−1
p

∥∥W a
p −W b

p

∥∥
2

+ ‖X‖F λ̄1→Lλ̄
−1
l

L−1∑
p=l

∥∥Σap − Σbp
∥∥

2
+ λ̄l+1→L

∥∥F al−1 − F bl−1

∥∥
2
.

Here, we denote λ̄i→j =
∏j
l=i λ̄l.

Proof: For every t ∈ {l, . . . , L}, let

Ma
t =

 ∏
p=t→l+1

((W a
p )
T ⊗ IN )Σap−1

 (Inl ⊗ F al−1),

M b
t =

 ∏
p=t→l+1

((W b
p )
T ⊗ IN )Σbp−1

 (Inl ⊗ F bl−1).

In the above definition, we note that p runs in the reverse order, that is, p = t, t− 1, . . . , l+ 1. For the
case t = l (the terms inside brackets are inactive), we assume by convention that Ma

l = (Inl ⊗ F al−1)

and M b
l = (Inl ⊗ F bl−1). It follows from Lemma 4.1 that

∂fL(θa)

∂ vec(Wl)
= Ma

L,
∂fL(θb)

∂ vec(Wl)
= M b

L.

The following inequality holds

‖Ma
t ‖2 ≤

 t∏
p=l+1

∥∥W a
p

∥∥
2

∥∥Σap−1

∥∥
2

∥∥F al−1

∥∥
2

≤

 t∏
p=l+1

∥∥W a
p

∥∥
2

 ‖X‖F
[
l−1∏
p=1

∥∥W a
p

∥∥
2

]
≤ λ̄1→tλ̄

−1
l ‖X‖F , (26)
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where the second inequality follows from (17) and |σ′| ≤ 1. To prove the lemma, we will prove that,
for every t ∈ {l, . . . , L},∥∥Ma

t −M b
t

∥∥
2
≤ ‖X‖F

t∑
p=l+1

λ̄1→tλ̄
−1
p λ̄−1

l

∥∥W a
p −W b

p

∥∥
2

+ ‖X‖F λ̄1→tλ̄
−1
l

t−1∑
p=l

∥∥Σap − Σbp
∥∥

2
+ λ̄l+1→t

∥∥F al−1 − F bl−1

∥∥
2
. (27)

Then setting t = L in (27) leads to the desired result. First we note that (27) holds for t = l since∥∥Ma
l −M b

l

∥∥
2

=
∥∥(Inl ⊗ F al−1)− (Inl ⊗ F bl−1)

∥∥
2

=
∥∥F al−1 − F bl−1

∥∥
2
.

Suppose that it holds for t− 1 with t ≥ l + 1, and we want to show it for t. Then,∥∥Ma
t −M b

t

∥∥
2

=
∥∥∥((W a

t )
T ⊗ IN )Σat−1M

a
t−1 − ((W b

t )
T ⊗ IN )Σbt−1M

b
t−1

∥∥∥
2

≤
∥∥∥((W a

t )
T ⊗ IN )Σat−1M

a
t−1 − ((W b

t )
T ⊗ IN )Σat−1M

a
t−1

∥∥∥
2

+
∥∥∥((W b

t )
T ⊗ IN )Σat−1M

a
t−1 − ((W b

t )
T ⊗ IN )Σbt−1M

b
t−1

∥∥∥
2

≤
∥∥W a

t −W b
t

∥∥
2

∥∥Σat−1

∥∥
2

∥∥Ma
t−1

∥∥
2

+
∥∥W b

t

∥∥
2

∥∥Σat−1M
a
t−1 − Σbt−1M

b
t−1

∥∥
2

≤
∥∥W a

t −W b
t

∥∥
2
λ̄1→t−1λ̄

−1
l ‖X‖F + λ̄t

∥∥Σat−1M
a
t−1 − Σbt−1M

b
t−1

∥∥
2
, by (26) and |σ′| ≤ 1

≤
∥∥W a

t −W b
t

∥∥
2
λ̄1→t−1λ̄

−1
l ‖X‖F

+ λ̄t

[ ∥∥Σat−1M
a
t−1 − Σbt−1M

a
t−1

∥∥
2

+
∥∥Σbt−1M

a
t−1 − Σbt−1M

b
t−1

∥∥
2

]
≤
∥∥W a

t −W b
t

∥∥
2
λ̄1→t−1λ̄

−1
l ‖X‖F

+ λ̄t

[ ∥∥Σat−1 − Σbt−1

∥∥
2
λ̄1→t−1λ̄

−1
l ‖X‖F +

∥∥Ma
t−1 −M b

t−1

∥∥
2

]
= ‖X‖F λ̄1→t−1λ̄

−1
l

∥∥W a
t −W b

t

∥∥
2

+ ‖X‖F λ̄1→tλ̄
−1
l

∥∥Σat−1 − Σbt−1

∥∥
2

+ λ̄t
∥∥Ma

t−1 −M b
t−1

∥∥
2

≤ ‖X‖F λ̄1→tλ̄
−1
l

t∑
p=l+1

λ̄−1
p

∥∥W a
p −W b

p

∥∥
2

+ ‖X‖F λ̄1→tλ̄
−1
l

t−1∑
p=l

∥∥Σap − Σbp
∥∥

2
+ λ̄l+1→t

∥∥F al−1 − F bl−1

∥∥
2
,

where the last line follows by plugging the bound of
∥∥Ma

t−1 −M b
t−1

∥∥
2

from the induction
assumption. �

Proof of (20) in Lemma 4.2. Let

S = ‖X‖F λ̄1→Lλ̄
−1
l

L∑
p=l+1

λ̄−1
p

∥∥W a
p −W b

p

∥∥
2
.

Then, by Lemma B.3, we have that∥∥∥∥ ∂fL(θa)

vec(W a
l )
− ∂fL(θb)

vec(W b
l )

∥∥∥∥
2

≤ S + ‖X‖F λ̄1→Lλ̄
−1
l

L−1∑
p=l

∥∥Σap − Σbp
∥∥

2
+ λ̄l+1→L

∥∥F al−1 − F bl−1

∥∥
2

= S + ‖X‖F λ̄1→Lλ̄
−1
l

L−1∑
p=l

∥∥σ′(Gap)− σ′(Gbp)
∥∥

2
+ λ̄l+1→L

∥∥F al−1 − F bl−1

∥∥
2
.

(28)
Furthermore, by using that σ′ is β-Lipschitz, the RHS of (28) is upper bounded by

S + ‖X‖F λ̄1→Lλ̄
−1
l

L−1∑
p=l

β
∥∥Gap −Gbp∥∥2

+ λ̄l+1→L
∥∥F al−1 − F bl−1

∥∥
2
. (29)
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By applying Lemma B.2, the following chain of upper bounds for (29) holds:

S + ‖X‖F λ̄1→Lλ̄
−1
l

L−1∑
p=l

β ‖X‖F λ̄1→p

p∑
q=1

λ̄−1
q

∥∥W a
q −W b

q

∥∥
2

+ λ̄l+1→L ‖X‖F λ̄1→l−1

l−1∑
p=1

λ̄−1
p

∥∥W a
p −W b

p

∥∥
2

= ‖X‖2F βλ̄1→Lλ̄
−1
l

L−1∑
p=l

λ̄1→p

p∑
q=1

λ̄−1
q

∥∥W a
q −W b

q

∥∥
2

+ ‖X‖F λ̄1→Lλ̄
−1
l

L∑
p=1
p 6=l

λ̄−1
p

∥∥W a
p −W b

p

∥∥
2

≤ ‖X‖2F βλ̄1→Lλ̄
−1
l

L∑
p=1

[
L∏
q=1

max(1, λ̄q)

]
p∑
q=1

∥∥W a
q −W b

q

∥∥
2

+ ‖X‖F

[
L∏
p=1

max(1, λ̄p)

]
L∑
p=1

∥∥W a
p −W b

p

∥∥
2

≤ Lβ ‖X‖2F

[
L∏
q=1

max(1, λ̄q)

]2 L∑
q=1

∥∥W a
q −W b

q

∥∥
2

+ ‖X‖F

[
L∏
p=1

max(1, λ̄p)

]
L∑
p=1

∥∥W a
p −W b

p

∥∥
2

= ‖X‖F R(1 + Lβ ‖X‖F R)

L∑
q=1

∥∥W a
q −W b

q

∥∥
2

≤
√
L ‖X‖F R(1 + Lβ ‖X‖F R)

L∑
q=1

‖θa − θb‖2 ,

(30)

where the last passage follows from Cauchy-Schwarz inequality. By combining (28), (29) and (30),
the result immediately follows. �

B.6 Proof of Lemma 4.3

Let g(t) = f(x+ t(y − x)). Then

f(y)− f(x) = g(1)− g(0) =

∫ 1

0

g′(t)dt

=

∫ 1

0

〈∇f(x+ t(y − x)), y − x〉 dt

= 〈∇f(x), y − x〉+

∫ 1

0

〈∇f(x+ t(y − x))−∇f(x), y − x〉 dt

≤ 〈∇f(x), y − x〉+

∫ 1

0

Ct ‖y − x‖22 dt

= 〈∇f(x), y − x〉+
C

2
‖x− y‖2 .

�
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B.7 Proof of the fact that {θk}∞k=1 is a Cauchy Sequence

Let us fix any ε > 0. We need to show that there exists r > 0 such that for every i, j ≥ r,
‖θj − θi‖ < ε. The case i = j is trivial, so we assume w.l.o.g. that i < j. Then, the following chain
of inequalities hold

‖θj − θi‖ =

√√√√ L∑
l=1

∥∥∥W j
l −W i

l

∥∥∥2

F

≤
L∑
l=1

∥∥∥W j
l −W

i
l

∥∥∥
F

≤
L∑
l=1

j−1∑
s=i

∥∥W s+1
l −W s

l

∥∥
F

triangle inequality

=

L∑
l=1

j−1∑
s=i

η ‖∇Wl
Φ(θs)‖F

≤
L∑
l=1

j−1∑
s=i

η ‖X‖F ‖f
s
L − y‖2

L∏
p=1
p 6=l

∥∥W s
p

∥∥
2

by (18)

≤
L∑
l=1

η ‖X‖F 1.5L−1λ̄−1
l λ̄1→L

j−1∑
s=i

(1− ηα0)s/2
∥∥f0
L − y

∥∥
2

by (21)

= (1− ηα0)i/2

[
L∑
l=1

η ‖X‖F 1.5L−1λ̄−1
l λ̄1→L

j−i−1∑
s=0

(1− ηα0)s/2
∥∥f0
L − y

∥∥
2

]

= (1− ηα0)i/2

[
η ‖X‖F 1.5L−1

L∑
l=1

λ̄−1
l λ̄1→L

1−
√

1− ηα0
j−i

1−
√

1− ηα0

∥∥f0
L − y

∥∥
2

]

= (1− ηα0)i/2

[
1

α0
‖X‖F 1.5L−1

L∑
l=1

λ̄−1
l λ̄1→L(1− u2)

1− uj−i

1− u
∥∥f0
L − y

∥∥
2

]
,

where we have set u :=
√

1− ηα0. As u ∈ (0, 1), the last term is upper bounded by

(1− ηα0)i/2

[
2

α0
‖X‖F 1.5L−1

L∑
l=1

λ̄−1
l λ̄1→L

∥∥f0
L − y

∥∥
2

]
.

Note that (1−ηα0)i/2 ≤ (1−ηα0)r/2 and thus there exists a sufficiently large r such that ‖θj − θi‖ <
ε. This shows that {θk}∞k=0 is a Cauchy sequence, and hence convergent to some θ∗. By continuity,
Φ(θ∗) = Φ(limk→∞ θk) = limk→∞ Φ(θk) = 0, and thus θ∗ is a global minimizer. The rate of
convergence is

‖θk − θ∗‖ = lim
j→∞

‖θk − θj‖ ≤ (1− ηα0)k/2

[
2

α0
‖X‖F 1.5L−1

L∑
l=1

λ̄−1
l λ̄1→L

∥∥f0
L − y

∥∥
2

]
.

�

C Proofs for LeCun’s Initialization

Before presenting the proof of the convergence result under LeCun’s initialization in Appendix C.3,
let us state two helpful lemmas. The first lemma bounds the output of the network at initialization
using standard Gaussian concentration and it is proved in Appendix C.1.

Lemma C.1 Let σ be 1-Lipschitz, and consider LeCun’s initialization scheme:

[Wl]ij ∼N (0, 1/nl−1), ∀ l ∈ [L], i ∈ [nl−1], j ∈ [nl].
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Fix some t > 0. Assume that
√
nl ≥ t for any l ∈ [L− 1]. Then,

‖FL‖F ≤ 2L−1 ‖X‖F√
d

(
√
nL + t) , (31)

with probability at least 1− Le−t2/2.

Recall the definition of λF :
λF = σmin

(
σ(XW 0

1 )
)
. (32)

The second lemma identifies sufficient conditions on n1 so that λF is bounded away from zero. The
proof is similar to that of Theorem 3.2 of [31] (see Section 6.8 in their appendix), and we provide it
in Appendix C.2.

Lemma C.2 Let |σ(x)| ≤ |x| for every x ∈ R. Define F1 = σ(XW ) withX ∈ RN×d,W ∈ Rd×n1 ,
and Wij ∼N (0, ζ2) for all i ∈ [d], j ∈ [n1]. Define also

G∗ = Ew∼N (0,ζ2Id)

[
σ(Xw)σ(Xw)T

]
, λ∗ = λmin (G∗) .

Then, for

t ≥
√

4ζ2 ln max
(

1, 2
√

6 ‖X‖22 d3/2ζ2λ−1
∗

)
and

n1 ≥ max

N, 20 ‖X‖22 dt2
(
t2/2 + ln(N/2)

)
λ∗

 ,

we have
σmin (F1) ≥

√
n1λ∗/4 (33)

with probability at least 1− 2e−t
2/2.

C.1 Proof of Lemma C.1

It is straightforward to show the following inequality.

Lemma C.3 Let |σ(x)| ≤ |x| for every x ∈ R. Let [Wl]ij ∼ N
(

0, 1
nl−1

)
for every l ∈ [L], i ∈

[nl−1], j ∈ [nl]. Then, for every l ∈ [L] we have E ‖Fl‖2F ≤
nl
nl−1

E ‖Fl−1‖2F .

Proof:
E ‖Fl‖2F = E ‖σ(Fl−1Wl)‖2F ≤ E ‖Fl−1Wl‖2F = E tr

(
Fl−1WlW

T
l F

T
l−1

)
=

nl
nl−1

E ‖Fl−1‖2F ,

where the first inequality follows from our assumption on σ, and the last equality follows from the
fact that WlW

T
l =

∑nl
j=1(Wl):j(Wl)

T
:j and E(Wl):j(Wl)

T
:j = 1

nl−1
Inl−1

for every j ∈ [nl]. �

Proof of Lemma C.1. In the following, we write subG(ξ2) to denote a sub-gaussian random variable
with mean zero and variance proxy ξ2. It is well-known that if Z ∼ subG(ξ2) then for every t ≥ 0

we have P(|Z| ≥ t) ≤ 2 exp(− t2

2ξ2 ).

We prove by induction on l ∈ [L] that, if √np ≥ t for every p ∈ [l − 1], then it holds w.p.
≥ 1− le−t2/2 over (Wp)

l
p=1 that

‖Fl‖F ≤
‖XF ‖√

d
2l−1 [

√
nl + t] .

Let us check the case l = 1 first. We have∣∣∣ ‖F1(W1)‖F − ‖F1(W ′1)‖F
∣∣∣ ≤ ‖F1(W1)− F1(W ′1)‖F

= ‖σ(XW1)− σ(XW ′1)‖F
≤ ‖XW1 −XW ′1‖F σ is 1-Lipschitz

≤ ‖X‖F ‖W1 −W ′1‖F .

20



It follows that ‖F1‖F − E ‖F1‖F ∼ subG
(
‖X‖2F
d

)
. By Gaussian concentration inequality, we have

w.p. at least 1− e−t2/2,

‖F1‖F ≤ E ‖F1‖F +
‖X‖F√

d
t

≤
√
n1√
d
‖X‖F +

‖X‖F√
d
t Lemma C.3

=
‖X‖F√

d
[
√
n1 + t] .

Thus the hypothesis holds for l = 1. Now suppose it holds for l − 1, that is, we have w.p. ≥
1− (l − 1)e−t

2/2 over (Wp)
l−1
p=1,

‖Fl−1‖F ≤
‖X‖F√

d
2l−2

[√
nl−1 + t

]
.

Conditioned on (Wp)
l−1
p=1, we note that ‖Fl‖F is Lipschitz w.r.t. Wl because∣∣∣ ‖Fl(Wl)‖F − ‖Fl(W

′
l )‖F

∣∣∣ ≤ ‖Fl−1‖F ‖Wl −W ′l ‖F

and thus ‖Fl‖F − E ‖Fl‖F ∼ subG
(
‖Fl−1‖2F
nl−1

)
. By Gaussian concentration inequality, we have w.p.

≥ 1− e−t2/2 over Wl,

‖Fl‖F ≤ E ‖Fl‖F +
‖Fl−1‖F√
nl−1

t.

Thus the above events hold w.p. at least 1− le−t2/2 over (Wp)
l
p=1, in which case we get

‖Fl‖F ≤ E ‖Fl‖F +
‖Fl−1‖F√
nl−1

t

≤
√
nl√
nl−1

‖Fl−1‖F +
‖Fl−1‖F√
nl−1

t Lemma C.3

≤
‖X‖F√

d
2l−2

[√
nl−1 + t

] √nl + t
√
nl−1

induction assump.

≤
‖X‖F√

d
2l−1 [

√
nl + t]

√
nl−1 ≥ t

Thus, the hypothesis also holds for l. �

C.2 Proof of Lemma C.2

Let A ∈ RN×n1 be a random matrix defined as A:j = σ(XW:j)1‖W:j‖∞≤t ∀ j ∈ [n1]. Then,

λmin
(
F1F

T
1

)
= λmin

 n1∑
j=1

σ(XW:j)σ(XW:j)
T

 ≥ λmin
(
AAT

)
.

Thus, by using our assumption on σ,

λmax
(
A:jA

T
:j

)
= ‖A:j‖22 =

∥∥∥σ(XW:j)1‖W:j‖∞≤t

∥∥∥2

2
≤ ‖X‖22 ‖W:j‖22 1‖W:j‖∞≤t ≤ ‖X‖

2
2 dt

2 =: R.

Let G = Ew∼N (0,ζ2Id)

[
σ(Xw)σ(Xw)T I‖w‖∞≤t

]
. Applying Matrix Chernoff bound (Theorem

A.3) to the sum of random p.s.d. matrices, AAT =
∑n1

j=1A:jA
T
:j , we obtain that for every ε ∈ [0, 1)

P
(
λmin

(
AAT

)
≤ (1− ε)λmin

(
EAAT

) )
≤ N

[
e−ε

(1− ε)1−ε

]λmin(EAAT )/R
.
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Substituting E[AAT ] = n1G and R = ‖X‖22 dt2 and ε = 1/2 gives

P
(
λmin

(
AAT

)
≤ n1λmin (G) /2

)
≤ N

[√
2e−1/2

]n1λmin(G)/R

≤ exp

(
− n1λmin (G)

10 ‖X‖22 dt2
+ lnN

)
.

Thus, as long as n1 is large enough, in particular,

n1 ≥
10 ‖X‖22 dt2

(
t2/2 + ln(N/2)

)
λmin (G)

,

we have λmin
(
AAT

)
≥ n1λmin (G) /2 w.p. at least 1− 2e−t

2/2.

The idea now is to lower bound λmin (G) in terms of λmin (G∗) .

‖G−G∗‖2 =
∥∥E [σ(Xw)σ(Xw)T 1‖w‖∞≤t

]
− E

[
σ(Xw)σ(Xw)T

]∥∥
2

≤ E
∥∥σ(Xw)σ(Xw)T 1‖w‖∞≤t − σ(Xw)σ(Xw)T

∥∥
2

Jensen inequality

= E
∥∥σ(Xw)σ(Xw)T 1‖w‖∞>t

∥∥
2

= E
[
‖σ(Xw)‖22 1‖w‖∞>t

]
≤ ‖X‖22 E

[
‖w‖22 1‖w‖∞>t

]
assump. on σ

≤ ‖X‖22
√
E[‖w‖42] P (‖w‖∞ > t) Cauchy-Schwarz

≤ ‖X‖22
√
d

√√√√E
[ d∑
i=1

w4
i

]
P (‖w‖∞ > t) Cauchy-Schwarz

= ‖X‖22 d
√

3ζ2
√

P (‖w‖∞ > t) Ex∼N (0,1)[x
4] = 3

≤ ‖X‖22 d
3/2ζ2

√
3
√
P (|w1| > t) union bound

≤ ‖X‖22 d
3/2ζ2

√
6 exp

(
− t2

4ζ2

)
w1 ∼ subG(ζ2)

≤ λ∗/2 by assumpion on t

This implies that λmin (G) ≥ λmin (G∗) − λ∗/2 = λ∗/2. Plugging this into the above statement
yields for every

n1 ≥
20 ‖X‖22 dt2

(
t2/2 + ln(N/2)

)
λ∗

,

it holds w.p. at least 1− 2e−t
2/2 that

λmin
(
F1F

T
1

)
≥ λmin

(
AAT

)
≥ n1λmin (G) /2

≥ n1(λmin (G∗)− λ∗/2)/2

≥ n1λ∗/4.

Lastly, since n1 ≥ N we get σmin (F1) =
√
λmin

(
F1FT1

)
≥
√
n1λ∗/4. �

C.3 Formal statement and proof for LeCun’s Initialization

Theorem C.4 Let the activation function satisfy Assumption 2.2. Fix t > 0, t0 ≥

max

{
1,

√
4d−1 ln max

(
1, 2
√

6d ‖X‖22 λ
−1
∗

)}
, and denote by c a large enough constant depend-

ing only on the parameters γ, β of the activation function. Let the widths of the neural network satisfy
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the following conditions:

√
nl−1 ≥

(
1 +

1

100

)
(
√
nl + t), ∀ l ∈ {2, . . . , L}, (34)

n1 ≥ max

(
N, d,

ct20d ‖X‖
2
2

(
t20 + lnN

)
λ∗

,
2cL ‖X‖2F

dλ2
∗

(
(
√
nL + t) ‖X‖F√

d
+ ‖Y ‖F

)2
)
.

(35)

Let us consider LeCun’s initialization:

[W 0
l ]ij ∼N (0, 1/nl−1), ∀ l ∈ [L], i ∈ [nl−1], j ∈ [nl].

Let the learning rate satisfy

η <

(
2cLn1

d
·max(1, ‖X‖2F ) ·max

(
1,

(
√
nL + t) ‖X‖F√

d
, ‖Y ‖F

))−1

. (36)

Then, the training loss vanishes and the network parameters converge to a global minimizer θ∗ at a
geometric rate as

Φ(θk) ≤
(

1− ηn1λ∗
2cL

)k
Φ(θ0), (37)

‖θk − θ∗‖2 ≤
(

1− ηn1λ∗
2cL

)k/2
2cL

‖X‖F√
n1dλ∗

·
(

(
√
nL + t) ‖X‖F√

d
+ ‖Y ‖F

)
, (38)

with probability at least 1− 3Le−t
2/2 − 2e−t

2
0/2.

Before presenting the proof of Theorem C.4, let us explain how to derive (12) from the main paper.

How to derive (12) from Theorem C.4. For the convenience of the reader, we recall that in the
discussion of Section 3.2 from the main paper, in order to get (12), the following standard setting
has been considered: (i) N ≥ d, (ii) the training samples lie on the sphere of radius

√
d, (iii) nL is a

constant, and (iv) the target labels satisfy ‖yi‖ = O(1) for all i ∈ [N ]. It follows from (i) and (ii) that
‖X‖22 ≤ ‖X‖2F = Nd ≤ N2. Thus we have that√

4d−1 ln max
(

1, 2
√

6d ‖X‖22 λ
−1
∗

)
= O

(√
d−1 ln(Nλ−1

∗ )

)
. (39)

This implies that

ct20d ‖X‖
2
2 (t20 + lnN)

λ∗
= O

(
‖X‖22
λ∗

(
log

N

λ∗

)2
)
. (40)

Furthermore, from (iii) and (iv) we have that

2cL ‖X‖2F
dλ2
∗

(
(
√
nL + t) ‖X‖F√

d
+ ‖Y ‖F

)2

= O
(
N22O(L)

λ2
∗

)
. (41)

By combining (40) and (41), the scaling (12) follows from the condition (35).

Proof of Theorem C.4. From known results on random Gaussian matrices, we have, w.p. ≥
1− 2e−t

2/2,

∥∥W 0
1

∥∥
2
≤
√
n1 +

√
d+ t√

d
≤ 3

√
n1√
d
,

∥∥W 0
2

∥∥
2
≤
√
n1 +

√
n2 + t

√
n1

≤ 2,
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where the last inequality in each line follows from n1 ≥ d and from (34). From def. (3), we get

λ̄1 =
2

3
(1 +

∥∥W 0
1

∥∥
2
) ≤ 8

3

√
n1√
d
,

λ̄2 =
2

3
(1 +

∥∥W 0
2

∥∥
2
) ≤ 2.

(42)

Similarly, for any l ∈ {3, . . . , L}, we have, w.p. ≥ 1− 2e−t
2/2,

1

101
≤
√
nl−1−

√
nl−t√

nl−1
≤λl≤ λ̄l≤

√
nl−1+

√
nl+t√

nl−1
≤2. (43)

Furthermore, by Lemma C.1 and C.2, we have, w.p. ≥ 1− Le−t2/2 − 2e−t
2
0/2,

λF = σmin
(
F 0

1

)
≥
√
n1λ∗/4, (44)√

2Φ(θ0) ≤ 2L−1(
√
nL + t)

‖X‖F√
d

+ ‖Y ‖F , (45)

as long as the width of the first layer satisfies the following condition from Lemma C.2:

n1 ≥ max

(
N,

ct20d ‖X‖
2
2

(
t20 + lnN

)
λ∗

)
, (46)

for a suitable constant c. From (44), we get a lower bound on the LHS of (4); and from (42), (43) and
(45) we get an upper bound on the RHS of (4). Thus in order to satisfy the initial condition (4), it
suffices to have (46) and

n1λ∗ ≥ 2cL ‖X‖F

√
n1

d

(
(
√
nL + t)

‖X‖F√
d

+ ‖Y ‖F

)
, (47)

which together leads to condition (35).

To satisfy the initial condition (5), it suffices to have in addition to (4) that λF ≥ 2 ‖X‖2 , which is

fulfilled for n1 ≥
16‖X‖22
λ∗

, which is however satisfied by (35) already.

As a result, the initial conditions (4)-(5) are satisfied and we can apply Theorem 3.2. Let us now bound
the quantities α0, Q0 and Q1 defined in (6). Note that λF = σmin

(
σ(XW 0

1 )
)
≤
∥∥σ(XW 0

1 )
∥∥
F
≤

‖X‖F
∥∥W 0

1

∥∥
2
. Then,

n1λ∗
2cL

≤ α0 ≤ 2cL ‖X‖2F
n1

d
, (48)

and

Q0 ≤ 2cL ‖X‖2F
n1

d
+ 2cL

n1

d
‖X‖F (1 + ‖X‖F )

√
2Φ(θ0)

≤ 2cLn1

d
max(1, ‖X‖2F ) max

(
1,

(
√
nL + t) ‖X‖F√

d
, ‖Y ‖F

)
by (45).

It is easy to see that the upper bound of Q0 dominates that of α0. Thus to satisfy the learning rate
condition from Theorem 3.2, it suffices to set η to be smaller than the inverse of the upper bound on
Q0, which leads to condition (36).

From the lower bound of α0 in (48) and (7), we immediately get the convergence of the loss as stated
in (37). Similarly, one can compute the quantity Q1 defined in (8) to get the convergence of the
parameters as stated in (38). �

D Proofs for Lower Bound on λ∗

D.1 Background on Hermite Expansions

Let L2(R, w(x)) denote the set of all functions f : R→ R such that∫ ∞
−∞

f2(x)w(x)dx <∞.
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The normalized probabilist’s hermite polynomials are given by

hr(x) =
1√
r!

(−1)rex
2/2 d

r

dxr
e−x

2/2.

The functions {hr(x)}∞r=0 form an orthonormal basis of L2
(
R, e

−x2/2
√

2π

)
, which is a Hilbert space

with the inner product

〈σ1, σ2〉 =

∫ ∞
−∞

σ1(x)σ2(x)
e−x

2/2

√
2π

dx.

Thus, every function σ in L2
(
R, e

−x2/2
√

2π

)
can be represented as (a.k.a. Hermite expansion):

σ(x) =

∞∑
r=0

µr(σ)hr(x), (49)

where µr(σ) is the r-th Hermite coefficient given by

µr(σ) =

∫ ∞
−∞

σ(y)hr(y)
e−y

2/2

√
2π

dy.

Let ‖·‖ be defined as ‖σ‖2 = 〈σ, σ〉 . Then, the convergence of the series in (49) is understood in the
sense that

lim
n→∞

∥∥∥∥∥σ(x)−
n∑
r=0

µr(σ)hr(x)

∥∥∥∥∥ = lim
n→∞

Ex∼N (0,1)

∣∣∣∣∣σ(x)−
n∑
r=0

µr(σ)hr(x)

∣∣∣∣∣
2

= 0

Note σ ∈ L2
(
R, e

−x2/2
√

2π

)
if and only if 〈σ, σ〉 =

∑∞
r=0 µ

2
r(σ) <∞.

Lemma D.1 Consider a Hilbert space H equipped with an inner product 〈·, ·〉 : H ×H → R. Let
‖·‖ be norm induced by the inner product, i.e. ‖f‖ =

√
〈f, f〉. Let {fn} , {gn} be two sequences in

H such that limn→∞ ‖fn − f‖ = limn→∞ ‖gn − g‖ = 0. Then 〈f, g〉 = limn→∞ 〈fn, gn〉 .

Proof:

|〈f, g〉 − 〈fn, gn〉| ≤ |〈f, g − gn〉|+ |〈f − fn, gn〉|
≤ ‖f‖ ‖g − gn‖+ ‖f − fn‖ ‖gn‖
≤ ‖f‖ ‖g − gn‖+ ‖f − fn‖ (‖gn − g‖+ ‖g‖).

Taking the limit on both sides yields the result. �

Lemma D.2 Let x, y ∈ Rd be such that ‖x‖2 = ‖y‖2 = 1. Then, for every j, k ≥ 0,

Ew∼N (0,Id)

[
hj(〈w, x〉)hk(〈w, y〉)

]
=

{
〈x, y〉j j = k

0 j 6= k
.

Proof: Let s, t ∈ R be given finite variables. Then,

E exp (s 〈w, x〉+ t 〈w, y〉) =

d∏
i=1

E exp (wi(sxi + tyi))

=

d∏
i=1

exp

(
(sxi + tyi)

2

2

)
= exp

(
s2 + t2 + 2st 〈x, y〉

2

)
.
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Thus, it follows that

E exp

(
s 〈w, x〉 − s2

2

)
exp

(
t 〈w, y〉 − t2

2

)
= exp (st 〈x, y〉) . (50)

Let L2(Rd) be the space of functions f : Rd → R with bounded gaussian measure, i.e.

Ew∼N (0,Id)[f(w)2] <∞.

This is a Hilbert space w.r.t. the inner product 〈f, g〉 = E[fg] and its induced norm ‖f‖ =
√
〈f, f〉.

Let the functions f, g : Rd → R be defined as

f(w) = exp

(
s 〈w, x〉 − s2

2

)
, g(w) = exp

(
t 〈w, y〉 − t2

2

)
.

Then the LHS of (50) becomes 〈f, g〉 . Let {fn}∞n=1 , {gn}
∞
n=1 be two sequence of functions defined

as

fn(w) =

n∑
j=0

hj(〈w, x〉)
sj√
j!
, gn(w) =

n∑
k=0

hk(〈w, y〉) tk√
k!
.

One can easily check that f, g are in L2(Rd), and so are fn’s and gn’s. Moreover,

lim
n→∞

‖fn − f‖2 = lim
n→∞

Ew∼N (0,Id)|fn(w)− f(w)|2

= lim
n→∞

Eu∼N (0,1)

∣∣∣∣∣∣exp

(
su− s2

2

)
−

n∑
j=0

hj(u)
sj√
j!

∣∣∣∣∣∣
2

= 0,

where the last equality follows from the Hermite expansion of the function u 7→ exp(su − s2/2),
which is given by

exp

(
su− s2

2

)
=

∞∑
j=0

hj(u)
sj√
j!
.

Similarly, limn→∞ ‖gn − g‖2 = 0. By applying Lemma D.1 and taking the Mclaurin series of the
RHS of (50), we obtain

∞∑
j,k=0

E
hj(〈w, x〉)hk(〈w, y〉)√

j!k!
sjtk =

∞∑
j=0

〈x, y〉j

j!
sjtj , ∀ s, t ∈ R.

Equating the coefficients on both sides gives the desired result. �

D.2 Formal statement and proof of (16)

Lemma D.3 Let X = [x1, . . . , xN ]T ∈ RN×d where ‖xi‖2 =
√
d for all i ∈ [N ]. Assume that

σ ∈ L2(R, e−x2/2/
√

2π). Let G∗ be defined as in (13). Then,

G∗ =

∞∑
r=0

µ2
r(σ)

dr
(X∗r)(X∗r)

T
.

Here, “=” is understood in the sense of uniform convergence, that is, for every ε > 0, there exists a
sufficiently large r0 ≥ 0 such that∣∣∣(G∗)ij − (Sr)ij

∣∣∣ < ε, ∀i, j ∈ [N ], ∀ r ≥ r0,

where Sr =
∑r
k=0

µ2
k(σ)
dk

(X∗k)(X∗k)
T
.
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This result is also stated in Lemma H.2 of [31] for ReLU and softplus activation functions. As a fully
rigorous proof is missing in [31], we provide it below.

Proof of Lemma D.3. Let x̄i = xi/ ‖xi‖2 for i ∈ [N ]. From the definition of G∗, we have

(G∗)ij = Ew∼N (0,Id/d) [σ(〈w, xi〉)σ(〈w, xj〉)]

= Ew̄∼N (0,Id) [σ(〈w̄, x̄i〉)σ(〈w̄, x̄j〉)] w̄ =
√
dw

=

∞∑
r,s=0

µr(σ)µs(σ)Ew̄∼N (0,Id) [hr(〈w̄, x̄i〉)hs(〈w̄, x̄j〉)] (∗)

=

∞∑
r=0

µ2
r(σ) 〈x̄i, x̄j〉r Lemma D.2

where (∗) is justified below. Note that 〈x̄i, x̄j〉r = 1
dr 〈xi ⊗ . . .⊗ xi, xj ⊗ . . .⊗ xj〉 . Thus,

G∗ =

∞∑
r=0

µ2
r(σ)

dr
(X∗r)(X∗r)

T
.

To justify step (∗), we can use the similar argument as in the proof of Lemma D.2. Indeed, consider
the same Hilbert space L2(Rd) as defined there. Let f, g : Rd → R be defined as

f(w̄) = σ(〈w̄, x̄i〉), g(w̄) = σ(〈w̄, x̄j〉).

and the sequence {fn} , {gn} defined as

fn(w̄) =

n∑
r=0

µr(σ)hr(〈w̄, x̄i〉), gn(w̄) =

n∑
s=0

µs(σ)hs(〈w̄, x̄j〉).

It is easy to see that f, g, {fn} , {gn} ∈ L2(Rd). Moreover, ‖fn − f‖2 =

Ez∼N (0,1) |σ(z)−
∑n
r=0 µr(σ)hr(z)|

2 → 0 as n → ∞. Similarly, ‖gn − g‖2 → 0 as
n→∞. Thus applying Lemma D.1 leads us to (∗).

�

D.3 Proof of Lemma 3.4

Define K = X∗r and note that, for i ∈ [N ], the i-th row of K is given by the r-th Kronecker power
of xi, namely, Ki: = x⊗ri = xi ⊗ xi ⊗ · · · ⊗ xi ∈ Rdr . Let z = (z1, . . . , zN ) ∈ RN be such that
‖z‖2 = 1. Then,

‖KT z‖22 =

N∑
i=1

z2
i ‖Ki:‖22 +

∑
i 6=j

〈ziKi:, zjKj:〉

=

N∑
i=1

z2
i ‖xi‖2r2 +

∑
i 6=j

zizj〈xi, xj〉r

= dr +
∑
i 6=j

zizj〈xi, xj〉r.

(51)

Furthermore, we have that∣∣∣∣∣∣
∑
i 6=j

zizj〈xi, xj〉r
∣∣∣∣∣∣ ≤

∑
i 6=j

|zi| |zj | |〈xi, xj〉|r

≤ (maxi 6=j |〈xi, xj〉|)r
(

N∑
i=1

|zi|

)2

≤ N (maxi 6=j |〈xi, xj〉|)r ,

(52)
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where in the last step we have used Cauchy-Schwarz inequality and that ‖z‖2 = 1. By combining
(51) and (52), we obtain that

σ2
min(K) ≥ dr −N (maxi 6=j |〈xi, xj〉|)r . (53)

Let us now provide a bound on maxi 6=j |〈xi, xj〉|. Fix any u ∈ Rd such that ‖u‖2 =
√
d, and recall

that, by hypothesis, ‖xi‖ψ2
≤ c1, where c1 is a constant that does not depend on d. Then, for all

t ≥ 0,
P
(
|〈xi, u〉| ≥ t

√
d
)
≤ 2e−C1t

2

, (54)

where C1 is a constant that does not depend on d. As xi and xj are independent for i 6= j and
‖xj‖2 =

√
d, we deduce that

P
(
|〈xi, xj〉| ≥ t

√
d
)
≤ 2e−C1t

2

. (55)

By doing a union bound, we have that

P
(

maxi 6=j |〈xi, xj〉| ≥ t
√
d
)
≤ 2N2e−C1t

2

, (56)

which, combined with (53), yields

P
(
σ2

min(K) ≥ dr −Ntrdr/2
)
≤ 2N2e−C1t

2

. (57)

Thus, by taking t =
(

3dr/2

4N

)1/r

, the proof is complete. �

D.4 Proof of Theorem 3.3

First, we show that, if σ is not a linear function and |σ(x)| ≤ |x| for x ∈ R, then µr(σ) > 0 for
arbitrarily large r.

Lemma D.4 Assume that σ is not a linear function, and that |σ(x)| ≤ |x| for every x ∈ R. Then,

sup {r | µr(σ) > 0} =∞. (58)

Proof: It suffices to show that σ cannot be represented by any polynomial of finite degree. Suppose,
by contradiction, that σ(x) =

∑n
i=0 aix

i, where an 6= 0 and n ≥ 2. As σ(0) = 0, we have that
a0 = 0. Thus,

lim
x→∞

|σ(x)|
|x|

= lim
x→∞

∣∣anxn−1 + . . .+ a1

∣∣
= lim
x→∞

|x|n−1

∣∣anxn−1 + . . .+ a1

∣∣
|x|n−1

= lim
x→∞

|x|n−1
∣∣∣an + . . .+

a1

xn−1

∣∣∣
=∞.

This contradicts the fact that |σ(x)|
|x| is bounded, and it concludes the proof. �

At this point, we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. As σ is not linear and |σ(x)| ≤ |x| for every x ∈ R, by Lemma D.4, we have
that sup {r | µr(σ) > 0} = ∞. Thus, there there exists an integer r ≥ 10k such that µr(σ) 6= 0.
Thus, Lemma 3.4 implies that, for N ≤ dr,

λmin

(
(X∗r)(X∗r)

T
)

= σ2
min (X∗r) ≥ dr/4,

with probability at least

1− 2N2e−c2dN
−2/r

≥ 1− 2N2e−c2N
4/5k

,
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where in the last step we use that N ≤ dk and r ≥ 10k.

Furthermore, by Lemma D.3, there exists r′ ≥ r such that

‖G∗ − Sr′‖F <
µ2
r(σ)

2dr
λmin

(
(X∗r)(X∗r)

T
)

=:
ξ

2
.

Note that λmin(Sr′) ≥ λmin(Sr) ≥ ξ. Thus by Weyl’s inequality, we get

λ∗ = λmin(G∗) ≥ λmin (Sr′)−
ξ

2
≥ ξ

2
≥ µ2

r(σ)

8
,

which completes the proof. �

D.5 Improvement of Lemma 3.4 for r ∈ {2, 3, 4}

The goal of this section is to prove the following result.

Lemma D.5 Let X ∈ RN×d be a matrix whose rows are i.i.d. random vectors uniformly distributed
on the sphere of radius

√
d. Fix an integer r ≥ 2. Then, there exists c1 ∈ (0, 1) such that, for

d ≤ N ≤ c1d2, we have

P
(
σmin(X∗r) ≥ dr/2/2

)
≥1− 2Ne−c2d

1/r

− (1 + 3 logN)e−11
√
N (59)

for some constant c2 > 0.

Let us emphasize that the constants c1, c2 > 0 do not depend on N and d, but they can depend on the
integer r. Note that the probability in the RHS of (59) tends to 1 as long as N is O(d2). Thus, this
result improves upon Lemma 3.4 for r ∈ {2, 3, 4}. The price to pay is a stronger assumption on X .
In fact, Lemma D.5 requires that the rows of X are uniformly distributed on the sphere of radius

√
d,

while Lemma 3.4 only requires that they are sub-Gaussian. Recall that the sub-Gaussian norm of a
vector uniformly distributed on the sphere of radius

√
d is a constant (independent of d), see Theorem

3.4.6 in [42]. Thus, the requirement on X of Lemma D.5 is strictly stronger than that of Lemma 3.4.

Recall that, given a random variable Y ∈ R, its sub-exponential norm is defined as

‖Y ‖ψ1
= inf{C > 0 : E[e|Y |/C ] ≤ 2}. (60)

Furthermore, for a centered random vector x ∈ Rd, its sub-exponential norm is defined as

‖x‖ψ1
= sup
‖y‖2=1

‖〈x, y〉‖ψ1
. (61)

We start by stating two intermediate results that will be useful for the proof.

Lemma D.6 Consider an r-indexed matrixA = (ai1,...,ir )
d
i1,...,ir=1 such that ai1,...,ir = 0 whenever

ij = ik for some j 6= k. Let x = (x1, . . . , xd) be a random vector in Rd uniformly distributed on the
unit sphere, and define

Z =
∑
i∈[d]r

ai

r∏
j=1

xij . (62)

Then,
E
[
eCd|Z|

2/r
]
≤ 2, (63)

where C is a numerical constant.

If x is uniformly distributed on the unit sphere, then it satisfies the logarithmic Sobolev inequality
with constant 2/d, see Corollary 1.1 in [15]. Thus, Lemma D.6 follows from Theorem 1.14 in [9],
where σ2 = 1/d (see (1.18) in [9]) and the function f is a homogeneous tetrahedral polynomial of
degree r.

The second intermediate lemma is stated below and it follows from Theorem 5.1 of [1] (this is also
basically a restatement of Lemma F.2 of [37]).
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Lemma D.7 Let u1, u2, . . . , uN be independent sub-exponential random vectors with ψ =
maxi∈[N ] ‖ui‖ψ1 . Let ηmax = maxi∈[N ] ‖ui‖2 and define

BN = sup
z : ‖z‖2=1

∣∣∣∣∣∣
∑
i 6=j

〈ziui, zjuj〉

∣∣∣∣∣∣
1/2

. (64)

Then,
P
(
B2
N ≥ max(B2, ηmaxB, η

2
max/4)

)
≤ (1 + 3 logN)e−11

√
N , (65)

where
B = C0ψ

√
N, (66)

and C0 is a numerical constant.

At this point, we are ready to provide the proof of Lemma D.5.

Proof of Lemma D.5. The first step is to drop columns from X∗r. Define K = X∗r and note
that, for i ∈ [N ], the i-th row of K is given by the r-th Kronecker power of xi, namely, x⊗ri =

xi ⊗ xi ⊗ · · · ⊗ xi ∈ Rdr . Let xi = (xi,1, . . . , xi,d) and index the columns of K as (j1, j2, . . . , jr),
with jp ∈ [d] for all p ∈ [r], so that the element of K in row i and column (j1, j2, . . . , jr) is given by∏r
p=1 xi,jp . Consider the matrix K̃ obtained by keeping only the columns of K where the indices

j1, j2, . . . jr are all different. Note that K̃ has
∏r−1
j=0(d− j) ≥ N columns as N ≤ c1d

2. Thus, as
K̃ = X∗r is obtained by dropping columns from K, then

σmin(K) ≥ σmin(K̃). (67)

The second step is to bound the sub-exponential norm of the rows of K̃. Let k̃x be the row of K̃
corresponding to the data point x = (x1, . . . , xd). Let us emphasize that, from now till the end of
the proof, we denote by xi ∈ R the i-th element of the vector x (and not the i-th training sample,
which is a vector in Rd). Let A be the set of r-indexed matrices A = (ai1,...,ir )

d
i1,...,ir=1 such

that
∑

i∈[d]r a
2
i = 1 and ai1,...,ir = 0 whenever ij = ik for some j 6= k. Then, by definition of

sub-exponential norm of a vector, we have that

‖k̃x‖ψ1
= sup
A∈A

∥∥∥∥∥∥
∑
i∈[d]r

ai

r∏
j=1

xij

∥∥∥∥∥∥
ψ1

. (68)

Note that, for all A ∈ A,∣∣∣∣∣∣
∑
i∈[d]r

ai

r∏
j=1

xij

∣∣∣∣∣∣ (a)
≤
√∑

i∈[d]r

a2
i

√√√√∑
i∈[d]r

r∏
j=1

x2
ij

(b)
= dr/2, (69)

where in (a) we use Cauchy-Schwarz inequality and in (b) we use that
∑

i∈[d]r a
2
i = 1 and ‖x‖2 =√

d. Consequently,

‖k̃x‖ψ1 = sup
A∈A

∥∥∥∥∥∥∥
∣∣∣∣∣∣
∑
i∈[d]r

ai

r∏
j=1

xij

∣∣∣∣∣∣
1−2/r ∣∣∣∣∣∣

∑
i∈[d]r

ai

r∏
j=1

xij

∣∣∣∣∣∣
2/r
∥∥∥∥∥∥∥
ψ1

≤ dr/2−1 sup
A∈A

∥∥∥∥∥∥∥
∣∣∣∣∣∣
∑
i∈[d]r

ai

r∏
j=1

xij

∣∣∣∣∣∣
2/r
∥∥∥∥∥∥∥
ψ1

.

(70)

Note that Lemma D.6 considers a vector x uniformly distributed on the unit sphere, while in (70) x is
uniformly distributed on the sphere with radius

√
d. Thus, (63) can be re-written as

E

exp

C
∣∣∣∣∣∣
∑
i∈[d]r

ai

r∏
j=1

xij

∣∣∣∣∣∣
2/r

 ≤ 2. (71)
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By definition (60) of sub-exponential norm, we obtain that

sup
A∈A

∥∥∥∥∥∥∥
∣∣∣∣∣∣
∑
i∈[d]r

ai

r∏
j=1

xij

∣∣∣∣∣∣
2/r
∥∥∥∥∥∥∥
ψ1

=
1

C
, (72)

which, combined with (70), leads to

‖k̃x‖ψ1
≤ C1d

r/2−1, (73)

where C1 is a numerical constant.

The third step is to bound the Euclidean norm of the rows of K̃. Recall that k̃x is obtained by keeping
the elements of x⊗r where the indices i1, i2, . . . , ir are all different. As for the upper bound, we have
that

‖k̃x‖22 ≤
∥∥x⊗r∥∥2

2
= dr. (74)

As for the lower bound, we have that

‖k̃x‖22 ≥
∥∥x⊗r∥∥2

2
−

dr − r−1∏
j=0

(d− j)

(maxi∈[d] |xi|
)2r

, (75)

since x⊗r contains dr entries, k̃x contains
∏r−1
j=0(d− j) entries and each of these entries is at most

(maxi∈[d] |xi|)r. Note that
∏r−1
j=0(d− j) is a polynomial in d of degree r whose leading coefficient

is 1. Thus,
r−1∏
j=0

(d− j) ≥ dr − C2d
r−1,

for some constant C2 that depends only on r. Consequently,

‖k̃x‖22 ≥ dr − C2d
r−1

(
maxi∈[d] |xi|

)2r
. (76)

As x is uniform on the sphere of radius
√
d, we can write

x =
√
d

g

‖g‖2
, (77)

where g = (g1, . . . , gd) ∼ N (0, Id). Then,

(
maxi∈[d] |xi|

)2r
=

( √
d

‖g‖2

)2r (
maxi∈[d] |gi|

)2r
. (78)

Recall that the norm of a vector is a 1-Lipschitz function of the components of the vector. Thus,

P (|‖g‖2 − E[‖g‖2]| ≥ t) ≤ 2e−t
2/2. (79)

Furthermore,

E[‖g‖2] =

√
2Γ
(
d+1

2

)
Γ
(
d
2

) , (80)

where Γ denotes Euler’s gamma function. By Gautschi’s inequality, we have the following upper and
lower bounds on E[‖g‖2]: √

d− 1 ≤ E[‖g‖2] ≤
√
d+ 1. (81)

As a result,

P

∣∣∣∣∣∣
( √

d

‖g‖2

)2r

− 1

∣∣∣∣∣∣ > 1

2

 ≤ 2e−C3d, (82)

for some constant C3 > 0 depending on r (but not on d). Consequently, with probability at least
1− 2e−C3d, we have that (

maxi∈[d] |xi|
)2r ≤ 3

2

(
maxi∈[d] |gi|

)2r
. (83)
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An application of Theorem 5.8 of [10] gives that, for any t > 0,

P(maxi∈[d] gi − E[maxi∈[d] gi] ≥ t) ≤ e−t
2/2. (84)

Furthermore, we have that, for any α > 0,

eαE[maxi∈[d] gi] ≤ E [eαmaxi∈[d] gi ] = E
[
maxi∈[d] e

αgi
]
≤

d∑
i=1

E [eαgi ] = deα
2/2, (85)

where the first passage follows from Jensen’s inequality. By taking α =
√

2 log d, we obtain

E[maxi∈[d] gi] ≤
√

2 log d, (86)

which, combined with (84), leads to

P

(
maxi∈[d] gi ≥

(
d

3C2

) 1
2r

)
≤ 2e−C4d

1/r

, (87)

where C2 is the constant in (76) and C4 > 0 is a constant that depends only on r (and not on d).
Since the Gaussian distribution is symmetric, we also have that

P

(
maxi∈[d] |gi| ≥

(
d

3C2

) 1
2r

)
≤ 4e−C4d

1/r

. (88)

By combining (76), (83) and (88), we obtain that, with probability at least 1− 2e−C5d
1/r

,

‖k̃x‖22 ≥
dr

2
. (89)

Hence, by doing a union bound on the rows of K̃, we have that, with probability at least 1 −
2Ne−C5d

1/r

,

mini∈[N ] ‖K̃i:‖22 ≥
dr

2
, (90)

maxi∈[N ] ‖K̃i:‖22 ≤ dr, (91)

where K̃i: denotes the i-th row of K̃.

The last step is to apply the results of Lemma D.7. Let z = (z1, . . . , zN ) ∈ RN be such that ‖z‖2 = 1.
Then,

‖K̃T z‖22 =

N∑
i=1

z2
i ‖K̃i:‖22 +

∑
i6=j

〈ziK̃i:, zjK̃j:〉, (92)

which immediately implies that

σ2
min(K̃) ≥ mini∈[N ] ‖K̃i:‖22 −B2

N , (93)

with

BN = sup
z : ‖z‖2=1

∣∣∣∣∣∣
∑
i6=j

〈ziK̃i:, zjK̃j:〉

∣∣∣∣∣∣
1/2

. (94)

By applying Lemma D.7 and using the bounds (73) and (91), we have that

P
(
B2
N ≥ max(C6d

r−2N,C6d
r−1
√
N, dr/4)

)
≤ (1 + 3 logN)e−11

√
N , (95)

for some constant C6 depending on r. Recall that N ≤ c1d
2 for a sufficiently small constant c1

(which can depend on r). Thus, we have that

P
(
B2
N ≥ dr/4

)
≤ (1 + 3 logN)e−11

√
N . (96)

By combining (93), (90) and (96), we obtain that

P
(
σ2

min(K̃) ≥ dr/4
)
≥ 1− 2Ne−C5d

1/r

− (1 + 3 logN)e−11
√
N , (97)

which, together with (67), gives the desired result. �
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