Supplementary Material (Appendix)

Global Convergence of Deep Networks with One
Wide Layer Followed by Pyramidal Topology

A Mathematical Tools

Proposition A.1 (Weyl’s inequality, see e.g. [40]) Ler A, B € R™*™ with01(A) > ... > 0.(A)
and o1(B) > ... > 0.(B), where r = min(m, n). Then,

maxiefy) |0i(A) — oi(B)[ < [|A = B,

Lemma A.2 (Singular values of random gaussian matrices, see e.g. [41]) Let A € R™*"™ be a
random matrix with m > n and A;; ud N(0,1) . For every t > 0, it holds w.p. > 1 — 2e~t*/2

\/mf\/ﬁftgo—min(A) S HAH2 §m+\/ﬁ+t

Theorem A.3 (Matrix Chernoff) Ler {X;}] | € R¥*4 be a sequence of independent, random,
symmetric matrices. Assume that 0 < Apin (X;) < Apax (X;) < R. Let S = >"" | X;. Then,

o€ Amin(ES)/R
€ Amar(ES)/ R
> < —_ > 0.
P O () > (1 + ) Aae (ES)) < d {(1 - 6)14 Ve >0

B Proofs for General Framework (Theorem [3.2)

In the following, we frequently use a basic inequality, namely, for every A, B € R"™*", || AB||, <
[ Ally [| Bl and [AB]| < [[All 1B, -

B.1 Properties of Activation Function (2)
Lemma B.1 Let o : R — R be given as in @ Then,

1. o is real analytic.
2. o'(x) € [,1] for every x € R.
3. |o(z)| < |z| for every x € R.

4. o' is B-Lipschitz.
5.

lim sup |o(z) — max(yz,z)| = 0.
B—00 xR

Proof: Let ¥ be the CDF of the standard normal distribution. Then, after some manipulations, we
have that

— 2 _ 2 2.2
7= _(1%;) + e (‘(7{6— :)2> i <51 —2?) o (ﬁl _27;95) |
24

1. Since ¥ is known as an entire function (i.e. analytic everywhere), it follows from (24) that
o is analytic on R.
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2. Note that ¥/ (z) = \/%6_22/2 and U(—z) = 1 — ¥(z). Thus, after some simplifications,
we have that

(25)

o'(@) =7+ (1—7)¥ (5“%)

L=y
The result follows by noting that ¥(-) € [0, 1].

3. Tt is easy to check that o(0) = 0. Moreover, o is 1-Lipschitz and thus |o(z)| = |o(x) —
o(0)] < [x].
4. We have that

o (x) = V21V’ <,8127rx> <.

Thus ¢’ is B-Lipschitz.

5. Note that
oo 200 2)\2
CE LA (M) du=1,
1- Y J—o (1 - ’Y)
which implies that

o0 7B (z — u)?
max(yz,x) = %[ max(yx, x) exp <_ﬂ(1(—'y)2)> du.

Thus, the following chain of inequalities holds:

lo(2) — max(yz, )|

:‘ B ke +1 ﬁfy /OO max(yu, u) exp (—M) du

23 (1-7)?)

_ %/max(’yx,x) exp <_W> du
§(127T;)2 + 1 ? 5 Z |max(yu, u) — max(yz,z)| exp (W) du

Y oo B2 (1 — )2
S(l v) +1€7/_w|x—u|exp(—wu)>du

213 (1—7)?
S [ e ()
:(12;;)2 b fv Ooov exp (_JB_QZ;) dv

— ~)2 _

:(1%2) - lwﬁy'

Taking the supremum and the limit on both sides yields the result.

B.2 Proof of (T7) in Lemma[4.2]

We prove by induction on [. Note that the lemma holds for [ = 1 since
IE1ll e = lo(XW)[[ o < [IXWhllp < [[X][p Wl
where in the 2nd step we use our assumption on . Assume the lemma holds for ! — 1, i.e.

-1
1Eallp < IX1 TTIW3ll, -

p=1
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It is easy to verify that it also holds for {. Indeed,

IFillp = llo(Fr—a W)l by definition
< FaWil g lo(2)] < ||
< ||Fl—1||F ||Wl||2

l

< IX|lp H Whlly by induction assump.
p=1
For [ = L one can skip the first equality above, as there is no activation at the output layer. (|

B.3 Proof of (T9) in Lemma[4.2]
We first prove the following intermediate result.

Lemma B.2 Let o be I-Lipschitz and |o(x)| < |z| for every x € R. Let 0, = (W{)[,,0, =
(WPE . Let Ay > max(||[Wg|],, HVV;’HZ) Then, for everyl € [L],

1 = Fllp < |Gt = Gl

l
<X Mt DA Wy =Wy

p=1

I,

Here, we denote \i—.j = [[]_; \i.

Proof: We prove by induction on [. First, it holds for [ = 1 since

| Fr — Flb||F =||o(GY) - J(GZ{)HF by definition
< HG‘f — GI{HF o is 1-Lipschitz
= [|[xwi = xwy|l,

< X [ = Wl -
Suppose the lemma holds for [ — 1 and we want to prove it for . We have
HFla - FleF = HU(GEL) - U(G?)HF definition
< HG? - GbHF o is 1-Lipschitz
= HFla—lwza - Flb—lvvlb
<||F, Wi - FllllvvlaHF + || P W — FlbleleF
< (1B = Bl I + ] = w7

I
triangle inequality

-1

< By — B W+ X [H Hw;uz] Wi — Wi, by @
p=1

< Fy = Fra| o M+ X A W7 = WP,

!
<X || p A=t Z MW —wp induction assumption

I

p=1
([
Applying Lemma B2 to the output layer yields:
172 = Frflp = 6L = Gl
L
< IXp Asn 3 A Wy =Wl
p=1
<VL|X|p AliﬁL_ 162 — 0b]l5 Cauchy-Schwarz
mingez) Ar

O
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B.4 Proof of (I8) in Lemma[4.2]

2

IVw, @ 5 = lIvec(Vw, @)l
L
= (Hm®Fl7:1) H Ep (W @1In) | (fr —y)
p=Il+1
L
<NEally | TT Walla| 12 = wlls

p=Il+1

L
SHX”F HHW;HQ HfL—sz
el

B.5 Proof of (20) in Lemma[4.2]

We start by showing the following intermediate result.

Lemmad.1l

o’ <1

by (7).

Lemma B.3 Let o be I-Lipschitz, and let |o(x)| < |z| and |0’ (x)| < 1 hold for every x € R. Let

O = (Wi)izy, 0 = (WP)fy- Let Ay = max([WE], |

H OfL(0a)  OfL(6b)
dvec(Wp)  dvec(W))

2 p=Il+1
L—-1

L
<X Mg oAt Y AW =W,

VVlb||2). Then, for everyl € [L],

X p Mo A Y155 = Spll, + Ao | By = B,

p=l
Here, we denote 5\1-%]- = H{:i .
Proof: Foreveryt e {l,...,L}, let
T
Mp= | I (W) @In)Ss | (I @ Fy),
p=t—Il+1 ]
T
M} = H ((W;I;) ®HN)2271 (In, ® F{3).
p=t—l+1 ]
In the above definition, we note that p runs in the reverse order, thatis, p =t,t —1,...,l+ 1. For the

case t = [ (the terms inside brackets are inactive), we assume by convention that M}

and M} = (I,, ® F>,). It follows from Lemma 4.1 that

9f1(0a) 91 (0)
0 vec(W;) O vec(W;)

The following inequality holds

_ a
=M,

= M?.

Ry

[
1Ml < | T 1wl 1251,
_p:l+1
[ t -1
< | I Iwgll, | 1X1e [H HW;’HQ]
| p=1+1 p=1

< Mo IX g
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where the second inequality follows from (I7) and |¢’| < 1. To prove the lemma, we will prove that,
foreveryt € {l,...,L},

t
M= M|, <X e D> Ao, N W = W2,

p=Il+1
t—1
XN Mo AT DO N5 = Sl + A 1B = B, @D
p=l

Then setting ¢t = L in (27)) leads to the desired result. First we note that (27) holds for ¢ = [ since
= leQ = H(an @ F) — (I, ® Fl}i1)H2 = HFllil - FZZL1H2-
| M — M,
Suppose that it holds for ¢ — 1 with ¢ > [ 4 1, and we want to show it for ¢. Then,
T T

|2 = 22, = || (W) @ In)Ti My — (W) @ Tn)Th M|

T
)

< (W @ Iz M, — (W) @ IS M |

+ [« ez Mz, — (W) @ st ME, |
W = W2, ([l A2l + (W2 1M = B,
||Wta - Wthg Xlﬁtflj\zﬁl ||XHF + M ||Z?71Mtafl - nglMtbleQ ) by @ and |0/‘ <1
HWta - WthQ Mot A X

ININ A

X | B My = S M, + ([ M - S M,
< |[W = W[, Myt AT X
T 7/ 10 SV v B VA VLN
= 1X 0 Moema AT W = WPy + 1K Arse N ([ 20y = Sy, + A [y — M

t
<X p A dH Y AW =W,

p=Il+1
B B t—1 3
X Mo A D (2 = b, + N [[Fy — Bl
p=l

where the last line follows by plugging the bound of ||Mf , — M} ||, from the induction
assumption. ]

Proof of (20) in Lemma[d.2] Let

L
S=Xllp oAt Y AWy =W,

p=Il+1
Then, by Lemma|B3] we have that
0fu(6a)  Ofr(6) RS o s ,
- < Xz A A DI A - F
vee( W)~ vee(WP) |, = S+ X p Ao ; 135 = Splly + Aevror [|FL = B2,
=S+ [ Xllp Aoz A D |J0'(GE) = o (GO)||, + Masr [|FEy = F2 -
p=l
(28)
Furthermore, by using that o’ is 3-Lipschitz, the RHS of (28) is upper bounded by
L-1
S+ X p Mo Z BllGe - GZHQ + N1 ||[Fy - Flb_1H2- (29)
p=l
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By applying Lemma[B.2] the following chain of upper bounds for (29) holds:

L—-1
s+||X||FAHLA—1ZBHXHFAHPZA Hwe —w,
p=l q=1

-1
+ 5\l+1ﬁL ”XHF Ao Zj‘;l HW; o WIEJHQ

p=1
L—1

||X||F/8/\1—>L/\ Z)\l_WZ)\ 1HWa Wsz
p=l q=1

~

X A AT AW =W,

p=1
p#l
L

<X |5 BMpA! Z

L

p
[ w130 ]Zuws—wﬁug
q=1

(30)

L
IR [H max(1 m] S we - w,
p=1

p=1

L 2
< LB|IX|% [H maX(LAq)] o we—wel,
qg=1

g=1

L L
+ 11Xl [H max(l,m] >owy=wpll,
p=1

p=1

L
= | X[lp RA+ LBIX| . R) Y Wy — Wy,
L
<VL|X|p RO+ LA X[l R) D 100 — 04,

where the last passage follows from Cauchy-Schwarz inequality. By combining (28), (29) and @)
the result immediately follows.

B.6 Proof of Lemma4.3|

Let g(t) = f(z + t(y — x)). Then
1
F(9) — f() = g(1) — g(0) = / J (t)dt
0
- / (Vi +ty — ),y — z) dt
1
= (Vi(2).y—z) + / (VI +t(y — ) — V() y — ) dt

1
< <Vf<x>,y—x>+/0 Ctly — o) dt
= (Vf(@)y—a)+ 5 o=yl
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B.7 Proof of the fact that {6} - , is a Cauchy Sequence

Let us fix any ¢ > 0. We need to show that there exists » > 0 such that for every i,5 > r,
|16; — 6;]| < e. The case i = j is trivial, so we assume w.l.o.g. that ¢ < j. Then, the following chain
of inequalities hold

L . 12
10— 0ull = | > |w? - wil|
=1
L .
<> |wi-wi|
=1
L j—1
< Z Wt —wy |, triangle inequality
=1 s=1
L j—1
=> > 0lIVw, ®0.)]
=1 s=1
L j—1
<SS nlXlellfs - y|\2HHW I, by &
=1 s=1 p;él
L o j—1
<D X e L5 N s Y (- na0) || £ -yl by @D
=1 s=1
. r L o j—i—1
= (1= nao)”? Dl X[y 15" N As Y (1—nao)s/2!|f2—y!!2]
Li=1 s=0

r L
. - —+/1
= (1= na0)"* [nl X L5571 5257 R \/1& 172 - szl

r L
. 1
= (= moa)? | 201X 15 PR

1—ul™t
D .

where we have set u := /1 — nag. Asu € (0, ), the last term is upper bounded by

, 9 Lo
(1 - nag)¥/? [ao X || 155 ZA#AHL /2~ yHQ] :

Note that (1—nag)"/? < - (1- nap)"/? and thus there exists a sufficiently large 7 such that ||6; — 6;]] <
€. This shows that {Gk} w—o 1s a Cauchy sequence, and hence convergent to some 0. By continuity,
D(0,) = P(limg— o0 ) = limg—00 P(0;) = 0, and thus 6, is a global minimizer. The rate of
convergence is

L
. 2 I
16— 6. = i [0 = 0]} < (1= ao)*? [a 10 1557 SN N 42 - ylb} ~
=1

O

C Proofs for LeCun’s Initialization

Before presenting the proof of the convergence result under LeCun’s initialization in Appendix
let us state two helpful lemmas. The first lemma bounds the output of the network at initialization
using standard Gaussian concentration and it is proved in Appendix

Lemma C.1 Let o be 1-Lipschitz, and consider LeCun’s initialization scheme:
[Wl]ij NN(O, 1/’!11,1), Vie [L],i S [mfl],j S [nl]
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Fix some t > 0. Assume that \/n; >t for any | € [L — 1]. Then,
X
7l <2 ke (), G

with probability at least 1 — Le=t"/2.

Recall the definition of A\g:

AF = Omin (0(XWY)) . (32)
The second lemma identifies sufficient conditions on n; so that Ar is bounded away from zero. The
proof is similar to that of Theorem 3.2 of [31]] (see Section 6.8 in their appendix), and we provide it

in Appendix [C.2]

Lemma C.2 Let |o(x)| < |z| for every x € R. Define Fy = o(XW) with X € RN*4 W ¢ RI*n1,
and W;; ~ N (0,¢?) forall i € [d], j € [ni1]. Define also

G* = EwNN(O,CQHd) [U(Xw)U(XW)T] s )\* = Amin (G*> .

Then, for
> \/442 Inmax (1,2v6 || X3 d/2¢20. )
and
20| X |2 dt? (t2 2+ 1n(N/2))
ny > max | N, )
s
we have

O min (Fl) Z V n1>\*/4 (33)

with probability at least 1 — 2e=t"/2.

C.1 Proof of LemmalC.1]

It is straightforward to show the following inequality.

Lemma C.3 Let |o(x)| < |x| for every x € R. Let [Wj);; NN(O - )for everyl € [L],i €

Yny_a

[ni—1],7 € [r]. Then, for every | € [L] we have E HFlH% <R ||Fl_1||§

np_1

Proof:
n
E[|Fil} = Elo(Fa W)l < BIIFa Wil = Btr (AW B ) = B Rl

where the first inequality follows from our assumption on o, and the last equality follows from the
fact that W, W' = 300, (Wh).; (W) and E(W).; (W) = =T, _, forevery j € [ny]. O

ni—1

Proof of Lemma In the following, we write subG(£2) to denote a sub-gaussian random variable
with mean zero and variance proxy £2. It is well-known that if Z ~ subG (&) then for every t > 0

we have P(|Z] > t) < Zexp(—%).
We prove by induction on ! € [L] that, if \/n, > ¢ for every p € [l — 1], then it holds w.p.
>1—1le /2 over (Wp)L_, that

(R

1F1] 7 < WQZA [V +1].

Let us check the case [ = 1 first. We have
IE (W)l = 1P (WD)l | < [F1(W1) = Fu (W)l
= [lo(XW1) — o (XW7)|l
< || XWy — XW/{||» o is 1-Lipschitz
< ”XHF HWl - WII”F
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2
It follows that || F || p — E || Fy[|  ~ subG ( “Xd‘F ) By Gaussian concentration inequality, we have

w.p. atleast 1 — e~t*/2,

X
1Bl <E|E ], + Eleg

Vd
X
- @ IX 0 + |\/gFt Lemmal[C3|
||XHF
+
7 [vni+1].

v

Thus the hypothesis holds for [ = 1. Now suppose it holds for [ — 1, that is, we have w.p.
— (1= 1)e™"/2 over (W), 2},
1Fale < oo [

Vd

Conditioned on (Wp)lp;l17 we note that || Fj||  is Lipschitz w.r.t. T; because

VWDl = IEW e | < IFa e W0 = W

and thus ||Fi||  — E || Fj||  ~ subG (M) By Gaussian concentration inequality, we have w.p.
>1—e /2 over W,
[Fi-1ll
Flr <E|F —"t.
Il < B + L

Thus the above events hold w.p. at least 1 — le~**/2 over (W)L

p=1- in which case we get

Fi_
1Bl < B[R, + ztley

V-1
Fi_
< L iyl + Ltleg LemmalCl
VALl AVALZES
X +1 . .
” HFQZ > Vo + ] Vi induction assump.
Vd n—1
< ||XHF2171 [m+t] /rl—l >t
Vd
Thus, the hypothesis also holds for {. (]

C.2 Proof of Lemmal[C.2]
Let A € RN*™ be a random matrix defined as A.; = o(XW,;) Lyw,, )<t V7 € [na]. Then,

Amin (FLFY) = Amin [ D o (XW) o (XW5)" | > Ain (AAT) .
j=1

Thus, by using our assumption on o,
2
M (454%) = 14512 = o KW Ve s < IXIZNIWIZ w1 _<e < IXI3 a2 =

Let G = Eyupno,c1,) [0(Xw)o(Xw)” Ly <t] - Applying Matrix Chernoff bound (Theorem
i to the sum of random p.s.d. matrices, AAT = Z , we obtain that for every € € [0, 1)

e

—e Amin(EAAT) /R
(1- 6)1‘5}

P(Anin (447) < (1= )i (BAAT) ) < N [
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Substituting E[AA”] = n,G and R = || X||2 dt2 and € = 1/2 gives

_ 11 Amin(G)/ R 71 Ami (G)
i < ~ < 1/2 < _ M min \&7) .
]P’()\mm (AA ) < 11 Amin (G) /2) <N [\/56 } < exp ( 0] HgdtQ +In N

Thus, as long as n; is large enough, in particular,

10| X |12 dt? <t2/2 + 1n(N/2))
ny 2 o (G) ;
we have Apin (AAT) > nyAmin (G) /2 w.p. at least 1 — 2e=t°/2,
The idea now is to lower bound Api, (G) in terms of Ayin (G)
IG = Gully = [E [o(Xw)o (Xw)" Ly <] —E [o(Xw)o(Xw)"]],
<E ||a(Xw)a(Xw)T Lyl <t — cr(Xw)cr(Xw)TH2 Jensen inequality
= E [[o(Xw)o(Xw)" Tjuy >,

= E[llo(Xw)} Ljuy_>¢]

< ||X||§]E [||w||§ ]l‘|w”w>t} assump. on o
2 4

< 1X13 y/Ellwl2] B (ol > 0 Cauchy-Schwarz
d

< |x|?Vd E[Zwﬂ P(|wll,, >t) Cauchy-Schwarz
i=1

= [IX[5 dV3¢* /P (]|, > 1) Esnnonle!] =3

< ||X||§ 3233 P (Jwy] > t) union bound

t2
< IXI3 Voo (-4 w1 ~ subG((?)
<\./2 by assumpion on ¢

This implies that Ayin (G) > Amin (Gx) — A\/2 = A, /2. Plugging this into the above statement
yields for every

20 |1 X |12 dt? (t2/2 + 1n(N/2))
e ’

ny >

it holds w.p. at least 1 — 2e~*"/2 that

Amin (F1FY) = Amin (AAT)
> 11 Amin (G) /2
> 11 (Amin (G) — As/2)/2
> niA /4.

Lastly, since n1 > N we get omin (F1) = \/Amin (F1FT) > \/n1A. /4. O

C.3 Formal statement and proof for LeCun’s Initialization

Theorem C.4 Let the activation function satisfy Assumption 2.2}  Fix t > 0, to >
max {17 \/4d1 In max (1, 2V6d HX||§ AII) }, and denote by c a large enough constant depend-

ing only on the parameters vy, [3 of the activation function. Let the widths of the neural network satisfy
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the following conditions:

1
\/nl—lz (1+100> (W+t)a VZ€{27,L}, (34)
2 2 (,2
G ctpd [ X1]; (to HHN) 2L X3 ( (VAL + 1) |1 X vl 2
1= s Wy )\* ) d)\g \/a F
(35)
Let us consider LeCun’s initialization:
Wiy ~N(0,1/m—1), V1€ [L],i€ [m-1],j € [rl.
Let the learning rate satisfy
2¢L (VAL + 1) |1X] -
n<((ﬁ»mnuwﬁ»mw0,7“¢dmegD : (36)

Then, the training loss vanishes and the network parameters converge to a global minimizer 0, at a
geometric rate as

nide "
B(0)) < <1 772; ) (), 37)
k/2
nniAs e I1X] (VnL + 1) IX]|
[0k — 0]l < <1 - 2(1:L ) 2 Lmi ’ Vd £+ Ylz), (38)

with probability at least 1 — 3Le~t"/2 — 2¢~13/2,
Before presenting the proof of Theorem[C.4] let us explain how to derive (I2) from the main paper.

How to derive (12) from Theorem|[C.4} For the convenience of the reader, we recall that in the
discussion of Section [3.2]from the main paper, in order to get (T2), the following standard setting
has been considered: (i) N > d, (ii) the training samples lie on the sphere of radius V/d, (iii) ny, is a
constant, and (iv) the target labels satisfy ||y;|| = O(1) for all i € [N]. It follows from (i) and (ii) that
| X]2 < || X% = Nd < N2. Thus we have that

\/4d—1 In max (1,2\/@”)(”3 /\:1> =0 <,/d—1 1n(NA;1)> . (39)

This implies that

ct3d||X |3 (3 + n N) X105 (N
= —= [ log — . 4
X @) " og . (40)
Furthermore, from (iii) and (iv) we have that
28 XI5 (WD |y Y (NP20 an
dA? Vd r A2 '

By combining (0) and @), the scaling (12) follows from the condition (33).

Proof of Theorem @ From known results on random Gaussian matrices, we have, w.p. >
2
1—2e /2

(woll, < Vi Vd+t ym

vd T Vd
ni +4/no +t
gl < YRR <o
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where the last inequality in each line follows from n; > d and from (34). From def. (3), we get

- 2 8\/
A1:31+||W1|| 3[
(42)
Ay = 1+ w3]l,)
Similarly, for any [ € {3,...,L}, we have, wp. >1— 2et*/2,
N TR —t _ N t
LSMSNSNSMSQ- (43)
101 N Vi1

Furthermore, by Lemma|(C.1|and[C.2] we have, w.p. > 1 — Le=t"/2 — 2¢7%0/2,
AF = Omin (Flo) > V nl)\*/47 (44)

X
V3800, < 24 (i 4 o)) %F Y, (45)

as long as the width of the first layer satisfies the following condition from Lemma[C.2}
ct2d | X |2 (tg +In N) )

X (46)

for a suitable constant c. From (@4)), we get a lower bound on the LHS of ()); and from @2}, (43) and
(@3) we get an upper bound on the RHS of (@). Thus in order to satisfy the initial condition ), it
suffices to have (46) and

X
w2 28 0 /2 (ol ). @)

which together leads to condition (33).

ny > max (N,

To satisfy the initial condition (3)), it suffices to have in addition to @) that A\p > 2{|.X||, , which is
2
fulfilled for ny > M , which is however satisfied by (33) already.

As aresult, the initial conditions ([@)-(3)) are satisfied and we can apply Theorem Let us now bound
the quantities g, Qo and @1 defined in (6). Note that \p = opmin ( (XWP) Ho XWYP) HF <
[ X[l [|[W?P]], - Then,
N1\ c 2 711
per < @0 < 27| X[l (48)
and
c 2 711 L M1
Qo <2 X[ — + 27 X[ p (1+ X ) v/20(60)
2¢n, (VL +1) || X]|
< = max(l, X3 max (1, N Y by ).

It is easy to see that the upper bound of )y dominates that of «g. Thus to satisfy the learning rate
condition from Theorem [3.2] it suffices to set 1 to be smaller than the inverse of the upper bound on
Qo. which leads to condition (36).

From the lower bound of « in (@8) and (7)), we immediately get the convergence of the loss as stated
in (37). Similarly, one can compute the quantity (); defined in (8) to get the convergence of the
parameters as stated in (38). O

D Proofs for Lower Bound on )\,

D.1 Background on Hermite Expansions

et ,w(x)) denote the set of all functions f : R — R such that
Let L2(R d h f all functions f : R — R such th
/ A (z)w(z)dr < oco.
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The normalized probabilist’s hermite polynomials are given by
1 2,9 d” 2
— = (_1\re® /2 % —x%/2
hy(x) Ve (=D)"e T € .
—22/2

The functions {h,(z)},-, form an orthonormal basis of L? (R, VT ) which is a Hilbert space

with the inner product

00 e—m2/2
(o1,092) = / o1(x)oa(x) dx.

PSS V2T
. . —22/2 . .
Thus, every function ¢ in L? (R, £ VoL ) can be represented as (a.k.a. Hermite expansion):

2) = pe(0)he (@), (49)
r=0

where (i, (o) is the r-th Hermite coefficient given by

00 e—v?/2
i) = [ ot ) =

oo 2T

Let ||| be defined as ||o||> = (o, o) . Then, the convergence of the series in ([@9) is understood in the
sense that

2

o) = 3 r(o)h (£) = 3 mrlo)hy(w)| =0

.2
Note o € L2< , e\/QT:Z)) if and only if (o, 0) = > o0, p%(0) < oo.

lim
n—oo

= lim EINN(O 1)

n—o0

Lemma D.1 Consider a Hilbert space H equipped with an inner product {-,-) : H x H — R. Let
||| be norm induced by the inner product, i.e. || f|| = \/{f, f). Let {fn},{gn} be two sequences in
H such that imy, o || fr. — fl| = limp—00 [|gn — gl| = 0. Then (f, g) = lim, 00 ([, gn) -

Proof:
[(fr9) = (Frrgn)| < {f5 9 = gn)l + [ = frs gn)]
< f1Hlg = gnll +11f = fall lgall
<fIHlg = gall + 11f = full (lgn = gll + llglD)-
Taking the limit on both sides yields the result. |

Lemma D.2 Let z,y € R be such that ||z||, = ||y||, = 1. Then, for every j, k > 0,

EunAr(010) [hj(<wa$>)hk(<w7?‘/>)} = {(()x,y)J j;: '

Proof: Let s,t € R be given finite variables. Then,

Eexp (s {w,z) + t {(w,y)) = HEexp (w;(sx; + ty;))

Hﬂ<mﬁmw

(s + 1% + 2st <x7y>>
= exp 5 .
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Thus, it follows that
52 t?
Bexp (s () = 5 ) e (1 w) = ) =exp (s (). (50)
Let L%(R?) be the space of functions f : R? — R with bounded gaussian measure, i.e.

Euwmn(0,15) Lf (w)?] < c0.

This is a Hilbert space w.r.t. the inner product (f, g) = E[fg] and its induced norm || f|| = \/{f, f)-
Let the functions f, g : R? — R be defined as

s2

)= exp (stwea) = 5 ) gtw) = (1) - 5 ).

Then the LHS of (30) becomes (f, g) . Let {fn},—; ,{gn} -, be two sequence of functions defined
as

n

n §J 1k
Fa(w) = ;Ohj«w,x»ﬁ, gnw) = 3 (0,0

k=0
One can easily check that f, g are in L2(R%), and so are f,,’s and g,,’s. Moreover,

nlggo ||fn - .f”2 = nhﬁngo EwNN(O,]Id)|fn(w) - f(w)|2

s? = s
= lim E,n0,1) |€xp (su - ) - hj(u)—F=
n—00 ©.1) 2 JXZ(:) 7 \/ﬁ

where the last equality follows from the Hermite expansion of the function u +— exp(su — s2/2),
which is given by

o (- 3) - Sni 2

Similarly, lim,,_, ||gn — ¢||* = 0. By applying Lemma and taking the Mclaurin series of the
RHS of (30), we obtain

L (w a)hie((w,9)) 0 = @)
E- : sTt = =gt Vs, teR.
j,%::o ViTk! Z 7!

Equating the coefficients on both sides gives the desired result. ([

Jj=0

D.2 Formal statement and proof of (16)

LemmaD.3 Let X = [z1,...,2n5]7 € RN where ||z;|, = V/d for all i € [N]. Assume that
o € L2(R,e~*"/2/\/21). Let G, be defined as in (T3). Then,

oo

N%(U) (X*r)(X*r)T

G.o=y Fr

r=0

“__»

Here, “=" is understood in the sense of uniform convergence, that is, for every € > 0, there exists a
sufficiently large ro > 0 such that

(G*)ij - (Sr)ij

where Sy = S0 _ HE@) (k) (xeky T

<e€ Vi,j€[N], Vr>r,
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This result is also stated in Lemma H.2 of [31] for ReLU and softplus activation functions. As a fully
rigorous proof is missing in [31]], we provide it below.

Proof of Lemma|D.3| Let Z; = x;/ |||, for i € [N]. From the definition of G, we have

(Gi)ij = Ewnno10/a) [o({w, ) o ((w, z;))]

= Bonviosp (0o (0.2,)) —
- Z pir(0) s (0) B (0,10) [Por ((@, Z2)) Ps (0, 25))] (%)

r,s=0
- Z'u’“ (T3, 75) T Lemmal|D.2|

where () is justified below. Note that (Z;,Z;)" = 4+ (z; ® ... ® 2;,2; ® ... ® x;) . Thus,

2
r\O *7 *7
G =Y B (o (xy T
r=0

To justify step (), we can use the similar argument as in the proof of Lemma Indeed, consider
the same Hilbert space L?(IR?) as defined there. Let f, g : R? — R be defined as

f(w) =o((w,:)),  g(w) = o((w,z;)).
and the sequence {f,,},{gn} defined as

fn Zﬂr ID 1_7>)7 gn(w) = Z,uS(O')hs«wvjj»'
It is easy to see that f,g,{fn},{gn} € L2(R?). Moreover, ||fnff||2 =

E.no lo(z) = X0 g (@) (2)]> = 0as n — oo. Similarly, [g, —g* — 0
n — co. Thus applying Lemma|D.1]leads us to ().

o

S

D.3 Proof of Lemma[3.4

Define K = X*” and note that, for ¢ € [IV], the i-th row of K is given by the r-th Kronecker power
of x;, namely, K;. = x?r =, ® - ®@x; € RY . Letz = (21,...,2n) € RY be such that
lz|l2 = 1. Then,

T3 = ZZQIIK 13+ 3 (2K, 2K

i#]
= Zz?nxin%r + " zizwi )" (51
i=1 i#j

=d + ZZiZj<Ii,$j>T.
i#£]

Furthermore, we have that

> zizilwi )| <3 Lzl |z ez

i#] i#]

2
< (max;%; [{zi, ;)] (Z |zz|>

< N (maxizj [(zq, 25)])"

(52)
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where in the last step we have used Cauchy-Schwarz inequality and that ||z||> = 1. By combining

(31) and (52)), we obtain that

0'2 (K) > d" — N(maxi;gj |<Jii,$]‘>|)r . (53)

min

Let us now provide a bound on max;; |(x;, z;)|. Fix any u € R? such that ||u||2 = v/d, and recall
that, by hypothesis, ||z;||4, < ¢1, where ¢; is a constant that does not depend on d. Then, for all
t>0,

P <|<xi,u>| > t\/&) < 9e~ it (54)

where C'; is a constant that does not depend on d. As z; and z; are independent for ¢ # j and
lz;ll2 = V/d, we deduce that

P (|(w,25)| > 1Vd) < 207, (55)
By doing a union bound, we have that
P (max#j (s, ;)| > t\/g) < 2NZ%e OF (56)
which, combined with (33), yields
P (ofmn(K) > - NtTdT/Q) < ONZe~ Ot (57)
. 3d7/2 1r .
Thus, by taking t = ( N ) , the proof is complete. |

D.4 Proof of Theorem 3.3

First, we show that, if o is not a linear function and |o(z)| < |z| for x € R, then p, (o) > 0 for
arbitrarily large 7.

Lemma D.4 Assume that o is not a linear function, and that |o(x)| < |z| for every x € R. Then,
sup {r | (o) > 0} = 0. (58)
Proof: It suffices to show that o cannot be represented by any polynomial of finite degree. Suppose,

by contradiction, that o(z) = >, a;x', where a,, # 0 and n > 2. As ¢(0) = 0, we have that
ag = 0. Thus,

|o(2)]

lim = lim ’an:c"71+...+a1|
= lim |z"" jane™ ! 4.+ ar
T—00 |x|n71
. - a
= lim |x|n1an—|—...+ ! ‘
T—00 zn—1
= 00.
This contradicts the fact that [2&) g bounded, and it concludes the proof. |

||

At this point, we are ready to prove Theorem [3.3]

Proof of Theorem[3.3} As o is not linear and |o'(z)| < || for every z € R, by Lemma[D.4] we have
that sup {r | u,(o) > 0} = co. Thus, there there exists an integer » > 10k such that p,.(0) # 0.
Thus, Lemma [3.4]implies that, for N < d",

Ao (X)) = 02 (X°7) 2 4,

with probability at least

/T

_ -2 _ 4/5k
1 — 2NZ2e 24N >1—2N2e— N

)
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where in the last step we use that N < d* and r > 10k.
Furthermore, by Lemma there exists ' > r such that

HG* _ ST’”F < MT(O-) )\min ((X*r)(X*r)T) —. §

2d" 2
Note that Apin(Sr) > Amin(Sr) > €. Thus by Weyl’s inequality, we get
R {()
)\* = )\min * Z )\min r’ 5 a )
(Go) 2 Min (Sy) = 5 = 5 2 Hi2
which completes the proof. (]

D.5 Improvement of Lemma[3.4|for r € {2,3,4}

The goal of this section is to prove the following result.

Lemma D.5 Let X € RN*? be a matrix whose rows are i.i.d. random vectors uniformly distributed

on the sphere of radius \/d. Fix an integer v > 2. Then, there exists ¢; € (0,1) such that, for
d < N < ¢1d?, we have

P (omin (X™7) = d'72/2) 21 = 2Ne™ """ — (14 3log N)e V¥ (59)
for some constant cy > 0.

Let us emphasize that the constants ¢, ca > 0 do not depend on N and d, but they can depend on the
integer . Note that the probability in the RHS of (39) tends to 1 as long as N is O(d?). Thus, this
result improves upon Lemman 3.4|for r € {2,3,4}. The price to pay is a stronger assumption on X.

In fact, Lemmarequlres that the rows of X are uniformly distributed on the sphere of radius v/d,
while Lemma [3.4] only requires that they are sub-Gaussian. Recall that the sub-Gaussian norm of a

vector uniformly distributed on the sphere of radius v/d is a constant (independent of d), see Theorem
3.4.6 in [42]. Thus, the requirement on X of Lemma|[D.3]is strictly stronger than that of Lemma [3.4]

Recall that, given a random variable Y € R, its sub-exponential norm is defined as

|Y|lg, = inf{C >0 : E[¥V/°] <2}. (60)
Furthermore, for a centered random vector z € R<, its sub-exponential norm is defined as
[zll,, = sup [z, 9)ll,, - (61)
llyll,=1

We start by stating two intermediate results that will be useful for the proof.

Lemma D.6 Consider an r-indexed matrix A = (a;, iT)gl =1 such that a;, ... ;, = 0 whenever

.....

ij =iy for some j # k. Let x = (x1,...,xq) be a random vector in R? uniformly distributed on the
unit sphere, and define
Z=> ai]]=, (62)
icldr  j=1
Then,
E [ecd\ZIZ“} <2, (63)

where C' is a numerical constant.

If z is uniformly distributed on the unit sphere, then it satisfies the logarithmic Sobolev inequality
with constant 2/d, see Corollary 1.1 in [15]]. Thus, Lemma-follows from Theorem 1.14 in [9],
where 02 = 1/d (see (1.18) in [9]]) and the function f is a homogeneous tetrahedral polynomial of
degree r.

The second intermediate lemma is stated below and it follows from Theorem 5.1 of [1]] (this is also
basically a restatement of Lemma F.2 of [37]).
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Lemma D.7 Let ui,us,...,un be independent sub-exponential random vectors with v =
max;e(n] | willy,. Let max = max;e(ny [|uil|2 and define

1/2
By =  sup Z(ziui, ZjUuj) ) (64)
z: HZH2:1 i#j
Then,
P (BIQV > max(B2,nmaxB,nilax/4)) < (14 3log N)e_u\/ﬁ, (65)
where
B = CoypV'N, (66)

and Cy is a numerical constant.

At this point, we are ready to provide the proof of Lemma[D.5]
Proof of Lemma @ The first step is to drop columns from X*". Define K = X*" and note
that, for ¢ € [INV], the i-th row of K is given by the r-th Kronecker power of z;, namely, " =

TR @z, € RY . Letz; = (i1, .., q) and index the columns of K as (j1, jo, - . - ,jr),
with j, € [d] for all p € [r], so that the element of K in row ¢ and column (j1, jo, . . ., j.) is given by

H;:1 z;,j,- Consider the matrix K obtained by keeping only the columns of K where the indices
1,72, ... jr are all different. Note that K has H;;é(d —4) > N columns as N < ¢;d?. Thus, as
K = X*" is obtained by dropping columns from K, then

O'min(K) Z Omin (K) . (67)

The second step is to bound the sub-exponential norm of the rows of K. Let k, be the row of K
corresponding to the data point x = (x1,...,x4). Let us emphasize that, from now till the end of
the proof, we denote by x; € R the i-th element of the vector z (and not the i-th training sample,
which is a Vector in R%). Let A be the set of r-indexed matrices A = (ai,,...;, ) ; _; such
that Zze [@r % = = 1and a;,, . ; = 0 whenever i; = i for some j # k. Then, by definition of
sub- exponentlal norm of a vector, we have that

Il = sup ZaszzJ : (68)

i€ld]” Y1
Note that, for all A € A,

" (a)

> ‘%H% < > ad Y H 2 ® gz, (69)

i€ld]” ie[d]” ie[d]” j=1

N

where in (a) we use Cauchy-Schwarz inequality and in (b) we use that 3 ;- a? =1and |z|2 =
V/d. Consequently,

1-2/r 2/r
||kI||7l)1 = Sup Z a; Hmz7 Z a; Hxij
A ieayr se[@r =1 .
1
o (70)
< d"/?71 sup ai | acl
Y1

Note that Lemma D.6|considers a vector « uniformly distributed on the unit sphere, while in (70) z is
uniformly distributed on the sphere with radius v/d. Thus, (63)) can be re-written as
2/r

E |exp | C Z aHm <2. (71)

icldr  j=1
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By definition (60) of sub-exponential norm, we obtain that

2/r
- 1
sup ||| Y ai [] i, ==, (72)
AcA iy G=1 ¢
P1
which, combined with (70), leads to
Egllgy < Crd™/?71, (73)

where C7 is a numerical constant.

The third step is to bound the Euclidean norm of the rows of K. Recall that k,, is obtained by keeping

the elements of x®” where the indices i1, 49, . . . , 4, are all different. As for the upper bound, we have
that
7 r||2 T
lkall3 < [Ja7||, = . (74)
As for the lower bound, we have that
B 5 r—1 )
kallz > (|27 |1, = | & = T](d = 3) | (maxiera |2:)™", (75)
§=0

. . . ~ . -1 . . ..
since x®" contains d" entries, k, contains H;:o (d — 7) entries and each of these entries is at most

(max;e(q) |2;])". Note that Hg;é (d — j) is a polynomial in d of degree r whose leading coefficient

is 1. Thus,
r—1

[[(@—i)=d —Coa,
§=0
for some constant C5 that depends only on r. Consequently,

7. T r— 2r
[ksll3 > d" — Cod™™" (maxeq |2i)” (76)
As x is uniform on the sphere of radius \/a, we can write
x=vd—2L_, (77)
gll2

where g = (g1,...,94) ~ N(0, I4). Then,

2r
) (max;epq |gi])”" - (78)

Recall that the norm of a vector is a 1-Lipschitz function of the components of the vector. Thus,

2
P(lllgll> —Elllgll2] > ) < 2¢772. (79)
Furthermore,
\/§I‘ d+1
Ellgl] = Yo, 0
(5)
where I" denotes Euler’s gamma function. By Gautschi’s inequality, we have the following upper and
lower bounds on E[||g||2]:
V=1 <Elgls] < VA+1. (81)
As a result,
2r
d 1
VA L) 2 gemana, (2)
llgll2 2

for some constant Cs5 > 0 depending on 7 (but not on d). Consequently, with probability at least
1 — 2e= %34 we have that

r 3
(max;eq) \l‘i\)g <3 (max;e(q \gi|)2T- (83)
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An application of Theorem 5.8 of [10] gives that, for any ¢ > 0,

2
P(max;e(q) 9i — Elmax;cg g;] > t) < e " /2. (84)
Furthermore, we have that, for any a > 0,
d
aBlmasic 1 < B [enmaricin #] =  [maxegq €] < 3OE[°F] = deo”2,  (85)
i=1

where the first passage follows from Jensen’s inequality. By taking o = /2 log d, we obtain

E[max;c(g gi] < v/2logd, (86)
which, combined with (84), leads to
1
d\* .
P (maxq;e[d] gi > (3@) ) < 26*04511/ ’ 87)

where C5 is the constant in (76) and Cy > 0 is a constant that depends only on r (and not on d).
Since the Gaussian distribution is symmetric, we also have that

1
d \? ot
P (maxie[d] ‘gz‘ Z (36’2> ) S 4e Caud . (88)

By combining (76)), (83) and (88), we obtain that, with probability at least 1 — 9¢—Csd"/"

k|2 > = 8
kzllz = (89)

Hence, by doing a union bound on the rows of K, we have that, with probability at least 1 —
2Ne_c5dl/7',

. w2 d
minien || Kills 2 5 (90)
max;e(n) [|K: 13 < d”, 1)

where K. ;. denotes the i-th row of K.

The last step is to apply the results of Lemma Letz = (21,...,2n) € RY besuch that || z2 = 1.
Then,

N
IKT2)3 = 2K l5 + > (2K, 2 K5e), 92)
i=1 i#j
which immediately implies that
Ohin (K) > minge vy | Kill3 - BY, (93)
with
1/2
By = sup (2K, 2 K)| %94)

z: HZH2:1 i#j
By applying Lemma[D.7]and using the bounds (73) and (@1), we have that

P (B%’v > max(Ced™ 2N, Ced" VN, dr/4)) < (1+3log N)e 11V, 95)

for some constant Cg depending on 7. Recall that N < c¢;d? for a sufficiently small constant c;
(which can depend on 7). Thus, we have that

P (B} > d"/4) < (1+3log N)e VN, (96)

By combining (93), and (96)), we obtain that
P (a;m(f() > d’“/4) >1-2Ne %4 _ (14 3log N)e "'VN, 97)
which, together with (67)), gives the desired result. |
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