
Supplementary material

A Kronecker Product

For two matrices A and B, the Kronecker product of A ∈ Rm×n and B ∈ Rp×q is denoted as
A⊗B ∈ Rpm×qn:

A⊗B =

A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB

 .

By definition of the Kronecker product, (A ⊗ B)> = A> ⊗ B>. Additionally, the following
equality holds assuming compatible shapes, (A> ⊗W)vec(X) = vec(WXA) (Schacke, 2018),
where vec(X) ∈ Rmn denotes the vectorization of matrix X ∈ Rm×n by stacking the columns
of X into a single column vector of dimension mn. Suppose xi ∈ Rm is the i-th column of X ,
vec(X) = [x>1 , . . . , x

>
n]>.

Leveraging the definition of Kronecker product and vectorization, the following equality holds,
(A>⊗W)vec(X) = vec(WXA) (Schacke, 2018). Intuitively, this equality reshapes WXA which
is linear in X into a more explicit form (A> ⊗W)vec(X) which is linear in vec(X), a flattened
form of X . Through the transformation, we place WXA into the form of Mx. Thus, we can employ
Lemma B.1 to obtain the well-posedness conditions.

B Well-posedness of IGNN: Illustration, Remarks, and Proof

B.1 A Scalar Example

Consider the following scalar equilibrium equation (9),

x = ReLU(wxa+ u), (9)

where x,w, a, u ∈ R and ReLU(·) = max(·, 0) is the rectified linear unit. If we set w = a = 1, the
equation (9) will have no solutions for any u > 0. See Figure 3 for the example with u = 1.

Figure 3: Plots of x (red plot) and ReLU(wxa + u) = ReLU(x + 1) with w = a = u = 1 (blue
plot). The two plots will intersect at some point whenever a solution exists. However in this case the
two plots have no intersections, meaning that there is no solution to equation (9).

B.2 Detailed Explanation for Remarks

Remark B.1. For some non-negative adjacency matrix A, and arbitrary real parameter matrix W ,
λpf(|A> ⊗W |) = λpf(A

> ⊗ |W |) = λpf(A)λpf(|W |).

The final equality of the above remark follows from the fact that, the spectrum of the Kronecker
product of matrix A and B satisfies that ∆(A⊗B) = {µλ : µ ∈ ∆(A), λ ∈ ∆(B)}, where ∆(A)
represents the spectrum of matrix A. And that, the left and right eigenvalues of a matrix are the same.

13

We find Theorem 4.1 to be quite general. We show that many familiar and interesting results following
from it.
Remark B.2 (4.1, Contraction sufficient condition for well-posedness (Gori et al., 2005)). For any
component-wise non-expansive (CONE) φ, if A(X) = φ(WXA+B) is a contraction of X (w.r.t.
vectorized norms), then (W,A) is well-posed for φ.

The above remark follows from the fact that the contraction condition for any CONE activation map
is equivalent to ‖A> ⊗W‖ < 1, which implies λpf(|A> ⊗W |) < 1.
Remark B.3 (4.2, Well-posedness for directed acyclic graph). For a directed acyclic graph (DAG),
let A be its adjacency matrix. For any real squared W , we always have that (W,A) is well-posed for
any CONE activation map. Note that in this caseA(X) = φ(WXA+B) needs not be a contraction
of X .

Note that for DAG, A is nilpotent (λpf(A) = 0) and thus λpf(|A> ⊗W |) = λpf(A)λpf(|W |) = 0.
Remark B.4 (4.3, Sufficient well-posedness condition for k-regular graph (Gallicchio and Micheli,
2019)). For a k-regular graph, let A be its adjacency matrix. (W,A) is well-posed for any CONE
activation map if k‖W‖2 < 1.

It follows from that for a k-regular graph, the PF eigenvalue of the adjacency matrix λpf(A) = k.
And λpf(A)λpf(|W |) ≤ k‖W‖2 < 1 guarantees well-posedness.
Remark B.5 (4.4). For some non-negative adjacency matrix A, and arbitrary real parameter matrix
W , ‖A> ⊗W‖∞ = ‖A>‖∞‖W‖∞ = ‖A‖1‖W‖∞.

The above remark follows from the facts that, ‖ · ‖∞ (resp. ‖ · ‖1) gives maximum row (resp. column)
sum of the absolute values of a given matrix. And that, for some real matricesA andB, ‖A⊗B‖∞ =

maxi,j

(∑
k,l |AikBjl|

)
= maxi,j (

∑
k |Aik|

∑
l |Bjl|) = maxi (

∑
k |Aik|) maxj (

∑
l |Bjl|) =

‖A‖∞‖B‖∞.

B.3 An Important Lemma for Well-posedness

Lemma B.1. If φ is component-wise non-negative (CONE), M is some squared matrix and v is any
real vector of compatible shape, the equation x = φ(Mx+ v) has a unique solution if λpf(|M |) < 1.
And the solution can be obtained by iterating the equation. Hence, x = limt→∞ xt.

xt+1 = φ(Mxt + v), x0 = 0, t = 0, 1, . . . (10)

Proof. For existence, since φ is component-wise and non-expansive, we have that for t ≥ 1 and the
sequence x0, x1, x2, . . . generated from iteration (10),

|xt+1 − xt| = |φ(Mxt + v)− φ(Mxt−1 + v)| ≤ |M(xt − xt−1)| ≤ |M ||xt − xt−1|.

For n > m ≥ 1, the following inequality follows,

|xn − xm| ≤ |M |m
n−m−1∑
i=0

|M |i|x1 − x0| ≤ |M |m
∞∑
i=0

|M |i|x1 − x0| ≤ |M |mw, (11)

where

w :=

∞∑
i=0

|M |i|x1 − x0| = (I − |M |)−1|x1 − x0|.

Because λpf(|M |) < 1, the inverse of I − |M | exists. It also follows that limt→∞ |M |t = 0.
From inequality (11), we show that the sequence x0, x1, x2, . . . is a Cauchy sequence because
0 ≤ limm→∞ |xn − xm| ≤ limm→∞ |M |mw = 0. And thus the sequence converges to some
solution of x = φ(Mx+ v).

For uniqueness, suppose both xa and xb satisfy x = φ(Mx+ v), then the following inequality holds,

0 ≤ |xa − xb| ≤ |M ||xa − xb| ≤ lim
t→∞

|M |t|xa − xb| = 0.

It follows that xa = xb and there exists unique solution to x = φ(Mx+ v).

14

B.4 Proof of Theorem 4.2

Proof. Similarly, we can rewrite equation (5) into the following “vectorized” form.

vec(X) = φ

(
N∑
i=1

(A>i ⊗Wi)vec(X) +

N∑
i=1

vec(Bi)

)
It follows from a similar scheme as the proof of Lemma B.1 that if λpf

(∑N
i=1 |A>i ⊗Wi|

)
< 1, the

above equation has unique solution which can be obtained by iterating the equation.

B.5 Proof of Theorem 4.3

Proof. The proof is based on the following formula for PF eigenvalue (Berman and Plemmons, 1994).

λpf(|W |) = inf
S
‖SWS−1‖∞ : S = diag(s), s > 0 (12)

In the case where |W | has simple PF eigenvalue, problem (12) admits positive optimal scaling factor
s > 0, a PF eigenvector of |W |. And we can design the equivalent IGNN (f̃Θ,W

′, A, b̃Ω, φ) with
‖W ′‖∞ < λpf(A)−1 by rescaling:

f̃Θ(·) = fΘ(S−1 ·), W ′ = SWS−1, b̃Ω(·) = SbΩ(·),
where S = diag(s).

C Examples of IGNN

In this section we introduce some examples of the variation of IGNN.

Multi-layer Setup. It is straight forward to extend IGNN to a multi-layer setup with several sets of
W and Ω parameters for each layer. For conciseness, we use the ordinary graph setting. By treating
the fixed-point solution Xl−1 of the (l − 1)-th layer as the input Ul to the l-th layer of equilibrium
equation, a multi-layer formulation of IGNN with a total of L layers is created.

Ŷ = fΘ(XL),

XL = φL(WLXLA+ bΩL
(XL−1)),

...
Xl = φl(WlXlA+ bΩl

(Xl−1)),

...
X1 = φ1(W1X1A+ bΩ1(U)),

(13)

where φ1, . . . , φL are activation functions. We usually assume that CONE property holds on them.
And (Wl,Ωl) is the set of weights for the l-th layer. Thus the multi-layer formulation (13) with
parameters (Wl, l = 1, . . . , L, A) is well-posed (i.e. gives unique prediction Ŷ for any input U)
when (Wl, A) is well-posed for φl for any layer l. This is true since the well-posedness for a layer
guarantees valid input for the next layer. Since all layers are well-posed, the formulation will give
unique final output for any input of compatible shape. FDGNN (Gallicchio and Micheli, 2019) uses a
similar multi-layer formulation for graph classification but is only partially trained in practive.

In terms of the affine input function, bΩ(U) = ΩUA is a good choice. We show that the multi-layer
IGNN with such bΩ is equivalent to a single layer IGNN (2) with higher dimensions, the same A
matrix and fΘ function. The new activation map is given by φ = (φL, . . . , φl, . . . , φ1). Although φ
is written in a block-wise form, they still operate on entry level and remain non-expansive. Thus the
well-posedness results still hold. The new W̃ and b̃Ω write,

W̃ =


WL ΩL

.
. . . Ω2

W1

 , b̃Ω(U) =


0
...
0

Ω1

UA. (14)

15

Special Cases. Many existing GNN formulations including convolutional and recurrent GNNs can
be treated as special cases of IGNN. We start by showing that GCN (Kipf and Welling, 2016), a
typical example of convolutional GNNs, is indeed an IGNN. We give the matrix representation of a
2-layer GCN as follows,

Ŷ = W2X1A,

X1 = φ1(W1UA),
(15)

where A is the renormalized adjacency matrix; W1 and W2 are weight parameters; φ1 is a CONE
activation map for the first layer; and X1 is the hidden representation of first layer. We show that
GCN (15) is in fact a special case of IGNN by constructing an equivalent single layer IGNN (2) with
the same A matrix.

Ŷ = f̃Θ(X̃), (16a)

X̃ = φ(W̃ X̃A+ b̃Ω(U)). (16b)

The new state X̃ = (X2, X1). The new activation map is given by φ = (φ1, I), where I represents an
identity map. And the new W̃ , b̃Ω, and f̃Θ(X̃) are,

W̃ =

(
0 W2

0 0

)
, b̃Ω(U) =

(
0
W1

)
UA, f̃Θ(X̃) =

(
I
0

)
X̃. (17)

This reformulation of single layer IGNN also extends to multi-layer GCNs with more than 2 layers
as well as other convolutional GNNs. Note that the new W̃ for the equivalent single layer IGNN is
always strictly upper triangular. Thus |W̃ | has only 0 eigenvalue. As a result, λpf(|A> ⊗W |) =
λpf(A)λpf(|W |) = 0 and the sufficient condition for well-posedness is always satisfied.

Another interesting special case is SSE (Dai et al., 2018), an example of recurrent GNN, that is given
by

Ŷ = W2X,

X = φ(W1rW2XA+W1uUA+W ′1uU),
(18)

which can be easily converted into a single layer IGNN with the same A matrix and CONE activation
φ. The new W̃ , b̃Ω, and f̃Θ(X) are,

W̃ = W1rW2, b̃Ω(U) = W1uUA+W ′1uU, f̃Θ(X) = W2X. (19)

D Implicit differentiation for IGNN

To compute gradient of L from the training problem (6) w.r.t. a scalar q ∈W ∪ Ω, we can use chain
rule. It follows that,

∇qL =

〈
∂X

∂q
,∇XL

〉
, (20)

where ∇XL can be easily calculated through modern autograd frameworks. But ∂X∂q is non-trivial to
obtain because X is only implicitly defined. Fortunately, we can still leverage chain rule in this case
by carefully taking the “implicitness” into account.

To avoid taking derivatives of matrices by matrices, we again introduce the vectorized representation
vec(·) of matrices. The vectorization of a matrix X ∈ Rm×n, denoted vec(X), is obtained by
stacking the columns of X into one single column vector of dimension mn. For simplicity, we use
~X := vec(X) and ∇ ~XL = vec(∇XL) as a short hand notation of vectorization.

∂ ~X

∂q
=
∂ ~X

∂ ~Z
· ∂

~Z

∂q
, (21)

where Z = WXA + bΩ(U) (~Z = (A> ⊗ W) ~X +
−−−→
bΩ(U)) assuming fixed X . Unlike X in

equation (2b), Z is not implicitly defined and should only be considered as a closed evaluation of
Z = WXA+ bΩ(U) assuming X doesn’t change depending on Z. In some sense, the Z in equation

16

(21) doesn’t equal to WXA + bΩ(U). However, the closeness property will greatly simplify the
evaluation of ∂ ~Z∂q . It turns out that we can still employ chain rule in this case to calculate ∂ ~X

∂ ~Z
for such

Z by taking the change of X before hand into account as follows,

∂ ~X

∂ ~Z
=
∂φ(~Z)

∂ ~Z
+
∂φ
(

(A> ⊗W) ~X +
−−−→
bΩ(U)

)
∂ ~X

· ∂
~X

∂ ~Z
, (22)

where the second term accounts for the change in X that was ignored in Z. Another way to view
this calculation is to right multiply ∂ ~Z

∂q on both sides of equation (22), which gives the chain rule

evaluation of ∂ ~X∂q that takes the gradient flowing back to X into account:

∂ ~X

∂q
=
∂φ
(

(A> ⊗W) ~X +
−−−→
bΩ(U)

)
∂q

+
∂φ
(

(A> ⊗W) ~X +
−−−→
bΩ(U)

)
∂ ~X

· ∂
~X

∂q
.

The equation (22) can be simplified as follows,

∂ ~X

∂ ~Z
= (I − J)−1D̃, (23)

J =
∂φ
(

(A> ⊗W) ~X +
−−−→
bΩ(U)

)
∂ ~X

= D̃(A> ⊗W),

where D̃ = ∂φ(~Z)

∂ ~Z
= diag

(
φ′
(

(A> ⊗W) ~X +
−−−→
bΩ(U)

))
. Now we can rewrite equation (20) as

∇qL =

〈
∂ ~Z

∂q
,∇~ZL

〉
, (24)

∇~ZL =

(
∂ ~X

∂ ~Z

)>
∇ ~XL, (25)

which is equivalent to equation (7). ∇~ZL should be interpreted as the direction of steepest change
of L for Z = WXA + bΩ(U) assuming fixed X . Plugging equation (22) to (25), we arrive at the
following equilibrium equation (equivalent to equation (8))

∇~ZL = D̃(A⊗W>)∇~ZL+ D̃ ∇ ~XL,
∇ZL = D �

(
W>∇ZL A> +∇XL

)
, (26)

where D = φ′(WXA + bΩ(U)). Interestingly, ∇ZL turns out to be given as a solution of an
equilibrium equation particularly similar to equation (2b) in the IGNN “forward” pass. In fact, we
can see element-wise multiplication with D as a CONE “activation map” φ̃(·) = D � (·). And it
follows from Section 4.1 that if λpf(W)λpf(A) < 1, then λpf(W

>)λpf(A
>) < 1 and ∇ZL can be

uniquely determined by iterating the above equation (26). Although the proof will be more involved,
if (W,A) is well-posed for any CONE activation map, we can conclude that equilibrium equation
(26) is also well-posed for φ̃ where φ can be any CONE activation map.

Finally, by plugging the evaluated∇ZL into equation (24), we get the desired gradients. Note that it
is also possible to obtain gradient ∇UL by setting the q in the above calculation to be q ∈ U . This is
valid because we have no restrictions on selection of q other than that it is not X , which is assumed
fixed. Following the chain rule, we can give the closed form formula for ∇WL, ∇ωL, ω ∈ Ω, and
∇uL, u ∈ U .

∇WL = ∇ZL A>X>, ∇ωL =

〈
∂bΩ(U)

∂ω
,∇ZL

〉
, ∇uL =

〈
∂bΩ(U)

∂u
,∇ZL

〉
.

17

Heterogeneous Network Setting We start by giving the training problem for heterogeneous net-
works similar to training problem (6) for ordinary graphs,

min
Θ,W,Ω

L(Y, fΘ(X))

s.t. X = φ

(
N∑
i=1

(WiXAi + bΩi
(Ui))

)
, (27)

N∑
i=1

‖Ai‖1‖Wi‖∞ ≤ κ.

The training problem can be solved again using projected gradient descent method where the gradient
of Wi and Ωi for i ∈ R can be obtained with implicit differentiation. Using chain rule, we write the
gradient of a scalar q ∈

⋃
i(Wi ∪ Ωi),

∇qL =

〈
∂
(∑N

i=1(WiXAi + bΩi(Ui))
)

∂q
,∇ZL

〉
, (28)

where Z =
∑N
i=1(WiXAi + bΩi

(Ui)) and∇ZL in equation (28) should be interpreted as “direction
of fastest change of L for Z assuming fixed X”. Similar to the derivation in ordinary graphs setting,
such notion of∇ZL enables convenient calculation of∇qL. And the vectorized gradient w.r.t. Z can
be expressed as a function of the vectorized gradient w.r.t. X:

∇~ZL =

(
∂ ~X

∂ ~Z

)>
∇ ~XL (29)

∂ ~X

∂ ~Z
=
∂φ(~Z)

∂ ~Z
+
∂φ
(∑N

i=1

(
(A>i ⊗Wi) ~X +

−−−−→
bΩi(Ui)

))
∂ ~X

· ∂
~X

∂ ~Z

= (I − J)−1D̃ (30)

J =
∂φ
(∑N

i=1

(
(A>i ⊗Wi) ~X +

−−−−→
bΩi

(Ui)
))

∂ ~X
= D̃

N∑
i=1

(A>i ⊗Wi),

where D̃ = ∂φ(~Z)

∂ ~Z
= diag

(
φ′
(∑N

i=1

(
(A>i ⊗Wi) ~X +

−−−−→
bΩi

(Ui)
)))

. Plugging the expression (30)
into (29), we arrive at the following equilibrium equation for∇~ZL and ∇ZL,

∇~ZL = D̃

N∑
i=1

(Ai ⊗W>i)∇~ZL+ D̃ ∇ ~XL

∇ZL = D �

(
N∑
i=1

(W>i ∇ZLA>i) +∇XL

)
, (31)

where D = φ′
(∑N

i=1(WiXAi + bΩi(Ui))
)

. Not surprisingly, the equilibrium equation (31) again
appears to be similar to the equation (3) in the IGNN “forward” pass. We can also view element-wise
multiplication with D as a CONE “activation map” φ̃(·) = D � (·). And it follows from Section
4.1 that if λpf(|A> ⊗W |) < 1, then λpf(|A⊗W>|) < 1 and∇ZL can be uniquely determined by
iterating the above equation (26). It also holds that if (Wi, Ai, i ∈ {1, . . . , N}) is well-posed for any
CONE activation φ, then we can conclude that equilibrium equation (31) is also well-posed for φ̃
where φ can be any CONE activation map.

Finally, by plugging the evaluated ∇ZL into equation (28), we get the desired gradients. It is also
possible to obtain gradient ∇UiL by setting the q in the above calculation to be q ∈

⋃
i Ui. This is

valid because we have no restrictions on selection of q other than that it is not X , which is assumed
fixed.

18

Figure 4: Chains with l = 9. Traditional
methods fail even with more iterations.

2 3 4 5 6 7 8 9 10
Number of Layers T

50

60

70

80

90

100

M
icr

o-
F1

 (%
)

SGC (Wu et al., 2019a)
GCN (Kipf and Welling, 2016)
GAT (Veli kovi et al., 2017)
SSE (Dai et al., 2018)
IGNN

After the gradient step, the projection to the tractable condition mentioned in Section 4.2 can be done
approximately by assigning κi for each relation i ∈ R and projecting Wi onto Ci = {‖Wi‖∞ ≤
κi/‖A‖1}. Ensuring

∑
i κi = κ < 1 will guarantee that the PF condition for heterogeneous network

is satisfied. However, empirically, setting κi < 1 with
∑
i κi > 1 in some cases is enough for the

convergence property to hold for the equilibrium equations.

E More on Experiments

In this section, we give detailed information about the experiments we conduct.

For preprocessing, we apply the renormalization trick consistent with GCN (Kipf and Welling, 2016)
on the adjacent matrix of all data sets.

In terms of hyperparameters, unless otherwise specified, for IGNN, we use affine transformation
bΩ(U) = ΩUA; linear output function fΘ(X) = ΘX; ReLU activation φ(·) = max(·, 0); learning
rate 0.01; dropout with parameter 0.5 before the output function; and κ = 0.95. We tune layers,
hidden nodes, and κ through grid search. The hyperparameters for other baselines are consistent with
that reported in their papers. Results with identical experimental settings are reused from previous
works.

E.1 Synthetic Chains Data Set

We construct a synthetic node classification task to test the capability of models of learning to gather
information from distant nodes. We consider the chains directed from one end to the other end with
length l (i.e. l + 1 nodes in the chain). For simplicity, we consider binary classification task with 2
types of chains. Information about the type is only encoded as 1/0 in first dimension of the feature
(100d) on the starting end of the chain. The labels are provided as one-hot vectors (2d). In the data
set we choose chain length l = 9 and 20 chains for each class with a total of 400 nodes. The training
set consists of 20 data points randomly picked from these nodes in the total 40 chains. Respectively,
the validation set and test set have 100 and 200 nodes.

A single-layer IGNN is implemented with 16 hidden unites and weight decay of parameter 5 ×
10−4 for all chains data sets with different l. Four representative baselines are chosen: Stochastic
Steady-state Embedding (SSE) (Dai et al., 2018), Graph Convolutional Network (GCN) (Kipf and
Welling, 2016), Simple Graph Convolution (SGC) (Wu et al., 2019a) and Graph Attention Network
(GAT) (Veličković et al., 2017). They all use the same hidden units and weight decay as IGNN. For
(GAT), 8 head attention is used. For (SSE), we use the embedding directly as output and fix-point
iteration nh = 8, as suggested (Dai et al., 2018).

As mentioned in Section 5, convolutional GNNs with T = 2 cannot capture the dependency with a
range larger than 2-hops. To see how convolutional GNNs capture the long-range dependency as T
grows, we give an illustration of Micro-F1 verses T for the selected baselines in Figure 4. From the
experiment, we find that convolutional GNNs cannot capture the long-range dependency given larger
T . This might be a result of the limited number of training nodes in this chain task. As T grows,
convolutional GNNs experience an explosion of number of parameters to train. Thus the training
data becomes insufficient for these models as the number of parameters increases.

19

Table 4: The overview of data set statistics in node classification tasks.

Data set # Nodes # Edges # Labels Label type Graph type
Amazon (transductive) 334,863 925,872 58 Product type Co-purchasing
PPI (inductive) 56,944 818,716 121 Bio-states Protein

E.2 Node Classification

For node classification task, we consider the applications under both transductive (Amazon) (Yang
and Leskovec, 2015) and inductive (PPI) (Hamilton et al., 2017) settings. Transducive setting is
where the model has access to the feature vectors of all nodes during training, while inductive setting
is where the graphs for testing remain completely unobserved during training. The statistics of the
data sets can be found in Table 4.

For experiments on Amazon, we construct a one-layer IGNN with 128 hidden units. No weight decay
is utilized. The hyper parameters of baselines are consistent with (Yang and Leskovec, 2015; Dai
et al., 2018).

For experiments on PPI, a five-layer IGNN model is applied for this multi-label classification tasks
with hidden units as [1024, 512, 512, 256, 121] and κ = 0.98 for each layer. In addition, four MLPs
are applied between the first four consecutive IGNN layers. We use the identity output function.
Neither weight decay nor dropout is employed. We keep the experimental settings of baselines
consistent with (Veličković et al., 2017; Dai et al., 2018; Kipf and Welling, 2016; Hamilton et al.,
2017).

E.3 Graph Classification

For graph classification, 5 bioinformatics data sets are employed with information given in Table 2.
We compare IGNN with a comprehensive set of baselines, including a variety of GNNs: Deep
Graph Convolutional Neural Network (DGCNN) (Zhang et al., 2018), Diffusion-Convolutional
Neural Networks (DCNN) (Atwood and Towsley, 2016), Fast and Deep Graph Neural Network
(FDGNN) (Gallicchio and Micheli, 2019), GCN (Kipf and Welling, 2016) and Graph Isomorphism
Network (GIN) (Xu et al., 2018), and a number of state-of-the-art graph kernels: Graphlet Kernel
(GK) (Shervashidze et al., 2009), Random-walk Kernel (RW) (Gärtner et al., 2003), Propagation
Kernel (PK) (Neumann et al., 2016) and Weisfeiler-Lehman Kernel (WL) (Shervashidze et al., 2011).
We reuse the results from literatures (Xu et al., 2018; Gallicchio and Micheli, 2019) since the same
experimental settings are maintained.

As of IGNN, a three-layer IGNN is constructed for comparison with the hidden units of each layer as
32 and κ = 0.98 for all layers. We use an MLP as the output function. Besides, batch normalization
is applied on each hidden layer. Neither weight decay nor dropout is utilized.

E.4 Heterogeneous Networks

For heterogeneous networks, three data sets are chosen (ACM, IMDB, and DBLP). Consistent with
previous works (Park et al., 2019), we use the the publicly available ACM data set (Wang et al., 2019),
preprocessed DBLP and IMDB data sets (Park et al., 2019). For ACM and DBLP data sets, the nodes
are papers and the aim is to classify the papers into three classes (Database, Wireless Communication,
Data Mining), and four classes (DM, AI, CV, NLP)4, respectively. For IMDB data set, the nodes
are movies and we aim to classify these movies into three classes (Action, Comedy, Drama). The
detailed information of data sets can be referred to Table 5. The preprocessing procedure and splitting
method on three data sets keep consistent with (Park et al., 2019).

State-of-the-art baselines are selected for comparison with IGNN, including no-attribute network
embedding: DeepWalk (Perozzi et al., 2014), attributed network embedding: GCN, GAT and
DGI (Veličković et al., 2018), and attributed multiplex network embedding: mGCN (Ma et al., 2019),
HAN (Wang et al., 2019) and DMGI (Park et al., 2019). Given the same experimental settings, we
reuse the results of baselines from (Park et al., 2019).

4DM: KDD,WSDM,ICDM, AI: ICML,AAAI,IJCAI, CV: CVPR, NLP: ACL,NAACL,EMNLP

20

Table 5: Statistics of the data sets for heterogeneous graphs (Park et al., 2019). The node attributes
are bag-of-words of text. Num. labeled data denotes the number of nodes involved during training.

Relations
(A-B) Num. A Num. B Num. A-B Relation type Num.

relations
Num.

node attributes
Num.

labeled data
Num.

classes

ACM Paper-Author 3,025 5,835 9,744 P-A-P 29,281 1,830
(Paper abstract) 600 3Paper-Subject 3,025 56 3,025 P-S-P 2,210,761

IMDB Movie-Actor 3,550 4,441 10,650 M-A-M 66,428 1,007
(Movie plot) 300 3Movie-Director 3,550 1,726 3,550 M-D-M 13,788

DBLP
Paper-Author 7,907 1,960 14,238 P-A-P 144,783 2,000

(Paper abstract) 80 4Paper-Paper 7,907 7,907 10,522 P-P-P 90,145
Author-Term 1,960 1,975 57,269 P-A-T-A-P 57,137,515

A one-layer IGNN with hidden units as 64 is implemented on all data sets. Similar to DMGI, a
weight decay of parameter 0.001 is used. For ACM, κ = (0.55, 0.55) is used for Paper-Author and
Paper-Subject relations. For IMDB, we select κ = (0.5, 0.5) for Movie-Actor and Movie-Director
relations. For DBLP, κ = (0.7, 0.4) is employed for Paper-Author and Paper-Paper relations. As
mentioned in Appendix D, in practice, the convergence property can still hold when

∑
i κi > 1.

E.5 Over-smoothness

Convolutional GNNs has suffered from over-smoothness when the model gets deep. An interesting
question to ask is whether IGNN suffers from the same issue and experience performance degradation
in capturing long-range dependency with its "infinitively deep" GNN design.

In an effort to answer this question, we compared IGNN against two latest convolutional GNN
models that solve the over-smoothness issue, GCNII Chen et al. (2020) and DropEdge Rong et al.
(2020). We use the same experimental setting as the Chains experiment in section 5. Both GCNII
and DropEdge are implemented with 10-layer and is compared with IGNN in capturing long-range
dependency. The result is reported in Figure 5. We observe that IGNN consistently outperforms both
GCNII and DropEdge as the chains gets longer. The empirical result suggest little suffering from
over-smoothness for recurrent GNNs.

Figure 5: Micro-F1 (%) performance with
respect to the length of the chains.

0 2 4 6 8 10
Long Range Dependency

50

60

70

80

90

100

M
icr

o-
F1

 (%
)

DropEdge (Rong et al., 2020)
GCNII (Chen et al., 2020)
IGNN

21

