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Abstract

We consider online bandit learning in which at every time step, an algorithm has to
make a decision and then observe only its reward. The goal is to design efficient
(polynomial-time) algorithms that achieve a total reward approximately close to
that of the best fixed decision in hindsight. In this paper, we introduce a new notion
of (λ, µ)-concave functions and present a bandit learning algorithm that achieves
a performance guarantee which is characterized as a function of the concavity
parameters λ and µ. The algorithm is based on the mirror descent algorithm in
which the update directions follow the gradient of the multilinear extensions of the
reward functions. The regret bound induced by our algorithm is Õ(

√
T ) which is

nearly optimal.
We apply our algorithm to auction design, specifically to welfare maximization,
revenue maximization, and no-envy learning in auctions. In welfare maximization,
we show that a version of fictitious play in smooth auctions guarantees a com-
petitive regret bound which is determined by the smooth parameters. In revenue
maximization, we consider the simultaneous second-price auctions with reserve
prices in multi-parameter environments. We give a bandit algorithm which achieves
the total revenue at least 1/2 times that of the best fixed reserve prices in hind-
sight. In no-envy learning, we study the bandit item selection problem where the
player valuation is submodular and provide an efficient 1/2-approximation no-envy
algorithm.

1 Introduction

In online learning, the goal is to design algorithms which are robust in dynamically evolving environ-
ments by applying optimization methods that learn from experience and observations. Characterizing
conditions, or in general discovering regularity properties, under which efficient online learning
algorithms with performance guarantee exist is a major research agenda in online learning. In this
paper, we consider this line of research and present a new regularity condition for the design of
efficient online learning algorithms. Subsequently, we establish the applicability of our approach in
auction design.

General online problem. At each time step t = 1, 2, . . ., an algorithm chooses xt ∈ [0, 1]n. After
the algorithm has committed to its choice, an adversary selects a function f t : [0, 1]n → [0, 1] that
subsequently induces the reward of f t(xt) for the algorithm. In the problem, we are interested in
the bandit setting that at every time t, the algorithm observes only its reward f t(xt). The goal is to
efficiently achieve the total gain approximately close to that obtained by the best decision in hindsight.

We consider the following notion of regret which measures the performance of algorithms. An
algorithm is (r,R(T ))-regret if for arbitrary total number of time steps T and for any sequence of
reward functions f1, . . . , fT ∈ F ,

∑T
t=1 f

t(xt) ≥ r ·maxx∈[0,1]n
∑T
t=1 f

t(x) − R(T ). We also
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say that the algorithm achieves a r-regret bound of R(T ). In general, one seeks algorithms with
(r,R(T ))-regret such that r > 0 is as large as possible (ideally, close to 1) and R(T ) is sublinear as a
function of T , i.e., R(T ) = o(T ). We also call r as the approximation ratio of the algorithm.

We introduce a regularity notion that generalizes the notion of concavity. The new notion, while
simple, is crucial in our framework in order to design efficient online learning algorithms with
performance guarantee.

Definition 1 A function F is (λ, µ)-concave if for every vectors x and x∗,
〈∇F (x),x∗ − x〉 ≥ λF (x∗)− µF (x) (1)

Note that a concave function is (1, 1)-concave. A non-trivial example, shown in the paper, is the
(1, 2)-concavity of the multilinear extension of a monotone submodular function.

1.1 The Main Algorithm

We aim to design a bandit algorithm for the general online problem with emphasis on auctions.
Bandit algorithms have been widely studied in online convex optimization [17] but in the context of
auction design, standard approaches have various limits. The main issues are: (1) the non-concavity
of the (reward) functions, and (2) the intrinsic nature of the bandit setting (only the value f t(xt) is
observed). We overcome these issues by the approach which consists of lifting the search space (of
the solutions) and the reward functions to a higher dimension space and considering the multilinear
extensions of the reward functions in that space. Concretely, we consider a sufficiently dense lattice
L in [0, 1]n such that every point in [0, 1]n can be approximated by a point in L. Then, we lift all
lattice points in L to vertices of a hypercube in a high dimension space. Subsequently, we consider
the multilinear extensions of reward functions f t in that space. This procedure enables several
useful properties, in particular the (·, ·)-concavity, that hold for the multilinear extensions but not
necessarily for the original reward functions. (For example, the multilinear extension of a monotone
submodular function is always (1, 2)-concave but the submodular function is not.) The introduction
of (·, ·)-concavity and the use of multilinear extensions constitute the novel points in our approach
compared to the previous ones. This allows us to bound the regret of our algorithm which is based on
the classic mirror descent with respect to the gradients of the multilinear extensions.

Informal Theorem 1 Let f t : [0, 1]n → [0, 1] be the reward function at time 1 ≤ t ≤ T and let F t
be the multilinear extension of the discretization of f t on a lattice L. Assume that f t’s are L-Lipschitz
and F t’s are (λ, µ)-concave. Then, there exists a bandit algorithm achieving

T∑
t=1

E
[
f t(xt)

]
≥ λ

µ
· max
x∈[0,1]n

T∑
t=1

f t(x)−O
(
max{λ/µ, 1}Ln3/2(log T )3/2(log log T )

√
T
)
.

The formal statement corresponding to the above informal theorem is Theorem 2. By this theorem,
determining the performance guarantee is reduced to computing the concave parameters. Moreover,
the regret bound of Õ(

√
T ) is nearly optimal that has been proved in the context of online convex

optimization (for concave functions, i.e., (1, 1)-concave functions). The approach is convenient to
derive bandit learning algorithms in the context of auction design as shown in the applications.

1.2 Applications to Auction Design

In a general auction design setting, each player i has a valuation (or type) vi and a set of actions Ai
for 1 ≤ i ≤ n. Given an action profile a = (a1, . . . , an) consisting of actions chosen by players,
the auctioneer decides an allocation o(a) and a payment pi(o(a)) for each player i. Note that for
a fixed auction o, the outcome o(a) of the game is completely determined by the action profile a.
Then, the utility of player i with valuation vi, following the quasi-linear utility model, is defined
as ui(o(a); vi) = vi(o(a)) − pi(o(a)). The social welfare of an auction is defined as the total
utility of all participants (the players and the auctioneer): SW(o(a);v) =

∑n
i=1 ui(o(a); vi) +∑n

i=1 pi(a). The total revenue of the auction is REV(o(a),v) =
∑n
i=1 pi(o(a)). When o

is clear in the context, we simply write vi(a), ui(a; vi), pi(a),SW(a;v),REV(a,v) instead of
vi(o(a)), ui(o(a); vi), pi(o(a)),SW(o(a);v),REV(o(a),v), respectively. In the paper, we con-
sider two standard objectives: welfare maximization and revenue maximization. Note that in revenue
maximization, we call players as bidders.
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1.2.1 Fictitious Play in Smooth Auctions

We consider adaptive dynamics in auctions. In the setting, there is an underlying auction o and
there are n players, each player i has a set of actions Ai and a valuation function vi taking values in
[0, 1] (by normalization). In every time step 1 ≤ t ≤ T , each player i selects a strategy which is a
distribution in ∆(Ai) according to some given adaptive dynamic. After all players have committed
their strategies, which result in a strategy profile σt ∈ ∆(A), the auction induces a social welfare
SW(o,σt) := Ea∼σt

[
SW(o(a);v)

]
. In this setting, we study the total welfare achieved by the

given adaptive dynamic comparing to the optimal welfare. This problem can be cast in the online
optimization framework in which at time step t, the player strategy profile corresponds to the decision
of the algorithm and subsequently, the gain of the algorithm is the social welfare induced by the
auction w.r.t the strategy profile.

Smooth auctions is an important class of auctions in welfare maximization. The smoothness notion
has been introduced [32, 28] in order to characterize the efficiency of (Bayes-Nash) equilibria of
auctions. It has been shown that several auctions in widely studied settings are smooth; and many
proof techniques analyzing equilibrium efficiency can be reduced to the smooth argument.

Definition 2 ([32, 28]) For parameters λ, µ ≥ 0, an auction is (λ, µ)-smooth if for every valuation
profile v = (v1, . . . , vn), there exist action distributions D1(v), . . . , Dn(v) over A1, . . . ,An such
that, for every action profile a,

∑n
i=1 Eai∼Di(v)

[
ui(ai,a−i; vi)

]
≥ λ · SW(a;v) − µ · SW(a;v)

where a−i is the action profile similar to a without player i.

It has been proved that if an auction is (λ, µ)-smooth then every Bayes-Nash equilibrium of the
auction has expected welfare at least λ/µ fraction of the optimal auction [28, 32]. Moreover, the
smoothness framework does extend to individually-vanishing-regret dynamics. A sequence of actions
profiles a1,a2, . . . , is an individually-vanishing-regret sequence if for every player i and action a′i,
limT→∞

1
T

∑T
t=1

[
ui(a

′
i,a

t
−i; vi)− ui(at; vi)

]
≤ 0.

However, several interesting dynamics are not guaranteed to have the individually-vanishing-regret
property. In a recent survey, Roughgarden et al. [30] have raised a question whether adaptive dynamics
without the individually-vanishing-regret condition can achieve approximate optimal welfare. Among
others, fictitious play [5] is an interesting, widely-studied dynamic which attracts a significant
attention in the community.

In the paper, we consider a version of fictitious play in smooth auctions, namely Perturbed Discrete
Time Fictitious Play (PDTFP). In general, it is not known whether this dynamic has individually-
vanishing-regret. Despite that fact, using our framework, we prove that given an offline (λ, µ)-smooth
auction, PDTFP dynamic achieves a λ/(1 + µ) fraction of the optimal welfare.

Informal Theorem 2 If the underlying auction o is a (λ, µ)-smooth then the PDTFP dynamic

achieves
(

λ
1+µ , R(T )

)
-regret where R(T ) = O

( √
T

1+µ

)
.

1.2.2 Revenue maximization in Multi-Dimensional Environments

We consider online simultaneous second-price auctions with reserve prices in multi-dimensional
environments. In the setting, there are n bidders and m items to be sold to these bidders. At every
time step t = 1, 2, . . . , T , the auctioneer selects reserve prices rti = (rti1, . . . , r

t
im) for each bidder

i where rtij is the reserve price of item j for bidder i. Each bidder i for 1 ≤ i ≤ n has a (private)
valuation vti : 2[m] → R+ over subsets of items. After the reserve prices have been chosen, every
bidder i picks a bid vector bti where btij is the bid of bidder i on item j for 1 ≤ j ≤ m. Then the
auction for each item 1 ≤ j ≤ m works as follows: (1) remove all bidders i with btij < rtij ; (2)
run the second price auction on the remaining bidders to determine the winner of item j — the
bidder with highest non-removed bid on item j; and (3) charge the winner of item j the price which
is the maximum of rtij and the second highest bid among non-removed bids btij . The objective of
the auctioneer is to achieve the total revenue approximately close to that achieved by the best fixed
reserve-price auction. Note that in the bandit setting, the auction is given as a blackbox and at every
time step, the auctioneer observes only the total revenue (total price) without knowing neither the
bids of bidders nor the winner/price of each item. The setting enhances, among others, the privacy of
bidders.
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The second-price auctions with reserve prices in single-parameter environments have been considered
by Roughgarden and Wang [29] in full-information online learning. Using the Follow-the-Perturbed-
Leader strategy, they gave a polynomial-time online algorithm that achieves half the revenue of the best
fixed reserve-price auction minus a term O(

√
T log T ) (so their algorithm is (1/2, O(

√
T log T ))-

regret in our terminology). The problem we consider cannot be reduced to applying their algorithm
on m separated items since (1) bids on different items might be highly correlated (due to bidders’
valuations); and (2) in the bandit setting for multiple items, the auctioneer know only the total revenue
(not the revenue from each item). Using our framework, we prove the following result.

Informal Theorem 3 There exist a bandit algorithm that achieves
(
1/2, O(m

√
nmT log T )

)
-regret

for revenue maximization in multi-parameter environments.

1.2.3 Bandit No-Envy Learning in Auctions

The concept of no-envy learning in auctions has been introduced by Daskalakis and Syrgkanis [10]
in order to maintain approximate welfare optimality while guaranteeing computational tractability.
The concept is inspired by the notion of Walrasian equilibrium. Intuitively, an allocation of items
to buyers together with a price on each item forms a Walrasian equilibrium if no buyer envies other
allocation given the current prices. In the paper, we consider no-envy bandit learning algorithms for
the following online item selection problem.

In the problem, there are m items and a player with monotone valuation v : 2[m] → R+. At every
time step 1 ≤ t ≤ T , the player chooses a subset of items St ⊂ [m] and the adversary picks adaptively
(probably depending on the history up to time t−1 but not on the current set St) a threshold vector pt.
The player observed the total price

∑
j∈St ptj and gets the reward of v(St)−

∑
j∈St ptj . A learning

algorithm for the online item selection problem is a r-approximate no-envy [10] if for any adaptively
chosen sequence of threshold vectors pt for 1 ≤ t ≤ T , the sets St for 1 ≤ t ≤ T chosen by the
algorithm satisfy E

[∑T
t=1

(
v(St)−

∑
j∈St ptj

)]
≥ maxS⊆[m]

∑T
t=1

(
r · v(S)−

∑
j∈S p

t
j

)
−R(T )

where the regret R(T ) = o(T ).

Daskalakis and Syrgkanis [10] considered the problem in the full-information setting (i.e., at every
time step t, the player observes the whole vector pt) where the valuation v is a coverage function1

and gave an (1− 1/e)-approximate no-envy algorithm with regret bound O(
√
T ). The algorithm is

designed via the convex rounding scheme [12], a technique which has been used in approximation
algorithms and in truthful mechanism design. In this paper, we consider submodular valuations, a
more general and widely-studied class of valuations. A valuation v : 2[m] → R+ is submodular if
for any sets S ⊂ T ⊂ [m], and for every item j, it holds that v(S ∪ j)− v(S) ≥ v(T ∪ j)− v(T ).
Using our framework, we derive the following result.

Informal Theorem 4 There exist an
(
1/2, O(m3/2

√
T log(mT ))

)
-regret no-envy learning algo-

rithm for the bandit item selection problem where the player valuation is submodular.

1.3 Related Work

There is large literature on online learning and auction design. In this section, we summarize and
discuss only works directly related to ours. The interested reader can refer to [31, 17] for online
learning and to [30] (and references therein) for auction design.

Online/Bandit Learning. Online learning, or online convex optimization, is an active research
domain. The first no-regret algorithm was given by Hannan [16]. Subsequently, Littlestone and
Warmuth [23] and Freund and Schapire [14] gave improved algorithms with regret

√
log(|A|)o(T )

where |A| is the size of the action space. Kalai and Vempala [20] presented the first efficient online
algorithm, called Follow-the-Perturbed-Leader (FTPL), for linear objective functions. The strategy
consists of adding perturbation to the cumulative gain (payoff) of each action and then selecting the
action with the highest perturbed gain. This strategy has been generalized and successfully applied to
several settings [18, 33, 10, 11]. Specifically, FTPL and its generalized versions have been used to

1A coverage function v : 2[m] → R+ has the form v(S) = | ∪j∈S Aj | where A1, . . . , Am are subsets of
[m].
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design efficient online no-regret algorithms with oracles beyond the linear setting: to submodular
[18] and non-convex [2] settings.

In bandit learning, many interesting results and powerful optimization/algorithmic methods have been
proved and introduced, including interior point methods [1], random walk [26], continuous multi-
plicative updates [9], random perturbation [3], iterative methods [13]. In bandit linear optimization,
the near-optimal regret bound of Õ(n

√
T ) has been established due to a long line of works [1, 9, 6].

Beyond the linear functions, several results have been known. Kleinberg [22], Flaxman et al. [13]
provided Õ(poly(n)T 3/4)-regret algorithm for general convex functions. Subsequently, Hazan and
Li [19] presented an (exponential-time) algorithm which achieves Õ(exp(n)

√
T )-regret. Recently,

Bubeck et al. [7] gave the first polynomial-time algorithm with regret Õ(n9.5
√
T ).

Smooth Auctions and Fictitious Play. The smoothness framework was introduced in order to prove
approximation guarantees for equilibria in complete-information [27] and incomplete-information
[32, 28] games. Smooth auctions (Definition 2) is a large class of auctions where the price of anarchy
can be systematically characterized by the smooth arguments. Many interesting auctions have been
shown to be smooth; and the smooth argument is a central proof technique to analyze the price of
anarchy. We refer the reader to a recent survey [30] for more details. The smoothness framework
extends to adaptive dynamics with vanishing regret. However, several important dynamics are not
guaranteed to have the vanishing regret property, for example the class of fictitious play [5] and other
classes of dynamics in [15]. A research agenda, as raised in [30], is to characterize the performance
of such dynamics. Some recent works (e.g., [24]) have been considered in this direction.

Revenue Maximization. Optimal truthful auctions in single-parameter environments are com-
pletely characterized by Myerson [25]. Recently, a major line of research in data-driven mechanism
design focus on competitive auctions without the full knowledge on the valuation distribution and even
in non-stochastic settings. The study of second-price auctions with reserve prices in single-parameter
environments and its variants have been considered in [21, 4, 8]. Recently, Roughgarden and Wang
[29] gave a polynomial-time online algorithm that achieves (1/2, O(

√
T ))-regret. Subsequently,

Dudik et al. [11] showed that the same regret bound can be obtained using their framework. Both are
in the online full-information setting.

No-envy Learning in Auctions. The notion of no-envy learning in auctions has been introduced by
Daskalakis and Syrgkanis [10]. They proposed the concept of no-envy learning in order to maintain
both the welfare optimality and computational tractability. Among others, Daskalakis and Syrgkanis
[10] considered the online item selection problem with coverage valuation and gave an efficient
(1− 1/e)-approximate no-envy algorithm with regret bound of O(

√
T ).

1.4 Organization

Due to the space limit, we present only the revenue maximization (description in Section 1.2.2) as an
application. We refer the reader to the supplementary for the full paper with all applications (and
complete proofs).

2 Framework of Online Learning

We present a general efficient online algorithm and characterize its regret bound based on its concavity
parameters. In Section 2.1, we prove the guarantee of the online mirror descent algorithm assuming
access to unbiased estimates of the gradients of the functions. In Section 2.2, we derive an algorithm
in the bandit setting.

2.1 Regret of (λ, µ)-Concave Functions

Mirror descent. We are given a convex set K. Let Φ be a αΦ-strongly convex function w.r.t a norm
‖·‖. (A function Φ : Rn → R is αΦ-strongly convex w.r.t ‖·‖ if Φ(x′) ≥ Φ(x)+〈∇Φ(x),x′−x〉+
αΦ

2 ‖x
′−x‖2.) Initially, let x1 be an arbitrary point inK. At time step t, play xt and receive the reward

of F t(xt). Let gt be the unbiased estimate of−∇F t(xt) revealed at time t. The algorithm selects the
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decision xt+1 using the standard mirror descent: xt+1 = arg maxx∈K
{
〈ηgt,x−xt〉−DΦ(x‖xt)

}
.

where the Bregman divergence is defined as DΦ(x‖x′) := Φ(x)− Φ(x′)− 〈∇Φ(x′),x− x′〉.

Theorem 1 Assume that F t is (λ, µ)-concave for every 1 ≤ t ≤ T and x∗ is the best solution in
hindsight, i.e., x∗ ∈ arg maxK

∑T
t=1 F

t(x). Then the mirror descent algorithm achieves
(
λ
µ , R(T )

)
-

regret in expectation where R(T ) = 1
µ·ηDΦ(x∗‖x1) + η

µ·2αΦ

∑T
t=1 ‖gt‖2∗. If ‖gt‖∗ ≤ Lg for

1 ≤ t ≤ T (i.e., F t is Lg-Lipschitz w.r.t ‖ · ‖) and DΦ(x∗‖x1) is bounded by G2 then by choosing

η = G
Lg

√
2αΦ

T , we have R(T ) ≤ GLg

µ

√
2αΦT .

2.2 Bandit Algorithm

In this section, we consider the bandit setting in which at every time t one can observe only the
reward f t(xt) where f t is a bounded function defined on the convex set K = [0, 1]n. Without loss
of generality, assume that f t : [0, 1]n → [0, 1]. In our algorithm, we will consider a discretization of
[0, 1]n and the multilinear relaxations of functions f t on these discrete points constructed as follows.

Discretization and Multilinear Extension. Let f : [0, 1]n → [0, 1] be a function. Consider a
lattice L = {0, 2−M , 2 · 2−M , . . . , ` · 2−M , . . . , 1}n where 0 ≤ ` ≤ 2M for some large parameter
M as a discretization of [0, 1]n. M is a constant parameter to be chosen later. Note that each
xi ∈ {0, 2−M , 2 · 2−M , . . . , ` · 2−M , . . . , 1} can be uniquely decomposed as xi =

∑M
j=0 2−jyij

where yij ∈ {0, 1}. By this observation, we lift the set [0, 1]n ∩ L to the (n × (M + 1))-dim
space. Specifically, define a bijective lifting map m : [0, 1]n ∩ L → {0, 1}n×(M+1) such that each
point (x1, . . . , xn) ∈ K ∩ L is mapped to the unique point (y10, . . . , y1M , . . . , yn0, . . . , ynM ) ∈
{0, 1}n×(M+1) where xi =

∑M
j=0 2−jyij . Define function f̃ : {0, 1}n×(M+1) → [0, 1] such that

f̃(1S) := f(m−1(1S)); in other words, f̃(1S) = f(x) where x ∈ [0, 1]n ∩ L and 1S = m(x).
Note that 1S with S ⊂ [n× (M + 1)] is a (n× (M + 1))-dim vector with (ij)th-coordinate equal to
1 if (i, j) ∈ S and equal to 0 otherwise. Consider a multilinear extension F : [0, 1]n×(M+1) → [0, 1]

of f̃ defined as follows.

F (z) :=
∑

S⊂[n×(M+1)]

f̃(1S)
∏

(i,j)∈S

zij
∏

(i,j)/∈S

(1− zij).

By the definition, F (z) can be seen as E[f̃(1S)] where the (ij)th-coordinate of 1S equals 1 (i.e.,
(1S)ij = 1) with probability zij .

Algorithm description. Our algorithm, formally given in Algorithm 1, is inspired by algorithm
SCRIBLE [1] which has been derived in the context of bandit linear optimization. It has been observed
that the gradient estimates of the functions in SCRIBLE are unbiased only if those functions are linear;
and that represents a main obstacle in order to derive an algorithm with optimal regret guarantee
R(T ) = Õ(

√
T ). While aiming for the regret of Õ(

√
T ), in our algorithm, we overcome this obstacle

by considering at every step the gradient estimate of the multilinear extension of the reward function
(construction above). That gradient estimate will be indeed proved to be unbiased. Incorporating that
gradient estimator to the scheme in [1] and following our approach, we prove the regret guarantee
of the algorithm. Note that in our algorithm, we do not need the information about the concavity
parameters of the functions.

Theorem 2 Let f t : [0, 1]n → [0, 1] be the reward function at time 1 ≤ t ≤ T and let F t be the
multilinear extension of the discretization of f t based on a lattice L (defined earlier). Assume that
F t’s are (λ, µ)-concave and for every x ∈ [0, 1]n, there exists x ∈ L such that |f t(x)− f t(x)| ≤
L · 2−M for every 1 ≤ t ≤ T (for example, f t’s are L-Lipschitz). Then, by choosing M = log T
and η = O

(
1

(nM)3/2·
√
T

)
and Φ as a O(nM)-self-concordant function, Algorithm 1 (mirroir descent

algorithm) achieves:

T∑
t=1

E
[
f t(xt)

]
≥ λ

µ
· max
x∈[0,1]n

T∑
t=1

f t(x)−O
(
max{λ/µ, 1}Ln3/2(log T )3/2(log log T )

√
T
)
.
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Algorithm 1 Algorithm in the bandit setting.

1: Let Φ be a ν-self-concordant function over [0, 1]n×(M+1).
2: Let z1 ∈ int([0, 1]n×(M+1)) such that∇Φ(z1) = 0.
3: for t = 1 to T do
4: LetAt =

[
∇2Φ(zt)

]−1/2
.

5: Pick ut ∈ Sn uniformly random and set yt = zt +Atut.
6: Round yt to a random point 1St ∈ {0, 1}n×(M+1) such that element (i, j) appears in St with

probability ytij .
7: Play xt = m−1(1St) and receive the reward of f t(xt).
8: Let gt = −n(M + 1)f t(xt)(At)−1ut and compute the solution zt+1 ∈ [0, 1]n×(M+1) by

applying the mirror descent framework on F t (Section 2.1). Specifically,

zt+1 = arg max
z∈[0,1]n×(M+1)

{
〈ηgt, z − zt〉 −DΦ(z‖zt)

}
.

3 Online Simultaneous Second-Price Auctions with Reserve Prices

In this section, we consider the online simultaneous second-price auctions with reserve prices
(definition in Section 1.2.2). We denote the revenue of selling item j as REVj(r

t, bt) where bt =
(bt1, . . . , b

t
n) and rt = (rt1, . . . , r

t
n). The revenue of the auctioneer at time step t is REV(rt, bt) =∑m

j=1 REVj(r
t, bt). The goal of the auctioneer is to achieve the total revenue

∑T
t=1 REV(rt, bt)

approximately close to that achieved by the best fixed reserve-price maxr∗
∑T
t=1 REV(r∗, bt).

In the setting, by scaling, assume that all bids and reserve prices are in K = [0, 1]n×m. Consider the
lattice L = {` ·2−M : 0 ≤ ` ≤ 2M}n×m ⊂ [0, 1]n×m for some large parameterM as a discretization
of [0, 1]n×m. Observe that for any reserve price vector r, |REV(r, b) − REV(r, b)| ≤ m · 2−M
where r is a reserve price vector such that rij is the largest multiple of 2−M smaller than rij for
every i, j (for some large enough M ). Therefore, one can approximate the revenue up to any arbitrary
precision by restricting the reserve price on L. We slightly abuse notation by denoting REVj(1S , b)
as REVj(r, b) where 1S = m(r) (recall that m is the map defined in Section 2.2). Following
Section 2.2, given a bid vector b, the multilinear extension REV of the revenue REV is defined as
REV(·, b) : [0, 1]n×m×(M+1) → R such that:

REV(z, b) =
∑

S⊂[n×m×(M+1)]

( m∑
j=1

REVj(1S , b)

) ∏
(i,j,k)∈S

zijk
∏

(i,j,k)/∈S

(1− zijk).

Online bandit Reserve-Price Algorithm. Initially, let r1 be an arbitrary feasible reserve-price. At
each time step t ≥ 1,

(i) select rt or 0 each with probability 1/2 as the reserve-price;

(ii) receive the revenue corresponding to the selected reserve-price;

(iii) compute rt+1 using Algorithm 1 with the following specification: in line 8 of Algorithm 1,
replace f t(xt) by 2REV(rt, bt) if the selected reserve-price is rt, or replace f t(xt) by 0 if
the selected reserve-price is 0. (By doing that, the expected value of gt in Algorithm 1 is
−∇REV(rt, bt).)

Analysis. In order to analyze the performance of this algorithm, we study the properties of some
related functions and then derive the regret bound for the algorithm. Fix a bid vector b. Let rj be a
vector consisting of reserve prices on item j, i.e., rj = (r1j , . . . , rnj). (Recall that rij is the reserve
price for bidder i on item j.) As b is fixed and the selling procedure of each item depends only on the
reserve prices to the item, so for simplicity denote REVj(r, b) as REVj(rj) and REV(r, b) as REV(r).
Define a function hj : {0, 1}n×(M+1) → R such that hj(1T ) = max{REVj(1T ),REVj(1∅)} =
max{REVj(r),REVj(0)} where rj is the reserve price corresponding to 1T for T ⊂ [n × (M +

1)]. Let Hj : [0, 1]n×(M+1) → R be the multilinear extension of hj . Moreover, define H :
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[0, 1]n×m×(M+1) → R as the multilinear extension of max{REV(r),REV(0)} defined as H(z) =∑
S⊂[n×m×(M+1)] max{REV(1S),REV(1∅)}

∏
(i,j,k)∈S zijk

∏
(i,j,k)/∈S(1− zijk).

Lemma 1 It holds that H(z) =
∑m
j=1Hj(zj) where zj is the restriction of z to the coordinate

related to item j.

Lemma 2 Function Hj is (1, 1)-concave.

Proof We prove that the condition (1) of the (1, 1)-concavity holds for all points in the lattice. As
the multilinear extension can be seen as the expectation over these points, the lemma will follow. Fix
a bid profile bj = (b1j , . . . , bnj). Without loss of generality, assume that b1j ≥ b2j ≥ . . . ≥ bnj . Let
rj and r∗j be two arbitrary reserve price vectors. We will show that

n∑
i=1

[
max{REVj(r−i,j , r

∗
ij),REVj(0)} −max{REVj(rj),REVj(0)}

]
≥ max{REVj(r

∗
j ),REVj(0)} −max{REVj(rj),REVj(0)} (2)

where r−ij stands for the reserve price vectors on item j without the reserve price of bidder i.

Observe that the revenue max{REVj(r
′
j),REVj(0)} for every reserve price r′j is at least the

second highest bid b2j (that is obtained in REVj(0)). Moreover, for any reserve price r′j
such that the auctioneer either (1) removes the first bidder (with highest bid) or (2) removes
the second bidder and r′1j ≤ b2j , the revenue max{REVj(r

′
j),REVj(0)} = REVj(0). Hence,

max{REVj(r
′
j),REVj(0)} 6= REVj(0) if and only if b2j < r′1j ≤ b1j .

By these observations, we deduce that max{REVj(r−ij , r
∗
ij),REVj(0)} 6=

max{REVj(rj),REVj(0)} if and only if i = 1 and either {b2j ≤ r1j 6= r∗1j ≤ b1j}; or
{r∗1j ∈ (b2j , b1j ] and r1j /∈ (b2j , b1j ]}; or inversely {r1j ∈ (b2j , b1j ] and r∗1j /∈ (b2j , b1j ]}.
Thus, proving Inequality (2) is equivalent to showing that

max{REVj(r−1j , r
∗
1j),REVj(0)} −max{REVj(rj),REVj(0)}

≥ max{REVj(r
∗
j ),REVj(0)} −max{REVj(rj),REVj(0)}.

Case 1: b2j ≤ r1j 6= r∗1j ≤ b1j . In this case, both sides are equal to r∗1j − r1j .

Case 2: r∗1j ∈ (b2j , b1j ] and r1j /∈ (b2j , b1j ]. In this case, both sides are equal to r∗1j − b2j .
Case 3: r1j ∈ (b2j , b1j ] and r∗1j /∈ (b2j , b1j ]. In this case, both sides are equal to b2j − r1j .
Case 4: the complementary of all previous cases. In this case, both sides are equal to 0.

Therefore, Inequality (2) holds and so the lemma follows. �

Consider an imaginary algorithm which is similar to our online reserve price algorithm but at
every step t, its gain on item j is max{REVj(r

t),REVj(0)}. Observe that the online reserve price
algorithm selects at every step t either rt or 0 with probability 1/2, the revenue of the algorithm is at
least half that of the imaginary algorithm. Hence, by Theorem 2 and the (1, 1)-concavity of H (by
Lemmas 1 and 2), we deduce the following theorem.

Theorem 3 The online bandit reserve price algorithm achieves
(
1/2, O(m

√
nm log T

√
T )
)
-regret.

4 Conclusion

In this paper, we have introduced a framework to design efficient online learning algorithms. Apart
of standard regularity requirements (such as compact convex domain, Lipschitz, etc), a new crucial
property is the (λ, µ)-concavity. Designing efficient online learning algorithms is now reduced to
determining the concave parameters of reward functions. We show the applicability of the framework
through applications in auction design. Due to the simplicity of the new notion of concavity, we hope
that our approach would be useful in designing efficient online algorithms with approximate regret
bounds for different problems.
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