
A Additive feature attribution methods unify existing explainers for GNNs

In this section, we analyze the vanilla gradient-based explainers and GNNExplainer [24] under
the explanation model framework. Our aim is to bring a clearer view on explanation models and
show that the class of additive feature attribution methods introduced in [17] fully captures current
explanation methods for GNNs.

Gradient-based explainers. The gradient-based approach has been one of the most popular explana-
tion methods for conventional neural networks [18, 19, 40, 20, 21, 15]. Some of those recently have
been analyzed in the context of GNNs [27], including Gradient-Based Saliency maps [15], Grad-
CAM [18] and Excitation Back-Propagation [22]. All of these methods rely on back-propagating the
GNN and assign important scores on explained features. Here, we consider the simplest gradient-
based explanation method in which the score of each feature is associated with the gradient of the
GNN’s loss function with respect to that feature. The top-M nodes with the largest sum of their
features’ score are selected as the explanation.

The proof that this explanation method falls into the class of additive feature attribution methods
is quite straight-forward. Here, the interpretable domain E is a set of linear functions of the form
ζ(z) = φ0 +

∑|V |
i=1 φizi, where zi ∈ {0, 1} is a binary variable representing the selection of node

i in the explanation and φi ∈ R is the associated sum gradients in node i. The objective R and the
feasible sets C can be chosen as follows:

RΦ,t(ζ) =
∑

v∈V,zv=1

(∑
x∈Xv

∂Φt
∂x

)
, C =

ζ(z) :

|V |∑
i=1

zi = M

 . (5)

To show other gradient-based explanation methods examined in [27] fall into the class of additive
feature attribution methods, we just need to adjust the choice of the weight φi in the formulation.

GNNExplainer. To generate a subgraph S = (VS , ES) with at most M edges explaining a target
prediction, GNNExplainer is formulated based on the following optimization:

max
S⊆G

I(Y ;S) = max
S⊆G

(H(Y)− H(Y |G ≡ S)) , |ES | ≤M, (6)

where I and H are the mutual information function and the entropy function respectively. S is a
random subgraph of G and Y is a random variable with the probability that the target prediction
belonging to each of K classes. In GNNExplainer, the distribution of Y is obtained from the soft-
output of the GNN at different input settings. The condition G ≡ S indicates that the realization of
G must be consistent with the realization of subgraph S. The intuition on this objective is that, if
knowing the information in the subgraph S reduces the uncertainty of Y significantly, the subgraph
S is a good explanation for the target prediction.

To avoid the complexity of directly solving (6), GNNExplainer relaxes the integer constraint on
the entries of the input adjacency matrix A and searches for an optimal fractional adjacency matrix
Ã ∈ [0, 1]|V |×|V |. The distribution of S is then defined by setting P (S) =

∏
(i,j)∈S Ãij . After

that, by approximating H(Y |G ≡ S) ≈ H(Y |G ≡ E[S]) = H(Y |Ã), the explainer uses mean-field
optimization to solve for minÃ H(Y |G ≡ E[S]). Finally, the explanation S is selected based on the
values of entries in the solution Ã. Note that in order to evaluate H(Y |Ã), the explained model must
be able to compute the prediction at fractional adjacency matrix input. However, in many current
GNN’s architecture such as GraphSage [6] and GIN-Graph [10], the information of the adjacency
matrix is used to compute the aggregated discrete sum of features and operations on float inputs of
adjacency matrix are not well-defined. Thus, GNNExplainer would fail to explain predictions of
those models.

If we do not allow the entries of Ã to receive fractional value, the optimization problem of GN-
NExplainer can be formulated under the additive feature attribution methods by setting ζ(Ã) =

φ0 +
∑|V |
i=1

∑|V |
j=1 φijÃij where Ãij ∈ {0, 1}. The objective R and the feasible set C are specified

as follows:

RΦ,t(ζ) = −H(Φ(G)t|Ã), C =

ζ(Ã) :

|V |∑
i=1

|V |∑
j=1

Ãij ≤ 2M, Ãij = Ãji

 . (7)

The weights φij of explanation model ζ are chosen based on the solution in maximizing RΦ,t(ζ).

12

B Example of PGM-Explainer with and without no-child constraint

In Fig. 6, we provide an example illustrating the impact of the no-child constraint (3) onto the
PGM explanation. This experiment setup is the same as that in experiment of Fig. 1. Here, we use
PGM-Explainer to explain the prediction on role "blue" of node C shown in Fig.6a. Fig.6b and Fig.6c
are the resulted explanations without and with the no-child constraint.

(a) Ground-truth motif. (b) Without no-child constraint. (c) With no-child constraint.

Figure 6: Example of PGM-explanation with and without no-child constraint. (a) The ground-truth
motif containing the target prediction to be explained, which is the prediction on node C. (b) A PGM-
explanation in a form of Bayesian network without the no-child constraint. (c) A PGM-explanation
in a form of Bayesian network with the no-child constraint.

As can be seen in this experiment, imposing the constraint does not change the set of nodes identified
by the explainer. However, the constraint changes the edges in the Bayesian network. In general,
without the constraint, we will obtain a more simple model: less edges, less number of parameters and
more independence assertions. While this network is faithful to the data, it might be misleading to non-
experts. In fact, the Markov-blanket of C in this graph is {A,B,E}. Notice that E is in the Markov
blanket even when there is no chain of one-direction arrows connecting C and E. By imposing the no-
child constraint, the resulted network here reverses the arrow C → A and add two additional arrows
B → A and E → C. These arrows are included to guarantee that the resulted network has enough
power to represent the distribution generating the data. Even though this network is more complex, it
is intuitive in the sense that we can directly point out the Markov-blanket of C, which is its parents.
Furthermore, if the Bayesian network is stored in factorization form, it is also much more convenient
to perform inference queries on the target variableC when it has no child. To see this, consider the fac-
torize forms of the networks in Fig. 6b and 6c, which are P (B)P (C|B)P (D|B)P (E|D)P (A|C,E)
and P (B)P (D|B)P (E|D)P (A|B,E)P (C|A,B,E) respectively. When storing the networks, we
only store each conditional probability. Thus, answering inference query regarding the target variable
C is much more convenient in the latter network as all required information is stored in P (C|A,B,E).
To sum up, the no-child constraint might increase the complexity of the explanation model; however,
it offers better intuition and more convenient in performing inference on the target of explanation.

13

C Probabilistic Graphical Model preliminaries

For completeness of this work, we provide some formal definitions of PGM-related concepts in this
section. For a more and complete information about PGM, readers are referred to [28].

C.1 I-map and Perfect map

Given a distributionP , we denote I(P) to be the set of independence assertions of the form (x⊥⊥ y|z)
that hold in P . Similarly, given a Bayesian network B, I(B) is the set of independence assertions
made by B. For B to faithfully represent P , B must not contain any independence assertions that are
not made by P , i.e. I(B) ⊆ I(P). In that case, we say B is an I-map for P .

In the context of PGM, we normally want to find the simplest model B that is able to represent P .
Roughly speaking, the larger the set I(B), the simpler the model B since we would need less number
of parameters to determine the network. This leads us to the following definition of minimal I-map.

Definition 1 A Bayesian network B is a minimal I-map for P if it is an I-map for P , and if the
removal of even a single edge from B renders it not an I-map.

Therefore, to capture the independence structure in P , a standard solution is to search for minimal
I-maps of P . However, as shown by [28], even if a network B is a minimal I-map, it may not
include many important independence assertions in P and fails to capture the distribution’s structure.
Alternatively, we aim to find a graph, called perfect map, that precisely capture P .

Definition 2 A Bayesian network B is a perfect map for P if I(B) = I(P).

Unfortunately, not every distribution P has a perfect map. In the scope of this work, we consider the
case when the perfect map for the distribution generating the data exists, i.e. the class of Bayesian
networks has the power to represent the distribution precisely.

C.2 Markov-blanket

In the variable selection step of PGM-Explainer (Section 3.2), we solve for the set U(t) that
guarantees to contain the Markov-blanket of the target variable in case the perfect map exists. Here,
we provide the formal definition of the Markov-blanket in a distribution.

Definition 3 Given a distribution P on a set of random variables X , a set S is a Markov-blanket of
x ∈ X if x /∈ S and if S is a minimal set such that (x⊥⊥ X \ ({x} ∪ S) |S) ∈ I(P). We denote
this set MBP(x).

If the perfect map B∗ for P exists, then MBP(x) is simply x’s parents, x’s children, and x’s
children’s other parents in B∗ [28].

C.3 Structure learning and Bayesian Information Criterion (BIC) score

The task of learning a graph structure from data is called structure learning. Algorithms for structure
learning can be roughly classified into two categories: score-based and constraint-based. The score-
based algorithms associate a score to each candidate structure with respect to the training data, and
then search for a high-scoring structure. The constraint-based algorithms look for dependencies and
conditional dependencies in the data and construct the structure accordingly.

In score-based approach, the selection of scoring function is critical. A natural choice of the score
function is the likelihood l(θ̂B : D), where D is the data, B is the graphical model of consideration,
θ̂B is the maximum likelihood parameters for B and l is the logarithm of the likelihood function.
However, as pointed out in [28], the likelihood score overfits the training data and returns overly
complex structure. An alternative solution is the Bayesian score

scoreB(B : D) := logP (D|B) + logP (B), (8)
where P (B) is the prior over structures. However, this prior is almost insignificant compared to the
marginal likelihood P (D|B), which can be computed as:

P (D|B) =

∫
P (D|θB,B)P (θB|B)dθB. (9)

14

It can be shown that, if we use a Dirichlet parameter prior for all parameters in B, then, when the
number of samples n is sufficiently large, we have

logP (D|B) = l(θ̂B : D)− logn
2

Dim[B] +O(1). (10)

Thus, the BIC score is defined as

scoreBIC(B : D) := l(θ̂B : D)− logn
2

Dim[B] (11)

which can be considered an approximation of the Bayesian score when the data is sufficiently large.

In PGM-Explainer, we use BIC score for our structure learning step. One main reason is BIC score is
known to be consistent. The definition of a score to be consistent is given as follows.

Definition 4 Assume distribution P has a perfect map B∗. We say that a scoring function is consistent
if the following properties hold as the amount of data n→∞, with probability that approaches 1:

1. The structure B∗ will maximize the score.

2. All structure B such that I(B) 6= I(B∗) will have strictly lower score.

This condition implies that, for all structures containing different set of independence assertions from
those in the distribution (or in the perfect map), they will have strictly lower BIC score. Hence, by
maximizing BIC score, PGM-Explainer theoretically searches for the structure containing all and
only the dependence assertions encoded in the data.

D Proof of Theorem 1

This section provides the proof of Theorem 1, Section 3.2.

Proof 1 Let’s consider a node v′ ∈ MBB∗(t). In Bayesian network B∗, the Markov-blanket of t is
the union of t’s parents, t’s children, and t’s children’s other parents [28]. In other words, at least
one of the three followings cases must holds:

1. v′ ∈ PaB∗(t).

2. v′ ∈ ChB∗(t).

3. ∃v such that v′ ∈ PaB∗(v) and t ∈ PaB∗(v).

For the first two cases, either v′ → t or t → v′ is an active path of B∗. As B∗ is a perfect map
for P , we have v′ 6⊥⊥ t and v′ must be included in S(t). Since v ∈ S(v) for all v, we have
S(t) ⊆ ∪v∈S(t)S(v) and v′ ∈ ∪v∈S(t)S(v).

For the last case, as v′ ∈ PaB∗(v) and t ∈ PaB∗(v), we have v′ → v and t → v are active paths
of B∗. Thus, v′ 6⊥⊥ v and v 6⊥⊥ t. Consequently v′ must be included in S(v) where v ∈ S(t), i.e.
v′ ∈ ∪v∈S(t)S(v).

E Proof of Theorem 2

This section provides the proof of Theorem 2, Section 3.2.

Proof 2 Since t has no child, MBB∗(t) = PaB∗(t) where PaB∗(t) is the set of parents of t in B∗.
Hence, for any node v ∈ MBB∗(t), v ∈ PaB∗(t) and v → t is an active path of B∗. As B∗ is a
perfect map for P , we have v 6⊥⊥ t and v must be included in S(t).

15

F PGM-Explainer without no-child constraint

Algorithm 1: Generating PGM explanation for GNN without no-child constraint
Input :Model Φ, input graph G, target t, size constraint M , and sampling size n.
Output :A Bayesian network Bt explains prediction Φ(G)t
Step 1: Data generation

L = the number of GNN layers of Φ.
Get the L-hop neighbor graph NeGt
Initiate an empty data Dt
For i = 1 to n do:

Generate random s ∈ {0, 1}|NeGt |

Compute realization graph G(s)
Compute prediction Φ(G(s))
For each v ∈ NeGt , compute v = {sv, I(Φ(G(s))v)}
Record v into the entry of node v in data Dt.

End
Step 2: Generate U(t)

Initiate an empty set U(t)
For each v ∈ NeGt , if v 6⊥⊥ t, add v to S(t).
For each v ∈ S(t):

For each v′ ∈ NeGt \ {v} if v′ 6⊥⊥ v, add v′ to U(t).
Rank the nodes in U(t) based on their dependencies with t.
Keep the top M dependent variables in U(t).

Step 3: Structure Learning - Generate the explanation B̂:
B̂ = arg maxB scoreBIC(B : Dt[U(t)])

Return B̂.

G PGM-Explainer with no-child constraint

Algorithm 2: Generating PGM explanation for GNN with no-child constraint
Input :Model Φ, input graph G, target t, size constraint M , and sampling size n.
Output :A Bayesian network Bt explain the prediction Φ(G)t
Step 1: Data generation

(The same as in Step 1 of Algorithm 1, Appendix F)
Step 2: Generate U(t)

Initiate an empty set U(t)
For each v ∈ NeGt , if v 6⊥⊥ t, add v to U(t).
Rank the nodes in U(t) based on their dependencies with t.
Keep the top M dependent variables in U(t).

Step 3: Structure Learning - Generate the explanation B̂:
B̂′ = arg maxB′ scoreBIC(B′ : Dt[U(t) \ {t}])
Adding t to B̂′ and obtain B̂.
Initiate set Pa(t) = U(t)
While ∃v ∈ Pa(t) such that v⊥⊥ t|Pa(t)− {v}, remove v from Pa(t).
For all v ∈ Pa(t), add edge (v, t) to B̂.
Return B̂.

16

H Proof of Theorem 3

This section provides the proof of Theorem 3, Section 3.3.

Proof 3 From proposition 18.1 [28], we have the log-likelihood between a data D on random
variables V and the model B with parameters θ̂B, l(θ̂B : D), can be rewritten as follows

l(θ̂B : D) = n
∑
v∈V

I P̂ (v; PaB(v))− n
∑
v∈V

HP̂ (v) (12)

where P̂ is the empirical distribution.

We now consider the first case where the output B̂ of Algorithm 2 implies an independence assumption
that B∗ does not support. Thus, the set of independence assumptions of B̂ is not contained in that set
in P and we say, by the definition of I-map [28], B̂ is not an I-map of P . Therefore, the log-likelihood
l(θ̂B̂ : Dt) is less than l(θ̂B∗ : Dt) and we have∑

v∈V
IP (v; PaB∗(v)) >

∑
v∈V

IP (v; PaB̂(v)) (13)

where V is the set of nodes of B∗.

Since the sets of parents of t in B∗ and that set in B̂ are the same, we have∑
v∈V \{t}

IP (v; PaB∗(v)) + IP (t; PaB∗(t)) >
∑

v∈V \{t}

IP (v; PaB̂(v)) + IP (t; PaB̂(t)) (14)

⇒
∑

v∈V \{t}

IP (v; PaB∗(v)) >
∑

v∈V \{t}

IP (v; PaB̂(v)) (15)

We denote B′∗ the Bayesian network obtained by removing node t and the related edges from B∗.
Since t has no child in B∗, PaB∗(v) = PaB′∗(v) for all v ∈ V \ {t}. Thus, we have∑

v∈V \{t}

IP (v; PaB∗(v)) =
∑

v∈V \{t}

IP (v; PaB′∗(v)) (16)

Similarly, as t has no child in B̂, PaB̂(v) = PaB̂′(v) for all v ∈ V ∈ V \ {t} and the following holds∑
v∈V \{t}

IP (v; PaB̂(v)) =
∑

v∈V \{t}

IP (v; PaB̂′(v)) (17)

Combining (15), (16) and (17), we have∑
v∈V \{t}

IP (v; PaB′∗(v)) >
∑

v∈V \{t}

IP (v; PaB̂′(v)) (18)

This leads us to the following results on the BIC score of B′∗ and B̂′ as n→∞:

scoreBIC(B′∗ : D′t)− scoreBIC(B̂′ : D′t) (19)

= l(θ̂B′∗ : D′t)− l(θ̂B̂′ : D′t)−
logn

2

(
Dim[B′∗]− Dim[B̂′]

)
(20)

= n

 ∑
v∈V \{t}

I P̂ (v; PaB′∗(v))−
∑

v∈V \{t}

I P̂ (v; PaB̂′(v))

− logn
2

(
Dim[B′∗]− Dim[B̂′]

)
(21)

≈ n∆− logn
2

(
Dim[B′∗]− Dim[B̂′]

)
(22)

where ∆ =
∑

v∈V \{t} IP (v; PaB′∗(v))−
∑

v∈V \{t} IP (v; PaB̂′(v)). The last approximation (22)

is from the fact that, as n→∞, the empirical distribution P̂ converge to P . Since ∆ > 0 by (18)

17

the expression in (22) approaches positive infinity when n→∞ and we have scoreBIC(B′∗ : D′t) >
scoreBIC(B̂′ : D′t). This is a contradiction to the fact that B̂′ maximizes scoreBIC(B′ : D′t).

We now consider the remain case where the independence assumptions in B̂ contains all the indepen-
dence assumptions in B∗, and B∗ contains an independence assumption that B̂ does not. Thus, B̂
is able to represent any distributions that B∗ can. As P̂ converges to P when n→∞, we have the
log-likelihood of the two networks are the equal

l(θ̂B̂ : Dt) = l(θ̂B∗ : Dt) (23)

Using similar tricks as in (15), (16) and (17) for the previous case, we will obtain∑
v∈V \{t}

IP (v; PaB′∗(v)) =
∑

v∈V \{t}

IP (v; PaB̂′(v)) (24)

Now, the difference between the BIC scores of B′∗ and B̂′ as n→∞ is

scoreBIC(B′∗ : D′t)− scoreBIC(B̂′ : D′t) (25)

= l(θ̂B′∗ : D′t)− l(θ̂B̂′ : D′t)−
logn

2

(
Dim[B′∗]− Dim[B̂′]

)
=

logn
2

(
Dim[B̂′]− Dim[B′∗]

)
(26)

As B̂ has less independence assumptions than B∗, Dim[B̂]−Dim[B∗] > 0. Furthermore, the reduction
in number of parameters from B̂ to B̂′ is the same as the reduction from B∗ to B′∗ (remove one node
and the same set of edges). Thus we have Dim[B̂′]− Dim[B′∗] > 0. This constitutes a contradiction
in the assumption that B̂′ maximizes scoreBIC(B′ : D′t).

I Parameters of synthetic dataset

Table 4: Parameters of synthetic datasets.
Dataset Base Motifs Node’s Features
Syn 1 300-node BA graph 80 5-node house-shaped motif Constant
Syn 2 350-node BA graph 100 5-node house-shaped motif Generated from Labels
Syn 3 300-node BA graph 80 9-node grid-shaped motif Constant
Syn 4 Tree with height 8 60 6-node cycle-shaped motif Constant
Syn 5 Tree with height 8 80 9-node grid-shaped motif Constant
Syn 6 300-node BA graph 80 5-node bottle-shaped motif Constant

18

	Additive feature attribution methods unify existing explainers for GNNs
	Example of PGM-Explainer with and without no-child constraint
	Probabilistic Graphical Model preliminaries
	I-map and Perfect map
	Markov-blanket
	Structure learning and Bayesian Information Criterion (BIC) score

	Proof of Theorem 1
	Proof of Theorem 2
	PGM-Explainer without no-child constraint
	PGM-Explainer with no-child constraint
	Proof of Theorem 3
	Parameters of synthetic dataset

