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Abstract

One of the common ways children learn is by mimicking adults. Imitation learn-
ing focuses on learning policies with suitable performance from demonstrations
generated by an expert, with an unspecified performance measure, and unobserved
reward signal. Popular methods for imitation learning start by either directly
mimicking the behavior policy of an expert (behavior cloning) or by learning a
reward function that prioritizes observed expert trajectories (inverse reinforcement
learning). However, these methods rely on the assumption that covariates used by
the expert to determine her/his actions are fully observed. In this paper, we relax
this assumption and study imitation learning when sensory inputs of the learner
and the expert differ. First, we provide a non-parametric, graphical criterion that is
complete (both necessary and sufficient) for determining the feasibility of imitation
from the combinations of demonstration data and qualitative assumptions about
the underlying environment, represented in the form of a causal model. We then
show that when such a criterion does not hold, imitation could still be feasible by
exploiting quantitative knowledge of the expert trajectories. Finally, we develop an
efficient procedure for learning the imitating policy from experts’ trajectories.

1 Introduction

A unifying theme of Artificial Intelligence is to learn a policy from observations in an unknown
environment such that a suitable level of performance is achieved [33, Ch. 1.1]. Operationally, a
policy is a decision rule that determines an action based on a certain set of covariates; observations
are possibly generated by a human demonstrator following a different behavior policy. The task of
evaluating policies from a combination of observational data and assumptions about the underlying
environment has been studied in the literature of causal inference [29] and reinforcement learning
[37]. Several criteria, algorithms, and estimation methods have been developed to solve this problem
[29, 36, 3, 6, 35, 32, 44]. In many applications, it is not clear which performance measure the
demonstrator is (possibly subconsciously) optimizing. That is, the reward signal is not labeled and
accessible in the observed expert’s trajectories. In such settings, the performance of candidate policies
is not uniquely discernible from the observational data due to latent outcomes, even when infinitely
many samples are gathered, complicating efforts to learn policy with satisfactory performance.

An alternative approach used to circumvent this issue is to find a policy that mimics a demon-
strator’s behavior, which leads to the imitation learning paradigm [2, 4, 14, 28]. The expectation
(or rather hope) is that if the demonstrations are generated by an expert with near-optimal reward,
the performance of the imitator would also be satisfactory. Current methods of imitation learning
can be categorized into behavior cloning [45, 31, 23, 24, 22] and inverse reinforcement learning
[25, 1, 38, 46]. The former focuses on learning a nominal expert policy that approximates the condi-
tional distribution mapping observed input covariates of the behavior policy to the action domain.
The latter attempts to learn a reward function that prioritizes observed behaviors of the expert; rein-
forcement learning methods are then applied using the learned reward function to obtain a nominal
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Figure 1: Causal diagrams where X represents an action (shaded red) and Y represents a latent
reward (shaded blue). Input covariates of the policy space ⇧ are shaded in light red and minimal
imitation surrogates relative to action X and reward Y are shaded in light blue.

policy. However, both families of methods rely on the assumption that the expert’s input observations
match those available to the imitator. When unobserved covariates exist, however, naively imitating
the nominal expert policy does not necessarily lead to a satisfactory performance, even when the
expert him or herself behaves optimally.

Figure 2: The tail light of the
front car is unobserved in high-
way (aerial) drone data.

For concreteness, consider a learning scenario depicted in Fig. 2, de-
scribing trajectories of human-driven cars collected by drones flying
over highways [18, 8]. Using such data, we want to learn a policy
⇡(x|z) deciding on the acceleration (action) X of the demonstrator
car based on the velocity and locations of both the demonstrator
and front cars, summarized as covariates Z. In reality, the human
demonstrator also uses the tail light L of the front car to coordinate
his/her actions. The demonstrator’s performance is evaluated with
a latent reward function Y taking X,Z,L as input. However, only
observations of X,Z are collected by the drone, summarized as
probabilities P (x, z). Fig. 1a describes the graphical representation of this environment. A naïve
approach would estimate the conditional distribution P (x|z) and use it as policy ⇡. A preliminary
analysis reveals that this naive “cloning” approach leads to sub-optimal performance. Consider an
instance where variables X,Y ,Z,L,U 2 {0, 1}; their values are decided by functions: L Z �U ,
X  Z � ¬L, Y  X � Z � L; Z,U are independent variables drawn uniformly over {0, 1}; �
represents the exclusive-or operator. The expected reward E[Y |do(⇡)] induced by ⇡(x|z) = P (x|z)
is equal to 0.5, which is quite far from the optimal demonstrator’s performance, E[Y ] = 1.

This example shows that even when one is able to perfectly mimic an optimal demonstrator, the
learned policy can still be suboptimal. In this paper, we try to explicate this phenomenon and, more
broadly, understand imitability through a causal lens1. Our task is to learn an imitating policy that
achieves the expert’s performance from demonstration data in a structural causal model [29, Ch. 7],
allowing for unobserved confounders (UCs) affecting both action and outcome variables. Specifically,
our contributions are summarized as follows. (1) We introduce a complete graphical criterion for
determining the feasibility of imitation from demonstration data and qualitative knowledge about
the data-generating process represented as a causal graph. (2) We develop a sufficient algorithm for
identifying an imitating policy when the given criterion does not hold, by leveraging the quantitative
knowledge in the observational distribution. (3) We provide an efficient and practical procedure for
finding an imitating policy through explicit parametrization of the causal model, and use it to validate
our results on high-dimensional, synthetic datasets. For the sake of space constraints, we provide all
proofs in the complete technical report [15, Appendix A].

1.1 Preliminaries

In this section, we introduce the basic notations and definitions used throughout the paper. We use
capital letters to denote random variables (X) and small letters for their values (x). DX represents
the domain of X and PX the space of probability distributions over DX . For a set X , |X| denotes
its dimension. We consistently use the abbreviation P (x) to represent the probabilities P (X = x).
Finally, I{Z=z} is an indicator function that returns 1 if Z = z holds true; otherwise 0.

1Some recent progress in the field of causal imitation has been reported, albeit oblivious to the phenomenon
described above and our contributions. Some work considered settings in which the input to the expert policy is
fully observed [7], while another assumed that the primary outcome is observed (e.g., Y in Fig. 1a) [8].
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Calligraphic letters, e.g., G, will be used to represent directed acyclic graphs (DAGs) (e.g., Fig. 1).
We denote by GX the subgraph obtained from G by removing arrows coming into nodes in X; GX is
a subgraph of G by removing arrows going out of X . We will use standard family conventions for
graphical relationships such as parents, children, descendants, and ancestors. For example, the set
of parents of X in G is denoted by pa(X)G = [X2Xpa(X)G . ch , de and an are similarly defined,
We write Pa,Ch,De,An if arguments are included as well, e.g. De(X)G = de(X)G [X . A path
from a node X to a node Y in G is a sequence of edges which does not include a particular node more
than once. Two sets of nodes X,Y are said to be d-separated by a third set Z in a DAG G, denoted
by (X ?? Y |Z)G , if every edge path from nodes in one set to nodes in another are “blocked”. The
criterion of blockage follows [29, Def. 1.2.3].

The basic semantic framework of our analysis rests on structural causal models (SCMs) [29, Ch. 7].
An SCM M is a tuple hU ,V ,F ,P (u)i where V is a set of endogenous variables and U is a
set of exogenous variables. F is a set of structural functions where fV 2 F decides values of
an endogenous variable V 2 V taking as argument a combination of other variables. That is,
V  fV (PaV ,UV ),PaV ✓ V ,UV ✓ U . Values of U are drawn from an exogenous distribution
P (u). Each SCM M induces a distribution P (v) over endogenous variables V . An intervention
on a subset X ✓ V , denoted by do(x), is an operation where values of X are set to constants x,
replacing the functions {fX : 8X 2X} that would normally determine their values. For an SCM
M , let Mx be a submodel of M induced by intervention do(x). For a set S ✓ V , the interventional
distribution P (s|do(x)) induced by do(x) is defined as the distribution over S in the submodel Mx,
i.e., P (s|do(x);M) , P (s;Mx). We leave M implicit when it is obvious from the context. For a
detailed survey on SCMs, we refer readers to [29, Ch. 7].

2 Imitation Learning in Structural Causal Models

In this section, we formalize and study the imitation learning problem in causal language. We first
define a special type of SCM that explicitly allows one to model the unobserved nature of some
endogenous variables, which is called the partially observable structural causal model (POSCM).2

Definition 1 (Partially Observable SCM). A POSCM is a tuple hM ,O,Li, where M is a SCM
hU ,V ,F ,P (u)i and hO,Li is a pair of subsets forming a partition over V (i.e., V = O [L and
O \L = ;); O and L are called observed and latent endogenous variables, respectively.

Each POSCM M induces a probability distribution over V , of which one can measure the observed
variables O. P (o) is usually called the observational distribution. M is associated with a causal
diagram G (e.g., see Fig. 1) where solid nodes represent observed variables O, dashed nodes
represent latent variables L, and arrows represent the arguments PaV of each functional relationship
fV . Exogenous variables U are not explicitly shown; a bi-directed arrow between nodes Vi and Vj

indicates the presence of an unobserved confounder (UC) affecting both Vi and Vj , i.e., UVi\UVj 6= ;.

Consider a POSCM hM ,O,Li with M = hU ,V ,F ,P (u)i. Our goal is to learn an efficient policy
to decide the value of an action variable X 2 O. The performance of the policy is evaluated using
the expected value of a reward variable Y . Throughout this paper, we assume that reward Y is
latent and X affects Y (i.e., Y 2 L \ De(X)G). A policy ⇡ is a function mapping from values
of covariates Pa⇤ ✓ O \ De(X)GX

3 to a probability distribution over X , which we denote by
⇡(x|pa⇤). An intervention following a policy ⇡, denoted by do(⇡), is an operation that draws values
of X independently following ⇡, regardless of its original (natural) function fX . Let M⇡ denote the
manipulated SCM of M induced by do(⇡). Similar to atomic settings, the interventional distribution
P (v|do(⇡)) is defined as the distribution over V in the manipulated model M⇡ , given by,

P (v|do(⇡)) =
X

u

P (u)
Y

V 2V \{X}

P (v|paV ,uV )⇡(x|pa⇤). (1)

The expected reward of a policy ⇡ is thus given by the causal effect E[Y |do(⇡)]. The collection of
all possible policies ⇡ defines a policy space, denoted by ⇧ = {⇡ : DPa⇤ 7! PX} (if Pa⇤ = ;,
⇧ = {⇡ : PX}). For convenience, we define function Pa(⇧) = Pa⇤. A policy space ⇧0 is a

2This definition will facilitate the more explicitly articulation of which endogenous variables are available to
the demonstrator and corresponding policy at each point in time.

3GX is a causal diagram associated with the submodel Mx induced by intervention do(x).
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subspace of ⇧ if Pa(⇧0) ✓ Pa(⇧). We will consistently highlight action X in dark red, reward Y in
dark blue and covariates Pa(⇧) in light red. For instance, in Fig. 1a, the policy space over action X
is given by ⇧ = {⇡ : DZ 7!PX}; Y represents the reward; ⇧0 = {⇡ : PX} is a subspace of ⇧.

Our goal is to learn an efficient policy ⇡ 2 ⇧ that achieves satisfactory performance, e.g., larger
than a certain threshold E[Y |do(⇡)] � ⌧ , without knowledge of underlying system dynamics, i.e.,
the actual, true POSCM M . A possible approach is to identify the expected reward E[Y |do(⇡)]
for each policy ⇡ 2 ⇧ from the combinations of the observed data P (o) and the causal diagram G.
Optimization procedures are applicable to find a satisfactory policy ⇡. Let MhGi denote a hypothesis
class of POSCMs that are compatible with a causal diagram G. We define the non-parametric notion
of identifiability in the context of POSCMs and conditional policies, adapted from [29, Def. 3.2.4].
Definition 2 (Identifiability). Given a causal diagram G and a policy space ⇧, let Y be an arbitrary
subset of V . P (y|do(⇡)) is said to be identifiable w.r.t. hG,⇧i if P (y|do(⇡);M) is uniquely
computable from P (o;M) and ⇡ for any POSCM M 2MhGi and any ⇡ 2 ⇧.

In imitation learning settings, however, reward Y is often not specified and remains latent, which
precludes approaches that attempt to identify E[Y |do(⇡)]:
Corollary 1. Given a causal diagram G and a policy space ⇧, let Y be an arbitrary subset of V . If
not all variables in Y are observed (i.e., Y \L 6= ;), P (y|do(⇡)) is not identifiable.

In other words, Corol. 1 shows that when the reward Y is latent, it is infeasible to uniquely determine
values of E[Y |do(⇡)] from P (o). A similar observation has been noted in [20, Prop. 1]. This suggests
that we need to explore learning through other modalities.

2.1 Causal Imitation Learning

To circumvent issues of non-identifiability, a common solution is to assume that the observed
trajectories are generated by an “expert” demonstrator with satisfactory performance E[Y ], e.g.,
no less than a certain threshold (E[Y ] � ⌧ ). If we could find a policy ⇡ that perfectly “imitates"
the expert with respect to reward Y , E[Y |do(⇡)] = E[Y ], the performance of the learner is also
guaranteed to be satisfactory. Formally,
Definition 3 (Imitability). Given a causal diagram G and a policy space ⇧, let Y be an arbitrary
subset of V . P (y) is said to be imitable w.r.t. hG,⇧i if there exists a policy ⇡ 2 ⇧ uniquely
computable from P (o) such that P (y|do(⇡);M) = P (y;M) for any POSCM M 2MhGi.

Our task is to determine the imitability of the expert performance. More specifically, we want to
learn an imitating policy ⇡ 2 ⇧ from P (o) such that P (y|do(⇡)) = P (y)4, in any POSCM M
associated with the causal diagram G. Consider Fig. 3a as an example. P (y) is imitable with policy
⇡(x) = P (x) since by Eq. (1) and marginalization, P (y|do(⇡)) =

P
x,w P (y|w)P (w|x)⇡(x) =P

x,w P (y|w)P (w|x)P (x) = P (y). In practice, unfortunately, the expert’s performance cannot
always be imitated. To understand this setting, we first write, more explicitly, the conditions under
which this is not the case:
Lemma 1. Given a causal diagram G and a policy space ⇧, let Y be an arbitrary subset of V . P (y)
is not imitable w.r.t. hG,⇧i if there exists two POSCMs M1,M2 2 MhGi satisfying P (o;M1) =
P (o;M2) while there exists no policy ⇡ 2 ⇧ such that for i = 1, 2, P (y|do(⇡);Mi) = P (y;Mi).

X

W Y

(a)

X

W Y

(b)

Figure 3: Imitability v. Identi-
fiability.

It follows as a corollary that P (y) is not imitable if there exists a
POSCM M compatible with G such that no policy ⇡ 2 ⇧ could
ensure P (y|do(⇡);M) = P (y;M). For instance, consider the
causal diagram G and policy space ⇧ in Fig. 3b. Here, the expert’s
reward P (y) is not imitable: consider a POSCM with functions
X  U ,W  X,Y  U � ¬W ; values U are drawn uniformly
over {0, 1}. In this model, P (Y = 1|do(⇡)) = 0.5 for any policy ⇡,
which is far from the optimal expert reward, P (Y = 1) = 1.

An interesting observation from the above example of Fig. 3b is that
the effect P (y|do(⇡)) is identifiable, following the front-door criterion in [29, Thm. 3.3.4], but no

4The imitation is trivial if Y 62 De(X)G : by Rule 3 of [29, Thm. 3.4.1] (or [6, Thm. 1]), P (y|do(⇡)) = P (y)
for any policy ⇡. This paper aims to find a specific ⇡ satisfying P (y|do(⇡)) = P (y) even when Y 2 De(X)G .
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policy imitates the corresponding P (y). However, in some settings, the expert’s reward P (y) is
imitable but the imitator’s reward P (y|do(⇡)) cannot be uniquely determined. To witness, consider
again the example in Fig. 3a. The imitability of P (y) has been previously shown; while P (y|do(⇡))
is not identifiable due to latent reward Y (Corol. 1).

In general, the problem of imitability is orthogonal to identifiability, and, therefore, requires separate
consideration. Since imitability does not always hold, we introduce a useful graphical criterion for
determining whether imitating an expert’s performance is feasible, and if so, how.
Theorem 1 (Imitation by Direct Parents). Given a causal diagram G and a policy space ⇧, P (y)
is imitable w.t.r. hG,⇧i if pa(X)G ✓ Pa(⇧) and there is no bi-directed arrow pointing to X in G.
Moreoever, the imitating policy ⇡ 2 ⇧ is given by ⇡ (x|pa(⇧)) = P (x|pa(X)G).

In words, Thm. 1 says that if the expert and learner share the same policy space, then the policy
is always imitable. In fact, this result can be seen as a causal justification for when the method of
“behavior cloning”, widely used in practice, is valid, leading to proper imitation. When the original
behavior policy fX is contained in the policy space ⇧, the leaner could imitate the expert’s reward
P (y) by learning a policy ⇡ 2 ⇧ that matches the distribution P (x|pa(⇧)) [45, 31]. Next, we
consider the more challenging setting when policy spaces of the expert and learner disagree (i.e., the
learner and expert have different views of the world, fX 62 ⇧). We will leverage a graphical condition
adopted from the celebrated backdoor criterion [29, Def. 3.3.1].
Definition 4 (⇡-Backdoor). Given a causal diagram G and a policy space ⇧, a set Z is said to satisfy
the ⇡-backdoor criterion w.r.t. hG.⇧i if and only if Z ✓ Pa(⇧) and (Y ?? X|Z)GX , which is called
the ⇡-backdoor admissible set w.r.t. hG,⇧i.

For concreteness, consider again the highway driving example in Fig. 1a. There exists no ⇡-backdoor
admissible set due to the path X  L ! Y . Now consider a modified graph in Fig. 1b where
edge L ! Y is removed. {Z} is ⇡-backdoor admissible since Z 2 Pa(⇧) and (Y ?? X|Z)

GX
.

Leveraging the imitation backdoor condition, our next theorem provides a full characterization for
when imitating expert’s performance is achievable, despite the fact that the reward Y is latent.
Theorem 2 (Imitation by ⇡-Backdoor). Given a causal diagram G and a policy space ⇧, P (y)
is imitable w.r.t. hG,⇧i if and only if there exists an ⇡-backdoor admissible set Z w.r.t. hG,⇧i.
Moreover, the imitating policy ⇡ 2 ⇧ is given by ⇡ (x|pa(⇧)) = P (x|z).

That is, one can learn an imitating policy from a policy space ⇧0 = {⇡ : DZ 7!PX} that mimics the
conditional probabilities P (x|z) if and only if Z is ⇡-backdoor admissible. If that is the case, such a
policy can be learned from data through standard density estimation methods. For instance, Thm. 2
ascertains that P (y) in Fig. 1a is indeed non-imitable. On the other hand, P (y) in Fig. 1b is imitable,
guaranteed by the ⇡-backdoor admissible set {Z}; the imitating policy is given by ⇡(x|z) = P (x|z).

3 Causal Imitation Learning with Data Dependency

One may surmise that the imitation boundary established by Thm. 2 suggests that when there exists no
⇡-backdoor admissible set, it is infeasible to imitate the expert performance from observed trajectories
of demonstrations. In this section, we will circumvent this issue by exploiting actual parameters of
the observational distribution P (o). In particular, we denote by MhG,P i a subfamily of candidate
models in MhGi that induce both the causal diagram G and the observational distribution P (o), i.e.,
MhG,P i =

�
8M 2MhGi : P (o;M) = P (o)

 
. We introduce a refined notion of imitability that will

explore the quantitative knowledge of observations P (o) (to be exemplified). Formally,
Definition 5 (Practical Imitability). Given a causal diagram G, a policy space ⇧, and an observational
distribution P (o), let Y be an arbitrary subset of V . P (y) is said to be practically imitable (for
short, p-imitable) w.r.t. hG,⇧,P (o)i if there exists a policy ⇡ 2 ⇧ uniquely computable from P (o)
such that P (y|do(⇡);M) = P (y;M) for any POSCM M 2MhG,P i.

The following corollary can be derived based on the definition of practical imitability.
Corollary 2. Given a causal diagram G, a policy space ⇧ and an observational distribution P (o),
let a subset Y ✓ V . If P (y) is imitable w.r.t. hG,⇧i, P (y) is p-imitable w.r.t. hG,⇧,P (o)i.

Compared to Def. 3, the practical imitability of Def. 5 aims to find an imitating policy for a subset of
candidate POSCMs MhG,P i restricted to match a specific observational distribution P (o). Def. 3, on
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the other hand, requires only the causal diagram G. In other words, for an expert’s performance P (y)
that is non-imitable w.r.t. hG,⇧i, it could still be p-imitable after analyzing actual probabilities of the
observational distribution P (o).

For concreteness, consider again P (y) in Fig. 3b which is not imitable due to the bi-directed arrow
X $ Y . However, new imitation opportunities arise when actual parameters of the observational
distribution P (x,w, y) are provided. Suppose the underlying POSCM is given by: X  UX � UY ,
W  X � UW , Y  W � UY where UX ,UY ,UW are independent binary variables drawn from
P (UX = 1) = P (UY = 1) = P (UW = 0) = 0.9. Here, the causal effect P (y|do(x)) is identifiable
from P (x,w, y) following the front-door formula P (y|do(x)) =

P
w P (w|x)

P
x0 P (y|w,x0)P (x0)

[29, Thm. 3.3.4]. We thus have P (Y = 1|do(X = 0)) = 0.82 which coincides with P (Y = 1) =
0.82, i.e., P (y) is p-imitable with atomic intervention do(X = 0). In the most practical settings,
the expert reward P (y) rarely equates to P (y|do(x)); stochastic policies ⇡(x) are then applicable to
imitate P (y) by re-weighting P (y|do(x)) induced by the corresponding atomic interventions 5. To
tackle p-imitability in a general way, we proceed by defining a set of observed variables that serve as
a surrogate of the unobserved Y with respect to interventions on X . Formally,
Definition 6 (Imitation Surrogate). Given a causal diagram G, a policy space ⇧, let S be an arbitrary
subset of O. S is an imitation surrogate (for short, surrogate) w.r.t. hG,⇧i if (Y ?? X̂|S)G[⇧ where
G [⇧ is a supergraph of G by adding arrows from Pa(⇧) to X; X̂ is a new parent to X .

An surrogate S is said to be minimal if there exists no subset S0 ⇢ S such that S0 is also a
surrogate w.r.t. hG,⇧i. Consider as an example Fig. 1c where the supergraph G [ ⇧ coincides
with the causal diagram G. By Def. 6, both {W ,S} and {S} are valid surrogate relative to hX,Y i
with {S} being the minimal one. By conditioning on S, the decomposition of Eq. (1) implies
P (y|do(⇡)) =

P
s,w,u P (y|s)P (s|w,u)P (w|x)⇡(x)P (u) =

P
s P (y|s)P (s|do(⇡)). That is, the

surrogate S mediates all influence of interventions on action X to reward Y . It is thus sufficient to
find an imitating policy ⇡ such that P (s|do(⇡)) = P (s) for any POSCM M associated with Fig. 1c.
The resultant policy is guaranteed to imitate the expert’s reward P (y).

When a surrogate S is found and P (s|do(⇡)) is identifiable, one could compute P (s|do(⇡)) for each
policy ⇡ and check if it matches P (s). In many settings, however, P (s|do(⇡)) is not identifiable w.r.t.
hG,⇧i. For example, in Fig. 1d, S is a surrogate w.r.t. hG,⇧i, but P (s|do(⇡)) is not identifiable due
to collider Z (⇡ uses non-descendants as input by default). Fortunately, identifying P (s|do(⇡)) may
still be feasible in some subspaces of ⇧:
Definition 7 (Identifiable Subspace). Given a causal diagram G, a policy space ⇧, and a subset
S ✓ O, let ⇧0 be a policy subspace of ⇧. ⇧0 is said to be an identifiable subspace (for short,
id-subspace) w.r.t. hG,⇧,Si if P (s|do(⇡)) is identifiable w.r.t. hG,⇧0i.

Consider a policy subspace ⇧0 = {⇡ : PX} described in Fig. 1d (i.e. ⇡ that does not exploit
information from covariates Z). P (s|do(⇡)) is identifiable w.r.t. hG,⇧0i following the front-door
adjustment on W [29, Thm. 3.3.4]. We could then evaluate interventional probabilities P (s|do(⇡))
for each policy ⇡ 2 ⇧0 from the observational distribution P (x,w, s, z); the imitating policy is
obtainable by solving the equation P (s|do(⇡)) = P (s). In other words, {S} and ⇧0 forms an
instrument that allows one to solve the imitation learning problem in Fig. 1d.
Definition 8 (Imitation Instrument). Given a causal diagram G and a policy space ⇧, let S be a subset
of O and ⇧0 be a subspace of ⇧. hS,⇧0i is said to be an imitation instrument (for short, instrument)
if S is a surrogate w.r.t. hG,⇧0i and ⇧0 is an id-subspace w.r.t. hG,⇧,Si.

Lemma 2. Given a causal diagram G, a policy space ⇧, and an observational distribution P (o),
let hS,⇧0i be an instrument w.r.t. hG,⇧i. If P (s) is p-imitable w.r.t. hG,⇧0,P (o)i, then P (y) is
p-imitable w.r.t. hG,⇧,P (o)i. Moreover, an imitating policy ⇡ for P (s) w.r.t. hG,⇧0,P (o)i is also
imitating policy for P (y) w.r.t. hG,⇧,P (o)i.

In words, Lem. 2 shows that when an imitation instrument hS,⇧0i is present, we could reduce the
original imitation learning on a latent reward Y to a p-imitability problem over observed surrogate
variables S using policies in an identifiable subspace ⇧0. The imitating policy ⇡ is obtainable by
solving the equation P (s|do(⇡)) = P (s).

5Consider a variation of the model where P (UW = 1) = 0.7. P (y) is p-imitable with ⇡(X = 0) = 0.75.
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3.1 Confounding Robust Imitation

Our task in this section is to introduce a general algorithm that finds instruments, and learns a
p-imitating policy given hG,⇧,P (o)i. A naïve approach is to enumerate all pairs of subset S and
subspace ⇧0 and check whether they form an instrument; if so, we can compute an imitating policy
for P (s) w.r.t. hG,⇧0,P (o)i. However, the challenge is that the number of all possible subspaces ⇧0

(or subsets S) can be exponentially large. Fortunately, we can greatly restrict this search space. Let
G [ {Y } denote a causal diagram obtained from G by making reward Y observed. The following
proposition suggests that it suffices to consider only identifiable subspaces w.r.t. hG [ {Y },⇧,Y i.
Lemma 3. Given a causal diagram G, a policy space ⇧, let a subspace ⇧0 ✓ ⇧. If there exists
S ✓ O such that hS,⇧0i is an instrument w.r.t. hG,⇧i, ⇧0 is an id-subspace w.r.t. hG [ {Y },⇧,Y i.

Algorithm 1: IMITATE

1: Input: G,⇧,P (o).
2: while LISTIDSPACE(G [ {Y },⇧,Y ) outputs a

policy subspace ⇧0 do
3: while LISTMINSEP(G [⇧0, X̂,Y , {},O)

outputs a surrogate set S do
4: if IDENTIFY(G,⇧0,S) = YES then
5: Solve for a policy ⇡ 2 ⇧0 such that

P (s|do(⇡);M) = P (s)

for any POSCM M 2MhG,P i.
6: Return ⇡ if it exists; continue otherwise.
7: end if
8: end while
9: end while Return FAIL.

Our algorithm IMITATE is described in
Alg. 1. We assume access to an IDEN-
TIFY oracle [41, 34, 6] that takes as in-
put a causal diagram G, a policy space
⇧ and a set of observed variables S. If
P (s|do(⇡)) is identifiable w.r.t. hG,⇧i,
IDENTIFY returns “YES”; otherwise, it re-
turns “NO”. For details about the IDEN-
TIFY oracle, we refer readers to [15, Ap-
pendix B]. More specifically, IMITATE
takes as input a causal diagram G, a policy
space ⇧ and an observational distribution
P (o). At Step 2, IMITATE applies a subrou-
tine LISTIDSPACE to list identifiable sub-
spaces ⇧0 w.r.t. hG[{Y },⇧,Y i, following
the observation made in Lem. 3. The im-
plementation details of LISTIDSPACE are
provided in [15, Appendix C]. When an identifiable subspace ⇧0 is found, IMITATE tries to obtain a
surrogate S w.r.t the diagram G and subspace ⇧0. While there could exist multiple such surrogates,
the following proposition shows that it is sufficient to consider only minimal ones.
Lemma 4. Given a causal diagram G, a policy space ⇧, an observational distribution P (o) and a
subset S ✓ O. P (s) is p-imitable only if for any S

0 ✓ S, P (s0) is p-imitable w.r.t. hG,⇧,P (o)i.

We apply a subroutine LISTMINSEP in [43] to enumerate minimal surrogates in O that d-separate X̂
and Y in the supergraph G [⇧0. When a minimal surrogate S is found, IMITATE uses the IDENTIFY
oracle to validate if P (s|do(⇡)) is identifiable w.r.t. hG,⇧0i, i.e., hS,⇧0i form an instrument.
Consider Fig. 1d as an example. While P (y|do(⇡)) is not identifiable for every policy in ⇧ had Y
been observed, ⇧ contains an id-subspace {⇡ : PX} w.r.t. hG [ {Y },⇧,Y i, which is associated
with a minimal surrogate {S}. Applying IDENTIFY confirms that h{S}, {⇡ : PX}i is an instrument.

At Step 5, IMITATE solves for a policy ⇡ in the subspace ⇧0 that imitates P (s) for all instances in
the hypothesis class MhG,P i. If such a policy exists, IMITATE returns ⇡; otherwise, the algorithm
continues. Since hS,⇧0i is an instrument, Lem. 2 implies that the learned policy ⇡, if it exists, is
ensured to imitate the expert reward P (y) for any POSCM M 2MhG,P i.
Theorem 3. Given a causal diagram G, a policy space ⇧, and an observational distribution P (o), if
IMITATE returns a policy ⇡ 2 ⇧, P (y) is p-imitable w.r.t. hG,⇧,P (o)i. Moreover, ⇡ is an imitating
policy for P (y) w.r.t. hG,⇧,P (o)i.

3.2 Optimizing Imitating Policies

We now introduce optimization procedures to solve for an imitating policy at Step 5 of IMITATE
algorithm. Since the pair hS,⇧0i forms a valid instrument (ensured by Step 4), the interventional dis-
tribution P (s|do(⇡);M) remains invariant among all models in MhGi, i.e., P (s|do(⇡)) is identifiable
w.r.t. hG,⇧i. We could thus express P (s|do(⇡);M) for any M 2MhG,P i as a function of the ob-
servational distribution P (o); for simplicity, we write P (s|do(⇡)) = P (s|do(⇡);M). The imitating
policy ⇡ is obtainable by solving the equation P (s|do(⇡)) = P (s). We could derive a closed-form
formula for P (s|do(⇡)) following standard causal identification algorithms in [41, 34, 6]. As an
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Figure 4: (a) Causal diagram for highway driving example where a left-side car exists; (b,c)
P (y|do(⇡)) induced by the causal imitation method (ci) and the naive behavior cloning (bc) compared
with the actual distribution P (y) over the expert’s reward (opt).

example, consider again the setting of Fig. 1c with binary X,W ,S,Z; parameters of P (x,w, s, z)
could be summarized using an 8-entry probability table. The imitating policy ⇡(x) is thus a solution
of a series of linear equations

P
x ⇡(x)P (s|do(x)) = P (s) and

P
x ⇡(x) = 1, given by:

⇡(x0) =
P (s1)� P (s1|do(x0))

P (s1|do(x1))� P (s1|do(x0))
, ⇡(x1) =

P (s1|do(x1))� P (s1)

P (s1|do(x1))� P (s1|do(x0))
.

Among quantities in the above equation, xi, sj represent assignments X = i,S = j for i, j 2 {0, 1}.
The interventional distribution P (s|do(x)) could be identified from P (x,w, s, z) using the front-door
adjustment formula P (s|do(x)) =

P
w P (w|x)

P
x0 P (s|x0,w)P (x0) [29, Thm. 3.3.4].

However, evaluating interventional probabilities P (s|do(⇡)) from the observational distribution
P (o) could be computational challenging if some variables in O are high-dimensional (e.g., W
in Fig. 1d). Properties of the imitation instrument hS,⇧0i suggest a practical approach to address
this issue. Since P (s|do(⇡)) is identifiable w.r.t. hG,⇧0i, by Def. 2, it remains invariant over the
models in the hypothesis class MhGi. This means that we could compute interventional probabilities
P (s|do(⇡); M̃) in an arbitrary model M̃ 2MhG,P i; such an evaluation will always coincide with the
actual, true causal effect P (s|do(⇡)) in the underlying model. This observation allows one to obtain
an imitating policy through the direct parametrization of POSCMs [21]. Let NhGi be a parametrized
subfamily of POSCMs in MhGi. We could obtain an POSCM M̃ 2 NhGi such that its observational
distribution P (o; M̃) = P (o); an imitating policy ⇡ is then computed in the parametrized model M̃ .
Corol. 3 shows that such a policy ⇡ is an imitating policy for the expert’s reward P (y).
Corollary 3. Given a causal diagram G, a policy space ⇧, and an observational distribution P (o),
let hS,⇧0i be an instrument w.r.t. hG,⇧i. If there exists a POSCM M 2MhG,P i and a policy ⇡ 2 ⇧0

such that P (s|do(⇡);M) = P (s), then P (y) is p-imitable w.r.t. hG,⇧,P (o)i. Moreover, ⇡ is an
imitating policy for P (y) w.r.t. hG,⇧,P (o)i.

In practical experiments, we consider a parametrized family of POSCMs NhGi where functions
associated with each observed variable in O are parametrized by a family of neural networks, similar
to [21]. Using the computational framework of Generative Adversarial Networks (GANs) [9, 27], we
obtain a model M̃ 2 NhGi satisfying the observational constraints P (o; M̃) = P (o). The imitating
policy is trained through explicit interventions in the learned model M̃ ; a different GAN is then
deployed to optimize the policy ⇡ so that it imitates the observed trajectories drawn from P (s).

4 Experiments

We demonstrate our algorithms on several synthetic datasets, including highD [18] consisting of
natural trajectories of human driven vehicles, and on MNIST digits. In all experiments, we test our
causal imitation method (ci): we apply Thm. 2 when there exists an ⇡-backdoor admissible set;
otherwise, Alg. 1 is used to leverage the observational distribution. As a baseline, we also include
naïve behavior cloning (bc) that mimics the observed conditional distribution P (x|pa(⇧)), as well as
the actual reward distribution generated by an expert (opt). We found that our algorithms consistently
imitate distributions over the expert’s reward in imitable (p-imitable) cases; and p-imitable instances
commonly exist. We refer readers to [15, Appendix D] for more experiments, details, and analysis.
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Highway Driving We consider a modified example of the drone recordings of human-driven cars
in Sec. 1 where the driver’s braking action W of the left-side car is also observed. Fig. 4a shows the
causal diagram of this environment; Z represent the velocity of the front-car; action X represents the
velocity of the driving car; W and the reward signal Y are both affected by an unobserved confounder
U , representing the weather condition. In Fig. 4a, {Z} is ⇡-backdoor admissible while {Z,W} is not
due to active path X  L!W $ Y . We obtain policies for the causal and naive imitators training
two separate GANs. Distributions P (y|do(⇡)) induced by all algorithms are reported in Fig. 4b. We
also measure the L1 distance between P (y|do(⇡)) and the expert’s reward P (y). We find that the
causal approach (ci), using input set {Z}, successfully imitates P (y) (L1 = 0.0018). As expected,
the naive approach (bc) utilizing all covariates {Z,W} is unable to imitate the expert (L1 = 0.2937).

MNIST Digits We consider an instance of Fig. 1c where X,S,Y are binary variables; binary
values of W are replaced with corresponding images of MNIST digits (pictures of 1 or 0), determined
based on the action X . For the causal imitator (ci), we learn a POSCM M̂ such that P (x,w, s; M̂) =
P (x,w, s). To obtain M̂ , we train a GAN to imitate the observational distribution P (x,w, s), with a
separate generator for each X,W ,S. We then train a separate discriminator measuring the distance
between observed trajectories P (s) and interventional distribution P (s|do(⇡); M̂) over the surrogate
{S}. The imitating policy is obtained by minimizing such a distance. Distributions P (y|do(⇡))
induced by all algorithms are reported in Fig. 4c. We find that the causal approach (ci) successfully
imitates P (y) (L1 = 0.0634). As expected, the naive approach (bc) mimicking distribution P (x) is
unable to imitate the expert (L1 = 0.1900).

5 Conclusion

We investigate the imitation learning in the semantics of structural causal models. The goal is to find
an imitating policy that mimics the expert behaviors from combinations of demonstration data and
qualitative knowledge about the data-generating process represented as a causal diagram. We provide
a graphical criterion that is complete (i.e., sufficient and necessary) for determining the feasibility of
learning an imitating policy that mimics the expert’s performance. We also study a data-dependent
notion of imitability depending on the observational distribution. An efficient algorithm is introduced
which finds an imitating policy, by exploiting quantitative knowledge contained in the observational
data and the presence of surrogate endpoints. Finally, we propose a practical procedure for estimating
such an imitating policy from observed trajectories of the expert’s demonstrations.

Broader Impact

This paper investigates the theoretical framework of learning a policy that imitates the distribution
over a primary outcome from natural trajectories of an expert demonstrator, even when the primary
outcome itself is unobserved and input covariates used by the expert determining original values
of the action are unknown. Since in practice, the actual reward is often unspecified and the learner
and the demonstrator rarely observe the environment in the same fashion, our methods are likely to
increase the progress of automated decision systems. Such systems may be applicable to various
fields, including the development of autonomous vehicle, industrial automation and the management
of chronic disease. These applications may have a broad spectrum of societal implications. The
adoption of autonomous driving and industrial automation systems could save cost and reduce risks
such as occupational injuries; while it could also create unemployment. Treatment recommendation
in the clinical decision support system could certainly alleviate the stress on the healthcare workers.
However, this also raise questions concerning with the accountability in case of medical malpractice;
collection of private personal information could also make the hospital database valuable targets
for malicious hackers. Overall, we would encourage research to understand the risks arising from
automated decision systems and mitigations for its negative impact.

Recently, there is a growing amount of dataset of natural vehicle trajectories like highD [18] being
licensed for commercial use. An immediate positive impact of this work is that we discuss potential
risk of training decision-making policy from the observational data due to the presence of unobserved
confounding, as shown in Sec. 1 and 4. More broadly, since our method is based on the semantics
of structural causal models [29, Ch. 7], its adoption could cultivate machine learning practitioners
with proper training in causal reasoning. A favorable characteristic of causal inference methods is
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that they are inherently robust: for example, the definition of imitability Def. 3 requires the imitating
policy to perfectly mimics the expert performance in any model compatible to the causal diagram.
Automated decision systems using the causal inference methods prioritize the safety and robustness
in decision-making, which is increasingly essential since the use of black-box AI systems is prevalent
and our understandings of their potential implications are still limited.

Acknowledge

The authors were partially supported by grants from NSF IIS-1704352 and IIS-1750807 (CAREER).

References
[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In

Proceedings of the twenty-first international conference on Machine learning, page 1, 2004.

[2] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from
demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

[3] E. Bareinboim and J. Pearl. Causal inference and the data-fusion problem. Proceedings of the
National Academy of Sciences, 113:7345–7352, 2016.

[4] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Survey: Robot programming by demonstra-
tion. Handbook of robotics, 59(BOOK_CHAP), 2008.

[5] J. Correa and E. Bareinboim. From statistical transportability to estimating the effect of
stochastic interventions. In S. Kraus, editor, Proceedings of the 28th International Joint
Conference on Artificial Intelligence, pages 1661–1667, Macao, China, 2019. International Joint
Conferences on Artificial Intelligence Organization.

[6] J. Correa and E. Bareinboim. A calculus for stochastic interventions: Causal effect identification
and surrogate experiments. In Proceedings of the 34th AAAI Conference on Artificial Intelligence,
New York, NY, 2020. AAAI Press.

[7] P. de Haan, D. Jayaraman, and S. Levine. Causal confusion in imitation learning. In Advances
in Neural Information Processing Systems, pages 11693–11704, 2019.

[8] J. Etesami and P. Geiger. Causal transfer for imitation learning and decision making under
sensor-shift. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York,
NY, 2020. AAAI Press.

[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems,
pages 2672–2680, 2014.

[10] O. Goudet, D. Kalainathan, P. Caillou, I. Guyon, D. Lopez-Paz, and M. Sebag. Causal Generative
Neural Networks. arXiv:1711.08936 [stat], Nov. 2017.

[11] O. Goudet, D. Kalainathan, P. Caillou, D. Lopez-Paz, I. Guyon, M. Sebag, A. Tritas,
and P. Tubaro. Learning Functional Causal Models with Generative Neural Networks.
arXiv:1709.05321 [stat], Sept. 2017.

[12] R. D. Hjelm, A. P. Jacob, T. Che, A. Trischler, K. Cho, and Y. Bengio. Boundary-Seeking
Generative Adversarial Networks. arXiv:1702.08431 [cs, stat], Feb. 2018.

[13] Y. Huang and M. Valtorta. Pearl’s calculus of intervention is complete. In R. Dechter and
T. Richardson, editors, Proceedings of the Twenty-Second Conference on Uncertainty in Artifi-
cial Intelligence, pages 217–224. AUAI Press, Corvallis, OR, 2006.

[14] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning
methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

[15] E. B. Junzhe Zhang, Daniel Kumor. Causal imitation learning with unobserved confounders.
Technical Report R-66, Causal AI Lab, Columbia University., 2020.

10



[16] M. Kocaoglu, C. Snyder, A. G. Dimakis, and S. Vishwanath. CausalGAN: Learning Causal
Implicit Generative Models with Adversarial Training. arXiv:1709.02023 [cs, math, stat], Sept.
2017.

[17] D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

[18] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein. The highd dataset: A drone dataset of
naturalistic vehicle trajectories on german highways for validation of highly automated driving
systems. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC),
pages 2118–2125, 2018.

[19] S. Lee and E. Bareinboim. Structural causal bandits with non-manipulable variables. In
Proceedings of the 33rd AAAI Conference on Artificial Intelligence, pages 4164–4172, Honolulu,
Hawaii, 2019. AAAI Press.

[20] S. Lee and E. Bareinboim. Causal effect identifiability under partial-observability. In Proceed-
ings of the 37th International Conference on Machine Learning (ICML-20), 2020.

[21] C. Louizos, U. Shalit, J. Mooij, D. Sontag, R. Zemel, and M. Welling. Causal Effect Inference
with Deep Latent-Variable Models. arXiv:1705.08821 [cs, stat], May 2017.

[22] J. Mahler and K. Goldberg. Learning deep policies for robot bin picking by simulating robust
grasping sequences. In Conference on robot learning, pages 515–524, 2017.

[23] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. L. Cun. Off-road obstacle avoidance through
end-to-end learning. In Advances in neural information processing systems, pages 739–746,
2006.

[24] K. Mülling, J. Kober, O. Kroemer, and J. Peters. Learning to select and generalize striking
movements in robot table tennis. The International Journal of Robotics Research, 32(3):263–
279, 2013.

[25] A. Y. Ng, S. J. Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1,
pages 663–670, 2000.

[26] X. Nguyen, M. J. Wainwright, and M. I. Jordan. Estimating divergence functionals and the
likelihood ratio by convex risk minimization. IEEE Transactions on Information Theory,
56(11):5847–5861, Nov. 2010.

[27] S. Nowozin, B. Cseke, and R. Tomioka. F-GAN: Training Generative Neural Samplers using
Variational Divergence Minimization. arXiv:1606.00709 [cs, stat], June 2016.

[28] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters, et al. An algorithmic
perspective on imitation learning. Foundations and Trends in Robotics, 7(1-2):1–179, 2018.

[29] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, New York,
2000. 2nd edition, 2009.

[30] J. Pearl. Remarks on the method of propensity scores. Statistics in Medicine, 28:1415–1416,
2009. <http://ftp.cs.ucla.edu/pub/stat_ser/r345-sim.pdf>.

[31] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Advances in
neural information processing systems, pages 305–313, 1989.

[32] P. Rosenbaum and D. Rubin. The central role of propensity score in observational studies for
causal effects. Biometrika, 70:41–55, 1983.

[33] S. Russell and P. Norvig. Artificial intelligence: a modern approach. 2002.

[34] I. Shpitser and J. Pearl. Identification of joint interventional distributions in recursive semi-
Markovian causal models. In Proceedings of the Twenty-First National Conference on Artificial
Intelligence, pages 1219–1226. 2006.

11



[35] I. Shpitser and E. Sherman. Identification of personalized effects associated with causal
pathways. In UAI, 2018.

[36] P. Spirtes, C. N. Glymour, and R. Scheines. Causation, prediction, and search. MIT press,
2000.

[37] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 1998.

[38] U. Syed and R. E. Schapire. A game-theoretic approach to apprenticeship learning. In Advances
in neural information processing systems, pages 1449–1456, 2008.

[39] J. Tian. Studies in Causal Reasoning and Learning. PhD thesis, Computer Science Department,
University of California, Los Angeles, CA, November 2002.

[40] J. Tian. Identifying dynamic sequential plans. In Proceedings of the Twenty-Fourth Conference
on Uncertainty in Artificial Intelligence, pages 554–561, 2008.

[41] J. Tian and J. Pearl. A general identification condition for causal effects. In Proceedings of the
Eighteenth National Conference on Artificial Intelligence, pages 567–573, Menlo Park, CA,
2002. AAAI Press/The MIT Press.

[42] J. Tian and J. Pearl. A general identification condition for causal effects. Technical Report
R-290-A, Department of Computer Science, University of California, Los Angeles, CA, 2003.

[43] B. van der Zander, M. Liśkiewicz, and J. Textor. Constructing separators and adjustment sets in
ancestral graphs. In Proceedings of the UAI 2014 Conference on Causal Inference: Learning
and Prediction-Volume 1274, pages 11–24, 2014.

[44] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

[45] B. WIDROW. Pattern-recognizing control systems. Compurter and Information Sciences, 1964.

[46] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement
learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

12


	Introduction
	Preliminaries

	Imitation Learning in Structural Causal Models
	Causal Imitation Learning

	Causal Imitation Learning with Data Dependency
	Confounding Robust Imitation
	Optimizing Imitating Policies

	Experiments
	Conclusion
	Proofs
	Causal Identification in POSCMs
	Identifying Conditional Plans

	ListIdSpace
	Experiments
	Data-Dependent Binary Imitability
	GAN-Based Binary Imitability
	Discussion

	Highway Driving
	Making Things Continuous

	MNIST Digits


