
IMPROVING NEURAL NETWORK TRAINING IN LOW DIMENSIONAL RANDOM BASES

SUPPLEMENTARY MATERIAL

A Relationship with Evolution Strategies (ES)

In the main paper, we restrict the gradient to the random base

gRBt :=

d∑
i=1

ci,tϕi,t .

Formally, this constraint also applies to special cases of Natural Evolution Strategies [37, 3]. The
evolutionary random bases gradient can be derived from the Taylor expansion of the loss under a
perturbation ϕ, where H(θ) denotes the Hessian matrix:

L(θ +ϕ)ϕ = L(θ)ϕ+ϕ>∇L(θ)ϕ+
1

2!
ϕ>H(θ)ϕ2 +O(ϕ4) .

Taking the expectation with respect to perturbations drawn from a normal distribution with zero mean
and constant variance σ2 results in the odd central moments of the Gaussians vanishing and leaves
the gradient estimator

∇L(θt) ≈
1

σ2
Eϕ∼N (0,I)[L(θt +ϕ)ϕ] .

The sample approximation of the expected value then takes the form of a random basis with unit
Gaussian base vectors ϕn ∼ N (0, I) and coordinates cn = L(θt + σϕn)σ

−1d−1

gESt :=

d∑
n=1

L(θt + σϕn)

σ d
ϕn .

Similar estimators can be obtained for other symmetric distributions with finite second moment.
A practical downside of gESt , however, is the high computational cost of the independent neural
network loss evaluations that are required to obtain the coordinates cn. Moreover, the additional hyper-
parameter σ that determines the magnitude of the perturbation needs to be carefully chosen [33].
Finally, it is worth noticing that the different evolutionary loss samples cn ∝ L(θt + σϕn) are
typically evaluated on different mini-batches [38], whereas the approach discussed in this paper
computes the coefficients on the same mini-batch.

B Further results

B.1 Convergence behaviour of random bases training

Figure B.6 provides the validation curves of different the random subspace methods for the baseline
dimensionality d = 250.

B.2 Approximation with growing dimensionality

As discussed in Section 4.5, the performance of random bases descent improves when using a larger
number of basis vectors. Figure B.7 quantifies the approximation quality in terms of achieved
accuracy as well as correlation with the SGD gradient for an increasing number of base dimensions.
A linear improvement in the gradient approximation requires an exponential increase in the number
of subspace directions.

B.3 Quasi-orthogonality of random bases

While increasing the number of random directions improves RBD’s gradient approximation, the
observed exponential growth of required samples makes reaching SGD-level performance difficult in

12



0 20 40 60 80 100 120 140 160

20

40

60

80

100
FC-MNIST, D=101,770

SGD 98.27 ± 0.09
RBD 93.893 ± 0.024
FPD 80.0 ± 0.4
NES 24.5 ± 1.7

0 20 40 60 80 100 120 140 160

20

40

60

80

FC-FMNIST, D=101,770

SGD 87.32 ± 0.21
RBD 85.65 ± 0.20
FPD 77.30 ± 0.29
NES 45 ± 6

0 20 40 60 80 100 120 140 160
10

20

30

40

50

FC-CIFAR10, D=394,634

SGD 52.09 ± 0.22
RBD 43.77 ± 0.22
FPD 21.4 ± 1.2
NES 17.8 ± 0.5

0 20 40 60 80 100 120 140 160

20

40

60

80

100
CNN-MNIST, D=93,322

SGD 99.41 ± 0.09
RBD 97.17 ± 0.10
FPD 88.9 ± 0.6
NES 51 ± 6

0 20 40 60 80 100 120 140 160

20

40

60

80

CNN-FMNIST, D=93,322

SGD 91.95 ± 0.18
RBD 85.56 ± 0.10
FPD 77.8 ± 1.6
NES 37 ± 4

0 20 40 60 80 100 120 140 160

10

20

30

40

50

60

70

80

CNN-CIFAR10, D=122,570
SGD 81.4 ± 0.4
RBD 54.64 ± 0.33
FPD 37.2 ± 0.8
NES 20.3 ± 1.0

Figure B.6: Validation accuracy (y) against epochs (x) of random subspace training for dimensionality
d = 250 compared with the unrestricted SGD baseline (average of 3 independent runs using data
augmentation with report of standard deviation). Re-drawing the random subspace at every step
(RBD) leads to better convergence than taking steps in a fixed randomly projected space of the same
dimensionality (FPD). Black-box optimization using evolution strategies for the same dimensionality
exhibits higher variance and leads to inferior optimization outcomes (NES).
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Figure B.7: Validation accuracy after 100
epochs and mean gradient correlation with
SGD plotted against increasing subspace di-
mensionality d on the CIFAR-10 CNN (av-
erage of three runs). The gradient approxi-
mation quality and resulting accuracy only
improves at a logarithmic rate and requires
d = 104 subspace dimensions to achieve 90%
of SGD accuracy.

practice. The diminishing returns of increasing the number of random bases may stem from the fact
that high-dimensional random vectors become almost orthogonal with high probability; capturing
relevant directions may thus become harder as approximation dimensionality grows [13].

We quantify the orthogonality of the base vectors with increasing dimensionality in Figure B.8. As
expected, the mean cosine similarity across 100 pairs of random vectors decreases with growing
dimensionality. For vectors with ≈ 105 directions, as we use in these experiments, the mean cosine
similarity is around 0.02, and tends further towards zero for higher dimensions. This suggests that
explicit orthogonalization techniques might improve the approximation capabilities of the random
bases for smaller or compartmentalized networks (for further discussion see Choromanski et al. [7]).

B.4 Compartmentalization

A simple way to limit the approximation dimensionality is compartmentalization, as discussed
in Section 3.1.1. As shown in Figure 4 in the paper, compartmentalization can improve RBD’s
approximation ability as well as reduce wall-clock time requirements.

13



102 103 104 105 106 107 108

Dimension

0.00

0.05

0.10

0.15

0.20

0.25

C
os

in
e

si
m

il
ar

it
y

Figure B.8: Mean cosine similarity computed
for 100 pairs of random vectors plotted for
growing dimensionality. The error bars repre-
sent the standard deviation of the 100 cosine
similarities. As the dimensionality increases,
the vector’s linear dependence decreases in
line with the theoretical expectation [13]. The
figure also implies that for the dimensionality
that is considered in this work (order 105), the
random base vectors are not strictly orthog-
onal. It is thus possible that explicit orthog-
onalization could yield better approximation
results.

B.4.1 Compartmentalized FPD

We test the effect of compartmentalization when used in combination with FPD [26]. Figure B.9
shows that compartmentalization improves the achieved FPD accuracy, although the final accuracies
are lower than for RBD. This suggests that compartmentalization provides optimization benefits that
are independent of a timestep-dependent base.
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Figure B.9: Investigating compartmentalization with CIFAR-10 CNN for Fixed Projection Descent
[26]. Left: Validation accuracy under varying number of compartments and right: wall-clock time for
these experiments. Like in the case of RBD, compartmentalization increases the achieved accuracy
for a given dimensionality (albeit falling short of RBD accuracy level).

B.4.2 Layer compartmentalization

Apart from splitting the network into evenly-sized parts, it is a natural idea to compartmentalize
in a way that reflects the network architecture. We test this on the 5-layer CNN by splitting the
random base at each layer into independent bases with 250 coordinates. For comparison, we train
with uncompartmentalized base vectors using 5 × 250 = 1250 coordinates such that the overall
amount of trainable parameters is preserved (see Figure B.10). We find that compartmentalizing the
CNN network in such a way improves the achieved validation accuracy by 0.64±0.27, 1.02±0.17
and 3.85±0.64 percent on MNIST, FMNIST and CIFAR-10 respectively.
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Figure B.10: Validation accuracy (y) versus epochs (x) for CNN architectures with compartmentalized
bases compared to the uncompartmentalized baseline. The random bases are compartmentalized per
layer, i.e. each layer uses an independent random base with dλ = 250 for the gradient approximation.
The overall number of parameters d = 5× 250 = 1250 equals the number of trainable parameters
of the uncompartmentalized baseline. Splitting the random base dimensionality across layers yields
performance improvements which suggests that a reduced approximation dimension can be beneficial
to optimization.

B.5 Relationship with SGD
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Figure B.11: Validation accuracy (y) versus epochs (x) for hybrid training where the first q epochs
use random bases descent while remaining updates are standard SGD (switch points q are indicated
by the vertical dashed rules of same color, q ∈ {1, 2, 5, 10, 25, 50, 75}). Switching between the
optimizers is possible at any point and the SGD optimization in the later part of the training recovers
the performance of pure SGD training (indicated by dark horizontal dashed line).

B.6 Convergence with low dimensionality

Random bases descent with very few directions remains remarkably competitive with higher dimen-
sional approximation. In fact, we find that training is possible with as few as two directions, although
convergence happens at a slower pace. This raises the question as to whether longer training can
make up for fewer available directions at each step. Such a trade-off would, for example, hold for a
random walk on a convex bowl where the steps in random directions use a step size proportional to
the slope encountered in the random direction. Lucky draws of directions that point to the bottom
of the bowl will lead to a quick descent, while unlucky draws of flat directions will slow progress.
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Figure B.12: Validation accuracy (y) versus epochs (x) for hybrid training where first q = 1, 2, 5,
10, 25, 50, 75 epochs use standard SGD while remaining epochs use random bases descent (switch
points are indicated by the vertical dashed rules of the same color). Random bases descent (RBD)
can sustain the optimization progress after the switch and converges to the accuracy level of pure
RBD training (indicated by the dark horizontal dashed line). However, if the switch occurs at an
accuracy level higher than the pure RBD training baseline, the optimization progress regresses to this
lower accuracy.

In this setting, drawing more directions at every step and allowing more timesteps overall will both
increase the likelihood of finding useful descent directions. However, in practice, we find that training
on CIFAR-10 for longer does not make up for reduced dimensionality of the random base (see
Figures B.13B.14 for CNN and ResNet-8 respectively. The chosen dimensionality determines the
achieved accuracy at convergence.
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Figure B.13: CNN training
on CIFAR-10 for 2000 epochs
with low dimensionality. Each
curve uses a tuned learning
rate such that results are com-
pared for the best respective
validation loss. Two ran-
dom directions are sufficient
to reach an accuracy level of
48.20 ± 0.23 percent. How-
ever, the converged d =
2 training process is outper-
formed with d = 10 and
d = 50. Overall, training for
longer does not close the gap
with the SGD baseline.

B.7 Comparison of directional distributions

The effectiveness of the RBD’s descent is highly dependent on the choice of directions. To illustrate
this, consider the case where the first direction vector ϕi=0,t is the actual full-dimensional SGD
gradient; in this setting, SGD-like descent can be recovered through the use of Kronecker delta
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Figure B.14: Random bases opti-
mization (RBD) of ResNet-8 for
2000 epochs with low dimensional-
ity. Training is possible with d = 2
directions but does not reach the ac-
curacy level of 2-dimensional RBD
on the simpler CNN architecture.
However, if the random bases ap-
proximation is compartmentalized
at each layer (d = 42), training
reaches levels of accuracy that are
comparable with the CNN baseline
for a similar amount of trainable
parameters d = 50. Training for
longer does not make up for a re-
duced number of dimensions d.

coordinates ci,t = δi,t. We experimented with adjusting the generating distribution for the random
bases using Gaussian, Uniform, and Bernoulli distributions. In high dimensions, unit Gaussians
isotropically cover a sphere around the point in the parameter space, whereas directions drawn from a
uniform distribution concentrate in directions pointing towards the corners of a hypercube (breaking
rotational invariance). Likewise, directions drawn from a Bernoulli distribution are restricted by their
discrete binary coordinates. On training with these different directional distributions, we observe a
clear ranking in performance across used networks and datasets: Gaussian consistently outperforms
Uniform directions, which itself outperform Bernoulli samples (see Figure B.15).

0 20 40 60 80 100

65

70

75

80

85

90

95

MNIST-FC

94.95± 0.11 — Normal

77.5± 0.4 — Bernoulli-0.5

89.61± 0.29 — Uniform

0 20 40 60 80 100

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

FMNIST-FC

81.70± 0.14 — Uniform

85.26± 0.20 — Normal

76.0± 0.6 — Bernoulli-0.5

0 20 40 60 80 100

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

CIFAR10-FC

29.12± 0.33 — Bernoulli-0.5

36.52± 0.20 — Uniform

42.6± 0.5 — Normal

0 20 40 60 80 100

20

40

60

80

100
MNIST-CNN

96.75± 0.18 — Normal

87± 6 — Uniform

67± 6 — Bernoulli-0.5

0 20 40 60 80 100
10

20

30

40

50

60

70

80

FMNIST-CNN

83.8± 0.7 — Normal

77.8± 1.9 — Uniform

65.9± 3.3 — Bernoulli-0.5

0 20 40 60 80 100

10

20

30

40

50

CIFAR10-CNN

52.3± 0.9 — Normal

28.5± 0.6 — Bernoulli-0.5

41.0± 1.4 — Uniform

Figure B.15: Validation accuracy (y) for training over a 100 epochs (x) with different directional dis-
tributions UNIFORM in range [−1, 1], unit GAUSSIAN, and zero-mean BERNOULLI with probability
p = 0.5 (denoted as Bernoulli-0.5). Compared to the Gaussian baseline, the optimization suffers
under Uniform and Bernoulli distributions whose sampled directions concentrate in smaller fractions
of the high-dimensional space.
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C Implementation details

C.1 Details on the datasets and networks

We use the (Fashion-)MNIST and CIFAR-10 dataset as provided by the TensorFlow Datasets API
with inputs 28x28x1 and 32x32x3 respectively [1]. The CIFAR images are normalized to standard
mean and variance using tf.image.per_image_standardization. We apply the following data aug-
mentation in each mini-batch. (F)MNIST: Pad 6 pixels on each dimension of the feature map and
apply random cropping back to original dimensions followed by random brightness adjustments
(tf.image.random_brightness). CIFAR-10: Add 4 pixels padding and apply random cropping back to
the original dimension, followed by random left-right flips (tf.image.random_flip_left_right). The
datasets are used with the following networks:

• Fully-connected (FC) with one hidden layer of width 128 resulting in a total number of
parameters of D = 101, 770 and D = 394, 634 for (F)MNIST and CIFAR-10 respectively.

• Convolutional (CNN) with the following hidden layers: Conv (3x3, valid) 32 outputs - max
pooling (2x2) - Conv (3x3, valid) 64 outputs - max pooling (2x2) - Conv (3x3, valid) 64
outputs - 64 fully connected. This results in an (F)MNIST-dimension of D = 93, 322 and a
CIFAR-10-dimension of D = 122, 570.

• ResNets We use a ResNet [19] standard implementation provided by the Keras project at
https://github.com/keras-team/keras-applications. The CIFAR-10 version of ResNet-8 and
ResNet-32 have a dimensionality of D = 78, 330 and D = 467, 194 respectively.

Learning rates are tuned over powers of 2 in the range [7,−19] for each particular combination of
network and dataset. Tuning uses the training data split only, i.e. training on a 75% random split of
the training data and selecting for the lowest loss on the 25% held-out samples. All experiments use a
batch size of 32.

D List of hyperparameters

We present a list of all relevant hyperparameters. More details can be found in the source code that
has been released at https://github.com/graphcore-research/random-bases.

All experiments use a batch size of 32. We do not use momentum or learning rate schedules. Table 4
lists the standard learning rates for a basis dimension of d = 250. The learning rate can be scaled
down as the dimensionality increases, which suggests that the variance of the gradient approximation
decreases. For instance, the dimensionality scaling in Figure B.7 used the power-2 learning rates
-1, -2, -3, -5 for the dimensions d = 10, 100, 1000, 10000 respectively. Learning rates have to be
adjusted when different distributions are used; for example, the Normal, Bernoulli and Uniform
distribution in Figure B.15 use the learning rates 2−3, 2−1 and 2 respectively.

Table 4: Learning rates of proposed random bases descent and fixed projection descent baseline by
[26] for the dimensionality d = 250, as well as standard SGD learning rates. All learning rates are
denoted as powers of 2 (i.e. −1→ 2−1 = 0.5).

NETWORK DATA SET RANDOM BASES DESCENT FIXED PROJECTION SGD

MNIST 1 -1 -8
FC FMNIST -1 -1 -7

CIFAR-10 -5 -5 -12

MNIST -1 -3 -10
CNN FMNIST -3 -1 -9

CIFAR-10 -3 -1 -11

RESNET-8, d = 250 CIFAR-10 3 - -3
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