
We thank all reviewers for the comments and the following response will be reflected in the final version.1

Complexity (Rev1234): In solving equilibrium equation (2b), (3) for fixed-point state and (8) for gradient, we iterate2

the equations and the iterations converge when the well-posedness condition is satisfied as we mention in line 1993

and 238. At training and test time, the equilibrium equations are iterated to convergence until the 2-norm difference4

between the LHS and RHS is less then some threshold epsilon. The convergence is guaranteed by well-posedness5

theory introduced in Section 4.1. In fact, the convergence is exponential both in theory and in practice. In terms of the6

projection step after a gradient update, projection onto ‖W‖∞ ≤ κ < 1 ball can be decomposed over rows with each7

row wi given by a projection onto ‖wi‖1 ≤ κ, for which a straight forward O(n log n) algorithm exists using bisection.8

Duchi et al. (2008) has proposed an O(n) algorithm for projection onto L1 ball as we mention in line 246. We will9

offer a subsection with detailed complexity analysis and comparison with other methods in the final version.10

FDGNN and GIN not in node classification (Rev1): FDGNN and GIN have mainly discussed their applications in11

graph classification. Thus we focus on the comparison in the graph classification task. More experiments will be added.12

More experiments with Geom-GCN and larger graphs (Rev2): Please find the experimental results in Figure 1 and13

Table 1. Global methods like Geom-GCN employ additional embedding approaches to capture global information.14

However, convolutional-GNN-based methods struggle to capture very long range dependency due to the finite iterations15

they take. Geom-GCN is no exception. We also add a graph classification comparison on a larger and less noisy graph16

dataset COLLAB where IGNN continues to achieve the best performance.17
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Figure 1: Micro-F1 (%) performance w.r.t.
the length of the chains. Same experimen-
tal setting as that for Figure 1. We use 10
layers for GCNII and DropEdge.

IGNN not well motivated to find equilibrium (Rev3): We strongly dis-18

agree with the criticism from reviewer 3. IGNN and other recurrent GNN19

models including the first GNNs (Gori et al., 2005) are all based on the20

idea of seeking the equilibrium in the graph. Such idea further roots from21

traditional graph algorithms and metrics including eigenvector central-22

ity (Newman, 2010) PageRank (Page et al., 1999), collaborate filtering23

as bipartite graph (Zhou, 2018) and more. IGNN will suffer from ‘over-24

smoothness’. Missing discussion. (Rev3): We do not explore the direction25

because our work builds on recurrent GNN which is fundamentally differ-26

ent from convolutional GNN that suffers from ‘over-smoothness’ problem.27

IGNN obviously does not suffer from ‘over-smoothness’ as reflected from28

experiments where the ‘infinitely deep’ IGNN even outperforms a variety29

of models on a range of tasks. Additional experiments show that latest deep30

models (DropEdge [3] and GCNII [4]) proposed by the reviewer that solve ‘over-smoothness’ cannot match the IGNN’s31

performance in capturing long range dependency (See Figure 1). IGNN is weak with 1 linear layer plus phi (Rev3):32

The proposed architecture is not weak —- it covers a 100-layer GCN as a special case and many other models. The33

concise notation allows to formulate those in a way that looks like it has only one layer. See Section 4 and Appendix C34

for details. PF eigenvalue (line 172) not defined. (Rev3): Please find the definition from line 115 in the Preliminary.35

State-of-the-art baseline [5] perform better than IGNN (Rev3): Wrong. Due the space limit, we report performance36

on 4 graph classification tasks in Table 1 and IGNN outperforms [5] on all of them. We will add the results to the37

final version. Does IGNN indeed converge to equilibrium? Why is projected GD needed? (Rev3): Please find the38

well-posedness theorems in Section 4.1 which prove convergence of IGNNs that satisfy the well-posedness condition.39

And indeed it converges in practice. The projection step detailed in Section 4.2 is the essential procedure to enforce40

such well-posedness condition. We strongly encourage Rev3 to read Section 4 for better understanding.41

Table 1: Graph classification accuracy (%). Results are averaged (and
std are computed) on the outer 10 folds.

Data sets PTC COX2 PROTEINS COLLAB

WL 58.0± 2.5 83.2± 0.2 74.7± 0.5 78.9± 1.9
GIN 63.7± 8.2 − 75.9± 3.8 80.1± 1.9

GNTK[5] 67.9± 6.9 84.4± 3.7 75.6± 4.2 83.6± 1.0

IGNN 70.1± 5.6 86.9± 4.0 77.7± 3.4 84.6± 2.0

Underperforming NC1 and DBLP (Rev4):42

For NCI1, IGNN ranks the second best43

among the all GNN variants, which is very44

competitive too. We believe the reason is,45

though GNNs learn high quality embedding,46

they can still underperform in distinguishing47

non-isomorphic (sub-)graphs compared with48

graph kernels (WL as the best performer).49

For DBLP, IGNN achieves the second best50

performance (after DMGI) using only 2 relationships out of 3 to be consistent with our settings on the other two datasets.51

Additional details (Rev4): Though we use undirected graphs in the experiments, IGNN is not restricted to undirected52

graphs. For graph classification, we use mean pooling. Since SSE mainly discusses on learning node embedding53

and node classification in their paper, we would like to focus the comparison with SSE on node classification. Edge54

features are highly interesting direction to look at for IGNN. We will try to extend IGNN for it. For 2-layer GCN (15),55

W̃X = [0,W2; 0, 0][X2;X1] = [W2X1; 0]. We will update the draft accordingly for better illustration.56


