
Neural Architecture Generator Optimization
(Appendix)

Binxin Ru
Machine Learning Research Group

University of Oxford, UK
robin@robots.ox.ac.uk

Pedro M. Esperança
Huawei Noah’s Ark Lab

London, UK
pedro.esperanca@huawei.com

Fabio M. Carlucci
Huawei Noah’s Ark Lab

London, UK
fabio.maria.carlucci@huawei.com

A Comparison of our hierarchical search space (HNAG) with previous ones

A.1 Quantifying the expressiveness of the hierarchical search space (HNAG) against
DARTS search space

The total number of possible graphs in our hierarchical search space is larger than

T =

(
NO∑
n=3

2φ(n)

)
︸ ︷︷ ︸

Operation-level

·

(
NC∑
n=1

2φ(n)

)
︸ ︷︷ ︸

Cell-level

·

(
NS∑
n=3

2φ(n) ·Mn

)
︸ ︷︷ ︸

Stage-level

where φ(n) = n(n + 1)/2 is the number of possible DAGs with n nodes; NO, NC , NS are the
maximum numbers of nodes in the operation-, cell- and stage-level graphs, respectively; and M is
the number of possible operations in the operation-level graph.

NOTE: This calculation does not include all variations due to the different merging possibilities for
each node (addition and concatenation).

Concretely, for the setting implemented (NO = NC = NS = 10, M = 5) we have THNAG ≈
4.58× 1056. For comparison, the DARTS search space has TDARTS = 814 ≈ 4.40× 1012.

A.2 Example architectures from HNAG search space

We show six sample architectures drawn from our proposed HNAG search space in Figure 1. It’s
evident that our hierarchical graph-based search space can generate a large variety of architectures.
Note Figure 1 (a) corresponds to the optimal architecture proposed in [1], which is also contained in
our search space.

A.3 Illustrating difference from RNAG [1]

While RNAG is flat with 3 sequentially connected graphs, HNAG is hierarchical with 3 levels and
each node in the higher level corresponds to a graph in the level below. Thus, the middle graph in
RNAG does not correspond to the middle-level graph in HNAG. Our 3-level hierarchical structure
is not only a generalisation which enables the creation of more complex architectures, but it also
allows the creation of local clusters of operation units, which result in more memory efficient models
or architectures with fewer nodes as shown in the main paper and Figure 1. Moreover, the HNAG

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

conv layer
classifier
input node
output node
operation node

(a) θtop = (3, 2, 0.8),θmid = (1, 1.0),
θbottom = (32, 4, 0.75) (RNAG default)

(b) θtop = (8, 0.4, 5),θmid = (1, 0.7),
θbottom = (4, 2, 0.4)

(c) θtop = (6, 0.4, 4),θmid = (1, 0.4),
θbottom = (6, 4, 0.4)

(d) θtop = (6, 0.4, 4),θmid = (1, 0.4),
θbottom = (6, 5, 0.9)

(e) θtop = (7, 0.9, 2),θmid = (5, 0.8),
θbottom = (6, 3, 0.6)

(f) θtop = (4, 0.5, 2),θmid = (5, 0.6),
θbottom = (6, 4, 0.4)

Figure 1: Our proposed HNAG search space contains a large diversity of architectures

top level provides diverse connections across different stages, leading to more flexible information
flow than RNAG. Finally, nodes in RNAG only process features of fixed channel size and resolution
within a stage while those in HNAG receive features with different channel sizes and resolution. To
summarize, our proposed search space HNAG is significantly different from RNAG.

B Neural Architecture Generator Optimisation (NAGO) Algorithm

BO is a technique for optimizing a black-box function which is usually noisy and expensive to
evaluate. The two key components of BO are: a statistical surrogate model which models the
unknown objective; and an acquisition function which is optimized to recommend the next query
location [2, 3]. Our NAGO algorithm deploys BO to optimise over the low-dimensional continuous
search space of generator hyperparameters. In summary, NAGO trains the surrogate model from

2

Figure 2: Architecture sampled from RNAG. RNAG is flat but our HNAG is hierarchical.

Algorithm 1 Network Architecture Generator Optimization

1: Input: Network generator G, BO surrogate model p(f |Θ, D) and acquisition function α(Θ|D)
2: for t = 1 to T do
3: Recommend {Θj

t}Bj=1 = argmaxαt−1(Θ|D)
4: for j = 1 to B in parallel do
5: Sample an architecture from G(Θj

t) and evaluate its validation performance f jt
6: end for
7: Update D and thus p(f |Θ, D) with {Θj

t , f
j
t }Bj=1

8: end for
9: Obtain the best performing Θ∗ or the Pareto set Θ∗

10: Sample 8 architectures from G(Θ∗), train them to completion and report their test performance.

query data and uses it to build an acquisition function which trades off exploitation and exploration.
At each iteration, NAGO recommends B new generator hyperparameter values by maximizing the
acquisition function and updates the surrogate after evaluating these B points. The full algorithm of
NAGO is presented in Algorithm 1.

C Hyperparameters of BO algorithms in NAGO

For experiments with both BO methods, we only sample 1 architecture to evaluate the performance
of a specific generator. We scale the batch size up to a maximum of 512 to fully utilise the GPU
memory and adjust the initial learning rate via linear extrapolation from 0.025 for a batch size of
96 to 0.1 for a batch size of 512. The other network training set-up follows the complete training
protocol described from line 202 to 208 in Section 4.

C.1 BOHB hyperparameters and set-up

We use the released code of BOHB 1. We perform BOHB for 60 iterations with its hyperparamter
η = 2. All the other BOHB hyperparameters follow the default setting in [4]. We use training budgets
of 100, 200, 400 epochs to evaluate architectures on SPORT8 and 30, 60, 120 epochs on the other
datasets.

C.2 Hyperparameters of MOBO and its heteroscedastic Bayesian Neural Network
Surrogate

MOBO returns the Pareto front of generator hyperparameters for two objectives: validation accuracy
and sample memory. For parallel MOBO, we start with 50 initial data from BOHB queries and search
for 30 iterations with a BO batch size of 8; at each BO iteration, the algorithm recommends 8 new

1Available at https://github.com/automl/HpBandSter

3

https://github.com/automl/HpBandSter

points to be evaluated and updates the surrogate model with these new evaluations.We use a fixed
training budget of 200 epochs to evaluate architectures suggested for SPORT8 and 60 epochs for the
other datasets.

Our Bayesian neural network surrogate is a 3-layer fully connected network with 10 neurons for each
layer and two final outputs: predicted validation accuracy and heteroscedastic noise variance. For
sampling network weights, we perform 5 × |D| SGHMC steps as burn-in, followed by 10 × 100
sampling steps (retaining every 10th sample). We use a total of 100 samples of wf to approximate
the integration in Equation (1) in the main paper. All the other hyperparameters of SGHMC follow
the default setting in [5]. We implemented this surrogate by modifying the code of [5] 2.

D Local Penalisation for Batch Bayesian Optimization

We adopt the hard local penalization method proposed in [6] to collect a batch of new generator
configurations which are then evaluated in parallel. The method sequentially selects a batch of B
new configurations by repeatedly applying a hard local penalizer function on the selected points
(Algorithm 2).

Algorithm 2 Local Penalisation

1: Input: BO surrogate model p(f |Θ, D) and acquisition function α(Θ|D), BO batch size B,
Local penalization function φ(Θ|Θj)

2: Output: The batch of new configurations B = {Θj}Bj=1

3: Θ1 = argmaxα(Θ|D) and B = {Θ1}
4: for j = 2, . . . , B do
5: Θj = argmax

(
α(Θ|D)

∏j−1
i=1 φ(Θ|Θi)

)
6: B ← B ∪Θj

7: end for

The hard penalisation function is defined as:

φ(Θ|Θj) = min

{
L‖Θ−Θj‖

|µ(f |Θ, D)−M |+ σ(f |Θ, D)
, 1

}
where M is the best objective value observed so far, L = maxΘ ‖5µ(f |Θ, D)‖ is the approximated
Lipschitz constant of the objective function, and µ(f |Θ, D) and σ(f |Θ, D) are predictive posterior
mean and standard deviation of the BO surrogate model.

E Search Range of Generator Hyperparameters

For our Hierarchical Neural Architecture Generator (HNAG), the ranges over which the generator
hyperparameters are searched are defined as:

Hyperparameters of the top-level and bottom-level Watts–Strogatz graphs

• The number of nodes in the graph Nt, Nb ∈ [3, 10]

• The number of nearest neighbors to which each node is connected in ring topologyKt,Kt ∈
[2, 5]

• the probability of rewiring each edge Pt, Pb ∈ [0.1, 0.9]

Hyperparameters of the Mid-level Erdős–Rényi graph

• The number of nodes in the graph Nm ∈ [1, 10]

• the probability of edge creation Pm ∈ [0.1, 0.9]

2Available at https://github.com/automl/pybnn

4

https://github.com/automl/pybnn

0

10

20
Small-Image

HNAG

0

10

20 RNAG

50 100 150 200
Memory Consumption (MB)

0

10

20 DARTS

0
10
20

Large-Image
HNAG

0

20
RNAG

100 200 300 400 500 600 700 800
Memory Consumption (MB)

0

10

20 DARTS

Figure 3: Memory consumption histograms of 300 sample architectures from HNAG, RNAG and
DARTS search spaces for small-image 32× 32× 3 and large-image 224× 224× 3 datasets. Our
HNAG search space can generate architectures with a wider range of memory consumption, especially
for the large-image data.

For the Randomly Wired Neural Architecture Generator (RNAG), the hyperparameter ranges are:

Hyperparameters of the Watts–Strogatz graphs in 1st, 2nd and 3rd stages

• The number of nodes in the graph N1, N2, N3 ∈ [10, 40]

• The number of nearest neighbors to which each node is connected in ring topology
K1,K2,K3 ∈ [2, 9]

• the probability of rewiring each edge P1, P2, P3 ∈ [0.1, 0.9]

Note that although HNAG has a smaller range for the number of nodes in each graph N than RNAG
does, it actually can lead to a much larger range of total number of nodes in an architectures ([9, 1000])
than that of RNAG ([30, 120]).

F Memory Consumption Range of Architectures from Different Search
Space

Our hierarchical graph-based search space can generate architectures with a wider range of memory
consumption than those of RNAG and DARTS. We draw 300 sample architectures from the search
spaces of HNAG, RNAG and DARTS and evaluate their memory consumption per image. The
histogram for results on small-image data and large-image data are shown in Figure 3. It is evident
that our proposed search space is much wider than both RNAG and DARTS in terms of the memory
consumption.

G Performance of randomly sampled network generator hyperparameters
during BO search phase

In Figure 4, we evaluate the test performance of 50 randomly sampled network generator hyper-
parameters for CIFAR10. For each generator hyperparameter value, we sample 8 neural network
architectures and train them for 60 epochs following the protocol of the BO search phase: we scale
the batch size up to a maximum of 512 to fully utilise the GPU memory and adjust the initial learning
rate via linear extrapolation from 0.025 for a batch size of 96 to 0.1 for a batch size of 512. The
observations we made on Figure 2 in the main paper also hold for Figure 4.

5

50 100 150

Memory Consumption (MB)

6

8

10

12

14

Te
st
 E
rr
or
 (

%)

100 200 300 400

Train time per epoch (S)

Figure 4: The mean and standard deviation of test error vs. memory consumption and training time
per epoch achieved by 50 random generator hyperparameters for CIFAR10 after training for 60
epoches following BO search phase protocol.

H BOHB results on searching more generator hyperparameters

H.1 Include hyperparameters controlling merge options and node operations

We also perform BOHB on an expanded search space ΘaugV 1 which includes not only the original
space of the three random graph model hyperparameters Θorigin = [θtop,θmid,θbottom] but also
hyperparameters controlling the merge options and node operations θM and θop. Specifically, θM
defines the probability of choosing weighted sum or concatenation when merging multiple inputs at
a node. θM defines the probability of choosing a specific operation among (conv1× 1, conv3× 3,
conv5× 5, pool3× 3 and pool5× 5) for each node in the bottom-level graph. The stage ratio and
channel ratio are still fixed to θS = [0.33, 0.33, 0.33] and θC = [1 : 2 : 4] following [1]. Therefore,
the expanded search space is ΘaugV 1 = [θtop,θmid,θbottom,θM ,θop].

As seen in Table 1, the best validation accuracies achieved by HNAG-AugV1 are lower than that by
HNAG for all the datasets. This result is counter-intuitive as Θorigin ⊂ ΘaugV 1 and thus searching
on Θexpanded should lead to better or at least equal performance as on Θorigin. Yet, this result can
be explained by the follwoing two reasons:

1) the significant increase in optimisation difficulty. The search dimensionality of ΘaugV 1 is almost
twice that of Θorigin, which significantly increases the difficulty of BOHB in finding the global
optimum 3. Thus, given similar search budget, BOHB is more likely to find a hyperparameter near the
global optimum or a better local optimum in the space Θorigin than in the expanded space ΘaugV 1.

2) the marginal gain in expanding the search space. [1] empirically demonstrate that the wiring
pattern in a architecture plays a much more important role than the operation choices. Our result in
Table 1 confirms this observation; namely, after finding the good wiring, changing the operations
only lead to small perturbation on the generator performance. Putting this in the context of generator
optimisation, it means that the wiring hyparameters Θorigin determines the region where the global
optimum locates and the hyperparameters controlling the operation and merge options only perturb
the exact location of the global optimum to a small extent.

Combing the above two factors, we attribute the worse validation performance for HNAG-AugV1V1
to the fact that the increase in optimisation difficulty far outweights the gain in expanding the search
space.

3To optimize a function to within ε distance from the global optimum using random search, the expected
number of iterations required is O(ε−d) [7]

6

Table 1: Validation accuracy (%) and search cost (GPU days) for BOHB results. The accuracy
reported is obtained in the BOHB search setting which uses large batch sizes based on GPU machine
memory and trains the network sample for 400 epochs for SPORT8 and 120 epochs for the other
datasets. The search space of HNAG-AugV1 is ΘaugV 1 = [θtop,θmid,θbottom,θM ,θop] ∈ R15

while that of HNAG is Θorign = [θtop,θmid,θbottom] ∈ R8.
HNAG-AugV1 HNAG

Accuracy Cost Accuracy Cost
CIFAR10 94.7 19.2 95.6 12.8
CIFAR100 74.5 21.3 77.2 10.4
SPORT8 94.0 26.1 95.3 17.6
MIT67 68.8 33.3 71.8 20.0
FLOWERS102 91.0 14.4 93.3 10.6

Table 2: Validation accuracy (%) during search and network training time per epoch (seconds). The
accuracy reported is obtained in the BOHB search setting which uses large batch sizes based on GPU
machine memory and trains the network sample for 400 epochs for SPORT8 and 120 epochs for the
other datasets. The search space of HNAG-AugV2 is Θaugv2 = [θtop,θmid,θbottom,θS ,θC] ∈ R14

while that of HNAG is Θorign = [θtop,θmid,θbottom] ∈ R8.
HNAG-AugV2 HNAG

Accuracy Mean(Max) Time Accuracy Mean(Max) Time
CIFAR10 95.7 99.3(998) 95.6 54.9(246)
CIFAR100 77.5 82.2(711) 77.2 43.0(216)
SPORT8 95.9 20.6(93.6) 95.3 22.8(37.0)
MIT67 72.0 130(1056) 71.8 85.4(291)
FLOWERS102 93.3 58.4(397) 93.3 45.4(105)

H.2 Include hyperparameters controlling stage ratios and channel ratios

We then perform similar experiments like above but instead optimise the hyperparameters controlling
the stage ratios θS and channel ratios θC while keeping θM and θop fixed. The experimental results
are shown in Table 2. While there is a marginal increase in performance, the worst case train time
substantially increases due to extreme stage and channel ratios. So, while the number of architectures
sampled stays the same, the computational cost increases due to more lengthy training. We had
observed this effect during preliminary experiments on CIFAR10 and thus decided to fix θS and θC
to standard values in order to obtain competitive results at a reasonable cost. Nonetheless, even with
such constrains on the search space, our HNAG is still much more expressive than most NAS search
spaces.

I BOHB samples

Here we show the BOHB query results on the generator hyperparameters for the case of CIFAR10.
We use three training budgets in BOHB: 30 (green), 60 (orange) and 120 (blue) epochs. In Figure
5, the top subplot shows the validation error for the three budgets over time. Query data for
different budget are mostly well separated. The bottom subplot shows the spearman rank correlation
coefficients ρspearman ∈ [−1, 1] of the validation errors between different budgets. It’s evident that
the ρspearman between data of 60 epochs and those of 120 epochs are quite high (0.82), indicating
that good hyperparameters found in the budget of 60 epochs will remain good when being evaluated
with 120 epochs. This motivates our to only a fixed budget of 60 epochs for evaluating all the
hyperparameter samples in the multi-objective BO setting.

7

0 20000 40000 60000 80000 100000 120000 140000

wall clock time [s]

5

10

15

20

25

30

lo
ss

Losses for different budgets over time

b=120.000000

b=60.000000

b=30.000000

(a) Validation error for different budgets over time

60.0 120.0

30.0

60.0

spearman = 0.860951
p = 0.000000

n = 42

spearman = 0.524675
p = 0.014609

n = 21

spearman = 0.820855
p = 0.000000

n = 41

Rank correlation of the loss across the budgets

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

(b) Rank correlation of validation errors across budgets

Figure 5: BOHB query data across different budgets for HNAG on CIFAR10

References

[1] S. Xie, A. Kirillov, R. Girshick, and K. He, “Exploring randomly wired neural networks for
image recognition,” arXiv:1904.01569, 2019.

[2] E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning,”
arXiv preprint arXiv:1012.2599, 2010.

[3] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the human out of the
loop: A review of bayesian optimization,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175,
2015.

[4] S. Falkner, A. Klein, and F. Hutter, “BOHB: Robust and efficient hyperparameter optimization at
scale,” in International Conference on Machine Learning (ICML), pp. 1436–1445, 2018.

[5] J. T. Springenberg, A. Klein, S. Falkner, and F. Hutter, “Bayesian optimization with robust
Bayesian neural networks,” in Advances in Neural Information Processing Systems (NIPS),
pp. 4134–4142, 2016.

[6] A. S. Alvi, B. Ru, J. Calliess, S. J. Roberts, and M. A. Osborne, “Asynchronous batch Bayesian
optimisation with improved local penalisation,” arXiv:1901.10452, 2019.

[7] Z. B. Zabinsky, “Random search algorithms,” Wiley encyclopedia of operations research and
management science, 2010.

8

	Comparison of our hierarchical search space (HNAG) with previous ones
	Quantifying the expressiveness of the hierarchical search space (HNAG) against DARTS search space
	Example architectures from HNAG search space
	Illustrating difference from RNAG xie2019exploring

	Neural Architecture Generator Optimisation (NAGO) Algorithm
	Hyperparameters of BO algorithms in NAGO
	BOHB hyperparameters and set-up
	Hyperparameters of MOBO and its heteroscedastic Bayesian Neural Network Surrogate

	Local Penalisation for Batch Bayesian Optimization
	Search Range of Generator Hyperparameters
	Memory Consumption Range of Architectures from Different Search Space
	Performance of randomly sampled network generator hyperparameters during BO search phase
	BOHB results on searching more generator hyperparameters
	Include hyperparameters controlling merge options and node operations
	Include hyperparameters controlling stage ratios and channel ratios

	BOHB samples

