
We sincerely thank all the reviewers for their detailed comments and queries, and give clarifications and answers below.1

Reviewer 1: We will revise according to all the comments on typos, clarity, and rigor of the mathematical writing.2

First, we focus on the correctness of Lemma 1, and then address the others comments.3

Correctness. We agree with the reviewer that Lemma 1 is not precise, as we (mistakenly) did not include the precise4

range of x in the statements. We provide here the precise version of Lem.1, where the differences are colored in BLUE:5

Lemma 1. For a closed convex set X, a convex proper l.s.c. function f : X→ R∪{∞} and λ > 0 define fλ : Rd → R6

as fλ(x) := minx′∈X f(x
′) + 1

2λ‖x− x
′‖2 and x̂λ(x) := argminx′∈X f(x

′) + 1
2λ‖x− x

′‖2. Then for any x ∈ X:7

(a) x̂λ(x) is unique and f(x̂λ(x)) ≤ fλ(x) ≤ f(x).8

(b) fλ is convex, differentiable, 1/λ-smooth and ∇fλ(x) = (1/λ)(x− x̂λ(x)), and,9

(c) if f is G-Lipschitz continuous, then, ‖x̂λ(x)− x‖ ≤ Gλ, and f(x) ≤ fλ(x) +G2λ/2.10

This version of Lemma 1 is (i) sufficient for proving our main results (lines 577, 622, 691, 705) and (ii) correct. Since11

the reviewer’s counter example uses x /∈ X, it does not contradict Lemma 1(c). We now provide a full proof below.12

Proof (brief due to page limit). Denote φλ,x(x′) := f(x′) + (1/2λ)‖x − x′‖2. Note that φλ,x(·) is a 1/λ-strongly13

convex function and fλ(x) = minx′∈X φλ,x(x
′).14

(a) Then f(x̂λ(x)) ≤ φλ,x(x̂λ(x)) = minx′∈X φλ,x(x
′) = fλ(x) ≤ φλ,x(x) = f(x) and the uniqueness of x̂λ(x)15

follows from the strong convexity of φλ,x(·) and the fact that f is a proper convex function.16

(b) Let x ∈ Rd and gx := (x− x̂λ(x))/λ. By 1/λ strong convexity of φλ,x(x′) and x̂λ(x) = argminx′∈X φλ,x(x
′),17

we have for any x′ ∈ X that φλ,x(x′) ≥ φλ,x(x̂λ(x)) + ‖x′ − x̂λ(x)‖2/2λ, which simplifies to f(x′) ≥ f(x̂λ(x)) +18

〈gx, x′ − x̂λ(x)〉. Using this, for any x, y ∈ Rd we get19

fλ(y)− fλ(x) = f(x̂λ(y))− f(x̂λ(x)) + (‖x̂λ(y)− y‖2 − ‖x̂λ(x)− x‖2)/2λ
≥ 〈gx, x̂λ(y)− x̂λ(x)〉+ λ/2(‖gy‖2 − ‖gx‖2) = 〈gx, y − x〉+ λ/2‖gx − gy‖2 (1)

Instantiating the above for y ← x, x ← y we also get fλ(y) − fλ(x) ≤ 〈gy, y − x〉 − λ/2‖gx − gy‖2. Combining20

these two inequalities21

0 ≤ λ/2‖gy − gx‖2 ≤ fλ(y)− fλ(x)− 〈gx, y − x〉 ≤ −λ/2‖gy − gx‖2 + 〈gy − gx, y − x〉 ≤ ‖y − x‖2/2λ (2)
This implies that limy→x(fλ(y)− fλ(x)− 〈gx, y − x〉)/‖y − x‖ = 0. Thus fλ is Frechet differentiable with gradient22

∇fλ(x) = gx = (x− x̂λ(x))/λ. The above inequality also implies fλ is convex and 1/λ-smooth.23

(c) Let x ∈ X. Using 1/λ-strong convexity of φλ,x and x̂λ(x) ∈ argminx′∈X φλ,x(x
′), and G-Lipschitzness of f ,24

‖x− x̂λ(x)‖2/2λ ≤ φλ,x(x)− φλ,x(x̂λ(x)) = f(x)− fλ(x) = f(x)− f(x̂λ(x))− ‖x− x̂λ(x)‖2/2λ
≤ G‖x̂λ(x)− x‖ − ‖x− x̂λ(x)‖2/2λ ≤ G2λ/2 .

We say line 557: “for simplicity...X is the whole vector space”. This was an assumption made, in the context of Sec. A.1,25

for ease of exposition of the failed attempt at a PO efficient algorithm (Algo. APGD).26

Experimental verification. As suggested, we compared the projection-free methods using a higher-dimensional27

(d = 50, 176) ImageNet dataset in the same low-rank SVM problem. For achieving an optimality gap of 0.02,28

Randomized-FW[52] used 34717 / 264 FO / LMO calls and our MOLES used 4004 / 241 FO / LMO calls. We will add29

detailed simulation results including sensitivity analysis in the next revision. We agree that our algorithms have more30

parameters and hence harder to tune than most baselines. Overcoming this is an important direction of future research.31

Reviewer 2 We agree that the reviewer’s definition of the stochastic subgradient oracle is more appropriate. We32

modified the manuscript according to the additional comments.33

Reviewer 3 The two properties we need of the superset X ⊇ X are that (a) it is easy to project onto X and (b) f is34

G-Lipschitz on X. In our paper, we choose X to be a Euclidean ball (which is easy to project to) but any other choice of35

X which satisfies the above properties works just as well. One choice for this Euclidean ball is B(x0, DX ), where x0 is36

the initial point and DX is the diameter of X , instead of the ball of radius 2R we currently use.37

As mentioned by R3, even if f is G-Lipschitz inside the constraint X , it could (i) blow up or (ii) be undefined just38

outside of X . Thus an X satisfying our requirements may not exist. In our experiments, we do not explicitly project onto39

X (line 3.16) but still observed that ‖xk − x′k‖ = O(Gλ) and small, which implies that the iterates x′k are close to40

X . This hints that we may only need Lipschitzness over a much smaller set X +B(0, O(Gλ)), but we do know how to41

prove this yet. Theoretically, we can work around the issue (ii) above by minimizing the convex extension fX : Rd → R42

of the function f from the set X , defined as fX (x′) := maxx∈X maxg∈∂f(x) f(x) + 〈g, x′ − x〉. The extension fX43

has the same value as f inside X and is G-Lipschitz everywhere. Therefore the following minimization problems44

are equivalent: minx∈X f(x) and minx∈X fX (x′). However, it is not clear if we can even estimate/approximate the45

gradients of fX efficiently. We could not find any relevant prior work and leave this question for future work. We46

modified the manuscript according to the additional comments.47


