
We thank all reviewers for their careful reading, insightful comments and feedback. We apologize for typos and the lack1

of clarity and heavy notation in some places. We will take all comments into account and fix typos and improve clarity.2

R1: Our convergence is robust even in the absence of completeness or point identifiability (PI). Having PI allows us to3

argue stronger convergence. Hence our results are simply stronger than assuming PI from the get-go as is typically4

done. Our bounds are applicable to weak instruments where PI exists in the limit but is brittle with finite n. Moreover5

(as noted in prior work) projected RMSE convergence suffices to estimate a nuisance parameter in a semiparametric6

model and making good predictions does not require parameter identification. We could assume completeness and7

together with a bound on ill-posedness (Apx C.4) our bounds imply identifiability. We will add a Corollary to this affect.8

Note that we present a general criterion (lines 62-65) for test function selection to ensure equivalence of our objective9

to E[y − h(x)|z] = 0. We also give many general function classes in our paper where this criterion yields a natural10

function class. ηn in line 148 appears in our bound on RMSE in line 152. It measures how good of an approximation11

our norm-constrained test function family is to the optimal test function family by measuring the maximum error of the12

best function in our norm-constrained family over all hypotheses in the spaceH. We provide theoretical lower bounds13

on the regularization hyper-parameters which can be used to select them. In addition to perform cross-validation for14

hyper-parameter selection we have found that we can approximate the supremum over F by the supremum over the set15

of functions f encountered in a pre-training phase where we store the set of test functions f we evaluate against at each16

point in the pre-training. We can use this set later on for cross-validation to effectively simulate a supremum over F .17

Lastly, we do not address the question of hypothesis testing in this work ,but primarily address estimation. Testing and18

estimation are two orthogonal tasks that are typically complementary but are also orthogonal and each of own interest.19

R2: We apologize for the terse presentation of our experimental results in the main body which appears to have20

caused an impression that we are not comparing to the recent works in IV regression. We will present a clearer, more21

comprehensive experimental comparison in future versions. First, we would like to point that we do contain a more22

comprehensive presentation of our experimental results in the Apx. For non-parametric IV there is no prior Random23

Forest (RF) algorithm, as we outline in the RF section. We present the first RF algorithm for this setting. Prior RF24

algorithms for IV setup only work when one makes the assumption of linearity w.r.t. to treatment and estimates25

heterogeneity with respect to exogenous features (such as the IV forest of Athey and Wager). In Fig 2, for neural nets26

we compare with AGMM which is reported to outperform DeepIV (hence we exclude DeepIV in the table). Fig 3, deals27

with a sparse linear setting where the dimension of the input can be much larger than the number of available samples.28

Many of the prior works cited do not have an explicit focus on handling sparsity and without such a focus would not29

scale well in the high-dimensional setting. That being said, for the sake of completeness, we will add a comparison of30

their performance with our approach in the Apx. In Fig 4, we compare with DeepGMM for two reasons. Many of the31

other works implementations do not scale computationally to such high-dimensional instrument and treatment spaces.32

Primarily neural-net based approaches scale well. DeepIV is one previous approach which works when the instrument33

space is high-dimensional but since the DeepGMM paper reported a better performance of their estimator compared to34

DeepIV in this setting, and since we outperform DeepGMM in this setting we left out a comparison with DeepIV in our35

table. We apologize for the lack of clarity in some places. We will fix all of them in the paper. We will 1) make explicit36

the zero-sum aspect of our min-max formulation, 2) fix references to Theorems in Apx, and 3) clarify the dependence37

structure for IV regression. We do need bounds on ill-posedness for good RMSE and we provide explicit bounds for38

some of the function classes we consider. However these constraints are different from the regularization terms of eq39

(2). The regularization terms represent bounds on the norms of the function classes (and consequently their complexity)40

and are necessary to get convergence. We will make this more clear. U in Theorem 1 denotes a bound on the norm41

of functions in FU which is essential for controlling the complexity of the class of test functions and thereby getting42

convergence in RMSE.43

R3: Selecting test function family is indeed important for our approach. We provide strong theoretical guidance to44

do this depending on the richness of our hypothesis class (for e.g. lines 62-65). Once we have selected a class of test45

functions, we show how hyper-parameters for regularized estimators can be picked in many instantiations. Experiments46

on real-world data is indeed an important direction and we leave it for future work. We do demonstrate the robustness47

of our approach to partial real-world data by showing its efficacy on data comprised of MNIST images. Prior work: The48

work on ML estimation for hetero effects assumes that the function h(T,X) is linear in the endogenous treatment T and49

only heterogeneous wrt to the exogenous variables X . The linearity is the main assumption that enables the results of50

that work and makes a significant qualitative and technical difference. The unpublished arXiv work of AGMM does not51

provide statistical guarantees of the resulting estimator apart from a fully non-parametric rate that grows exponentially52

with dimension. A crucial difference is they don’t penalize the objective with the norm of the test function which is the53

key idea that enables our fast rates (based on critical radius of F). Finally, AGMM only provides experimental results54

for neural nets, while here we provide experimental and theoretical results for many other function classes of interest.55


