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Abstract

The Gumbel-Softmax is a continuous distribution over the simplex that is often
used as a relaxation of discrete distributions. Because it can be readily interpreted
and easily reparameterized, it enjoys widespread use. We propose a modular and
more flexible family of reparameterizable distributions where Gaussian noise is
transformed into a one-hot approximation through an invertible function. This
invertible function is composed of a modified softmax and can incorporate diverse
transformations that serve different specific purposes. For example, the stick-
breaking procedure allows us to extend the reparameterization trick to distributions
with countably infinite support, thus enabling the use of our distribution along
nonparametric models, or normalizing flows let us increase the flexibility of the
distribution. Our construction enjoys theoretical advantages over the Gumbel-
Softmax, such as closed form KL, and significantly outperforms it in a variety of
experiments. Our code is available at https://github.com/cunningham-lab/
igr.

1 Introduction

Numerous machine learning tasks involve optimization problems over discrete stochastic components
whose parameters we wish to learn. Mixture and mixed-membership models, variational autoencoders,
language models and reinforcement learning fall into this category [13, 14, 26, 17, 8]. Ideally, as with
fully continuous models, we would use stochastic optimization via backpropagation. One strategy
to compute the necessary gradients is using score estimators [8, 32], however these estimates suffer
from high variance which leads to slow convergence. Another strategy is to find a reparameterizable
continuous relaxation of the discrete distribution. Reparameterization gradients exhibit lower variance
but are contingent on finding such a relaxation. Jang et al. [12] and Maddison et al. [19] independently
found such a continuous relaxation via the Gumbel-Softmax (GS) or Concrete distribution.

The GS has experienced wide use and has been extended to other settings, such as permutations
[18], subsets [33] and more [1]. Its success relies on several qualities that make it appealing: (i) it is
reparameterizable, that is, it can be sampled by transforming parameter-independent noise through a
smooth function, (ii) it can approximate any discrete distribution, (i.e. converge in distribution) (iii)
it has a closed form density, and (iv) its parameters can be interpreted as the discrete distribution that
it is relaxing. While the last quality is mathematically pleasing, it is not a necessary condition for a
valid relaxation. Here we ask: how important is this parameter interpretability? In the context of
deep learning models, interpreting the parameters is not a first concern, and we show that the GS can
be significantly improved upon by giving up this quality.

In this paper we propose an alternative family of distributions over the simplex to achieve this
relaxation, which we call Invertible Gaussian Reparameterization (IGR). Our reparameterization
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works by transforming Gaussian noise through an invertible transformation onto the simplex, and a
temperature hyperparameter allows the distribution to concentrate its mass around the vertices. IGR
is more natural, more flexible, and more easily extended than the GS. Furthermore, IGR enables
using the reparameterization trick on distributions with countably infinite support, which enables
nonparametric uses, and also admits closed form KL divergence evaluation. Finally, we show that
our distribution outperforms the GS in a wide variety of experimental settings.

2 Background

2.1 The reparameterization trick

Many problems in machine learning can be formulated as optimizing parameters of a distribution
over an expectation:

φ∗ = arg max
φ

L(φ) := arg max
φ

Eqφ(z)[f(z)] (1)

where qφ is a distribution over S parameterized by φ and f : S → R. In order to use stochastic
gradient methods [27, 3], the gradient of L has to be estimated. A first option is to use score
estimators [8, 32]. However, in practice score estimators usually exhibit high variance [20]. The
reparameterization trick [14] provides an alternative estimate of this gradient which empirically has
less variance, resulting in more efficient optimization. The reparameterization trick consists of finding
a function g(ε, φ) such that g is differentiable with respect to φ and if z ∼ qφ, then:

z
d
= g(ε, φ) (2)

where ε is a continuous random variable whose distribution does not depend on φ and is easy to
sample from. The gradient is then estimated by:

∇φL(φ) ≈ 1

B

B∑
b=1

∇φf(g(εb, φ)) (3)

where ε1, . . . , εB are iid samples from the distribution of ε. For example, if φ = (µ, σ) and
qφ = N (µ, σ2) then the reparameterization trick is given by g(ε, φ) = µ+ σε with ε ∼ N (0, 1).

2.2 Continuous relaxations

While we can use score estimators whether qφ has continuous or discrete support, the reparam-
eterization gradient of equation 3 is only valid when qφ has continuous support. To extend the
reparameterization trick to the discrete setting, thus avoiding the high variance issues of score estima-
tors, suppose qφ is a distribution over the set S = {1, 2, . . . ,K}. We use one-hot representations of
length K for the elements of S, so that S can be interpreted as the vertices of the (K − 1)-simplex,
∆(K−1) = {z ∈ RK : zk ≥ 0 and

∑K
k=1 zk = 1}. The idea is to now place a continuous distribu-

tion over ∆(K−1) that approximates qφ. Note that placing a distribution over ∆(K−1) is equivalent
to placing a distribution over S(K−1) = {z ∈ RK−1 : zk > 0 and

∑K−1
k=1 zk < 1}, as the last

coordinate can be obtained from the previous ones: zK = 1−
∑K−1
k=1 zk. Placing a distribution over

S(K−1) is mathematically convenient as S(K−1) ⊂ RK−1 has positive Lebesgue measure, while
∆(K−1) ⊂ RK does not. Although this distinction might appear as an irrelevant technicality, it allows
us to correctly compute our Jacobians in section 3. We will thus interchangeably think of distributions
over S as points in either S(K−1) or ∆(K−1). The optimization problem of equation 1 is then relaxed
to:

φ̃∗ = arg max
φ̃

L̃(φ̃) := arg max
φ̃

Eq̃φ̃(z̃)[f̃(z̃)] (4)

where q̃φ̃ is a distribution over S(K−1) and the function f̃ : S(K−1) → R is a relaxation of f to
S(K−1). As long as q̃φ̃ concentrates most of its mass around S and f̃ is smooth, this relaxation is
sensible. If q̃φ̃ can be reparameterized as in equation 2, then we can use the reparameterization trick.
We make two important notes: first, not only the distribution is relaxed, the function f also has to
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be relaxed to f̃ because it now needs to take inputs in S(K−1) and not just S. In other words, the
objective must also be relaxed, not just the distribution. Second, the parameters φ̃ of the relaxed
distribution need not match the parameters φ of the original distribution.

Maddison et al. [19] and Jang et al. [12] proposed the Gumbel-Softmax distribution, which is
parameterized by α ∈ (0,∞)K and a temperature hyperparameter τ > 0, and is reparameterized as:

z̃
d
= softmax

(
(ε+ logα)/τ

)
(5)

where ε ∈ RK is a vector with independent Gumbel(0, 1) entries and log refers to elementwise
logarithm. Note that when the temperature approaches 0, not only does the GS concentrate its mass
around S , but it converges to a distribution proportional to α. The GS distribution implied by equation
5 can be shown to be:

q̃α,τ (z̃) = (K − 1)! τK−1
K∏
k=1

(
αkz̃

−τ−1
k∑K

j=1 αj z̃
−τ
j

)
(6)

We highlight the difference between α and φ̃: the former is the parameter of the GS distribution and
might depend on the latter, which is the parameter of the loss with respect to which we optimize in
equation 4. For example, α might be the output of a neural network parameterized by φ̃. A common
use of the GS is to relax objectives of the form:

KL(qφ||p0) = Eqφ(z)
[

log
qφ(z)

p0(z)

]
(7)

where p0 is a distribution over S. Relaxing this KL requires additional care: it cannot be relaxed
to KL(q̃φ̃||p0) because the KL divergence is not well defined between a continuous and a discrete
distribution. In other words, relaxing f to f̃ is not straightforward when a KL divergence is involved
in the objective. When using a GS relaxation, researchers commonly replace this KL with [12, 6, 31]:

KL(ᾱ||p0) where ᾱk =
αk∑K
i=1 αi

(8)

the idea being that, for low temperatures, the GS approximates a distribution proportional to its
parameter, i.e. ᾱ ∈ ∆(K−1). The goal of this substitution is to still compute a KL between two
discrete variables, even after relaxing the distribution. This substitution is problematic, as pointed out
by Maddison et al. [19], as it does not take into account how close the GS actually is to ᾱ. A more
sensible way to relax the discrete KL is to relax it to an actual continuous KL as done by Maddison
et al. [19]:

KL(q̃φ̃||q̃0) (9)

where q̃0 is fixed in such a way that it is close to p0. For the GS, finding such a distribution is
straightforward as a consequence of its parameter interpretability: q̃0 can be chosen as a GS with
parameter α0 = p0. Note that the KL in equation 9 cannot be directly evaluated, but a Monte Carlo
estimate can be formed thanks to the closed form density of equation 6 and thus stochastic gradient
descent can be performed.

Finally, it is worth remarking that while Stirn et al. [30] and Gordon-Rodriguez et al. [9] proposed
distributions over the simplex which admit reparameterization gradients, their goals are not to obtain
discrete relaxations. Thus they do not have a temperature hyperparameter allowing to concentrate
mass on the vertices to approximate discrete distributions.

3 The invertible Gaussian reparameterization family

If the only requirements for a continuous relaxation are a reparameterizable distribution on the
simplex and a temperature hyperparameter allowing to concentrate mass around the vertices, one
might logically ask: why use the specific choices of the GS? Namely, why use the unusual Gumbel
noise and be forced to use the softmax as a mapping onto the simplex? If tasked with constructing
a reparametrizable distribution on the simplex, we argue that the most natural choice is to sample
Gaussian noise and map it to the simplex; trying different mappings and keeping the best performing
one. The cost of this choice is losing the parameter interpretability of the GS, but we will show the
advantages are numerous and well worth this cost.
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We now present the IGR distribution on S(K−1), which is parameterized by (µ, σ), where µ ∈ RK−1
and σ ∈ (0,∞)K−1. Gaussian noise ε = (ε1, . . . , εK−1) ∼ N (0, IK−1) is transformed in the
following way:

y = µ+ diag(σ)ε (10)
z̃ = g(y, τ) (11)

where diag(σ) is a diagonal matrix whose nonzero elements are given by σ, g(·, τ) is an invertible
smooth function and τ > 0 is a temperature hyperparameter. Note that IGR is not only more natural
than the GS, but is is also more flexible, having 2K − 2 parameters instead of K. The first advantage
of choosing g to be an invertible function is that the density of z̃ can be computed in closed form
with the change of variable formula:

q̃µ,σ,τ (z̃) = N (y|µ, σ)|det Jg(y, τ)|−1 (12)

where Jg(·, τ) is the Jacobian of g(·, τ). The second advantage of this choice is that it allows us to
compute the KL in closed form (as the Jacobian terms cancel out in the ratio):

KL (q̃µ,σ,τ (z̃)||q̃µ0,σ0,τ (z̃)) = KL
(
N (µ, σ2)||N (µ0, σ

2
0)
)

(13)

and thus Monte Carlo estimation of equation 9 is no longer needed.

The components of the IGR can be easily mixed-and-matched. For example, while we use Gaussian
noise as the most natural first choice because it is reparameterizable and because the KL divergence
between two Gaussians has closed form, any other choice with these two properties can also be used.
Similarly, any choice of g, as long as it obeys some requirements which we explain in the section 3.1,
can also be used. In contrast, changing the Gumbel distribution or the softmax used in the GS cannot
be done. These properties of the IGR make it more easily extensible than the GS.

Since the parameter interpretability of the GS is lost in IGR, we cannot directly read µ0 and σ0
from p0 ∈ S(K−1). Thus when a KL term is involved, while IGR gains the ability to evaluate it
analytically, we solve the following optimization problem to obtain these parameters:

(µ0, σ0) = arg min
(µ,σ)

Eq̃µ,σ,τ (z̃)[||z̃ − p0||
2
2] (14)

Note that having to solve this problem is a very small price to pay for losing parameter interpretability:
the optimization is a very simple moment matching problem and has to be be computed only once for
any given p0.

3.1 Choosing g(·, τ)

In this section we design some invertible functions that could be used and argue the rationale behind
their construction. There are two important desiderata for g(·, τ): the first one is that we should be
able to compute the determinant of its Jacobian efficiently, which enables tractable density evaluation.
This tractability can be achieved, for example, by ensuring the Jacobian is triangular. Note that
although in many instances we do not actually require evaluating the density of the relaxation (e.g.
variational autoencoders [14]), this is a problem-specific property and density evaluation remains
desirable in general. The second is that the limit as τ → 0 of g(y, τ) is in S for almost all y,
meaning that as the temperature gets smaller, the distribution places most of its mass around the
vertices. The two most natural choices for mapping onto the simplex are the softmax function and the
stick-breaking procedure. As we explain below, these alone are not enough, and we thus modify them
to make them appropriate for our purposes. The softmax has two issues: first, it maps to ∆(K−1) and
not S(K−1) and second, it is not invertible. Both of these problems can be addressed with a small
modification of the softmax function:

g(y, τ)k =
exp(yk/τ)∑K−1

j=1 exp(yj/τ)) + δ
(15)
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where δ > 0 ensures that the function is invertible and maps to S(K−1). Furthermore, the Jacobian of
this transformation can be efficiently computed with the matrix determinant lemma (see appendix for
details). We will refer to this transformation as the softmax++.

The other natural alternative to map from (0, 1)K−1 onto S(K−1) is through the stick-breaking
procedure [7], which we briefly review here. Given u ∈ (0, 1)K−1, the result v = SB(u) of
performing stick-breaking on u is given by:

vk = uk

k−1∏
i=1

(1− ui), for k = 1, 2, . . . ,K − 1 (16)

In addition to producing outputs in S(K−1), this procedure has some useful properties, namely: it is
invertible, its Jacobian is triangular, and it can easily be extended to the case where K =∞ (which
will be useful to extend IGR to relax discrete distributions with countably infinite support). While
the invertibility property might suggest that the stick-breaking procedure alone is enough to use
with IGR, a temperature hyperparameter τ still needs to be introduced in such a way that as τ → 0,
the resulting distribution concentrates its mass on the vertices. Unlike with the softmax++, simply
dividing the input by τ does not achieve this limiting behavior. The most natural way of introducing
a temperature that achieves the desired limiting behavior is by linearly interpolating to the nearest
vertex, resulting in a g function given by:

{
w = SB

(
sigmoid(y)

)
g(y, τ) = τw + (1− τ)PS(w)

(17)

where PS is the projection onto the vertices of S(K−1). Note that the Jacobian of this transformation
is triangular. However, we found better empirical performance with the following function, which
introduces the temperature using the softmax++ function:

g(y, τ) = softmax++(w, τ) (18)

While it might seem redundant to apply both a stick-breaking procedure and a softmax++ as they
both map to S(K−1), the softmax++ function allows to introduce τ in such a way that the distribution
concentrates its mass around the vertices as τ → 0. Also, as seen in section 3.2, the stick-breaking
procedure proves useful as it enables using the reparameterization trick in the countably infinite
support setting.

Finally, another choice of g(·, τ) could be a normalizing flow [25, 15, 5] followed by softmax++.
Normalizing flows are flexible neural networks constructed in such a way that they are invertible
while still allowing tractable Jacobian determinant evaluations, so that they enable us to learn g.
We note that normalizing flows require additional parameters, so that when using them, IGR is not
only parameterized by µ and σ, but by the parameters of the normalizing flow as well. Thus, if a
KL is involved, the optimization problem of equation 14 needs to be solved over the parameters of
the normalizing flow too, and as a result the KL in equation 9 cannot be evaluated in closed form
anymore, as the parameters of the two involved normalizing flows need not match. However, Monte
Carlo estimates of the KL are still readily available.

3.2 Reparameterization trick for countably infinite distributions

Since the stick-breaking procedure can map to S∞ = {z ∈ R∞ : zk ≥ 0 and
∑∞
k=1 zk = 1}, we

can extend equation 18 to the setting where the discrete distribution has countably infinite support
(e.g. Poisson, geometric or negative binomial distributions). In this setting, the IGR is parameterized
by µ ∈ R∞ and σ ∈ (0,∞)∞. Clearly backpropagating through infinitely many parameters cannot
be done in a computer, but we do not have to do so as most of the parameters contribute very little to
the loss. For a sample ε1, ε2, . . . we only update the first K coordinates of µ and σ, where K is the
number such that:

K−1∑
k=1

g(y, τ)k ≤ ρ <
K∑
k=1

g(y, τ)k (19)
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where ρ ∈ (0, 1) is a pre-specified precision hyperparameter and g is as in equation 18. Note that
here K is now a random variable that depends on ε instead of being fixed as before, so that in a way
the number of (effective) categories gets learned by the data. Note as well that the stick-breaking
procedure is necessary to know where to cut K as it guarantees that later terms in the sequence are
small, which would not happen if we only applied a softmax++ function.

3.3 Recovering the discrete distribution

Recall that the original objective of continuous relaxations is to solve the discrete problem of
equation 1, so that once we have solved the continuous problem of equation 4, it is desirable to have
the ability to recover a solution to the former problem. In other words, given the parameters of a
continuous relaxation, we should be able to recover the discrete distribution that it is relaxing. The
parameter intepretability of the GS allows to directly do so. In this section we derive a method for
doing so with the IGR, which is enabled by the following proposition:

Proposition 1: For any δ > 0, the following holds:

lim
τ→0

softmax++(y, τ) = h(y) :=


ek∗ , if k∗ = arg max

k=1,...,K−1
(yk) and max

k=1,...,K−1
(yk) > 0

0 , if max
k=1,...,K−1

(yk) < 0
(20)

where ek ∈ RK−1 is the one-hot vector with a 1 in its k-th coordinate.
Proof: See appendix.

Thus, the vector of discrete probabilities associated with IGR is E[h(z̃)], which can be easily
approximated through a Monte Carlo estimate by sampling from the IGR and averaging the results
after transforming them with h. This is the last cost to pay for losing parameter interpretability, but
once again it is very small: the complexity of this approximation is negligible when compared to
the one of solving the problem of equation 4. Note also that this proposition enables the use of
straight-through estimators [2], where the sample is discretized during the forward pass, but not for
backpropagation. The next proposition shows that when just using the softmax++ as g, the recovered
discrete distribution can be written in an even more explicit form:

Proposition 2: If yk ∼ N (µk, σk) for k = 1, . . . ,K − 1, and we define the discrete random variable
H by H = k if h(y) = ek and H = K if h(y) = 0, then:

P(H = k) =



∫ ∞
0

1

σk
φ

(
t− µk
σk

)∏
j 6=k

Φ

(
t− µj
σj

)
dt, if k = 1, . . . ,K − 1

K−1∏
j=1

Φ

(
−µj
σj

)
, if k = K

(21)

where φ and Φ are the standard Gaussian density and cumulative distribution function, respectively.
Proof: See appendix.

We finish this section by noting that there is literature proposing gradient estimators and attempting
to reduce their variance [21, 20, 31, 10, 16]. In particular, Grathwohl et al. [10] and Tucker et al. [31]
proposed techniques involving the GS. Their techniques, however, require computing the gradient
of the discrete objective with respect to the parameters of the continuous relaxation, which can be
done with the GS thanks to its parameter interpretability. Proposition 2 thus enables the use of their
methods with IGR, as the integral in equation 21 can be easily approximated numerically. Due to
space constraints we include details, along a discussion about bias, in the appendix.

4 Experiments

In this section, we contrast the performance of the IGR (with different choices of g) alongside that
of the GS. First, in relation to section 3.2, we compare the ability of the IGR and the GS (with
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varying number of categories) to approximate a countably infinite distribution. We then focus on
tasks that involve a KL term in their objective function. Finally, we also consider a Structured Output
Prediction task which does not involve a KL term. For the experiments involving a KL term, we use
variational autoencoders (VAEs) [14]. We follow the setup of Maddison et al. [19] and Jang et al.
[12] (although note that we use a slightly different objective than Jang et al. [12], see appendix for
details). The datasets we use are handwritten digits from MNIST, fashion items from FMNIST and
alphabet symbols from Omniglot. We ran each experiment 5 times and report averages plus/minus
one standard deviation. Additionally, for all the experiments, we used the log scale implementation
of the GS (ExpConcrete) as in Maddison et al. [19] since it avoids numerical issues and allows us
to run the models involving the GS at lower temperatures. Throughout this section, the label IGR-I
denotes the implementation with the softmax++ (equation 15), the label IGR-SB the implementation
with the stick-breaking transformation followed by a softmax++ (equation 18), and finally the label
IGR-Planar the implementation using two nested Planar Flows [25] followed by a softmax++ .

Comparing any IGR variant against the GS requires selecting temperature hyperparameters for
each model. To make a fair comparison, temperatures τ should be chosen carefully as they af-
fect models differently, so they cannot just be set to the same value. We thus choose the tem-
perature hyperparameter through cross validation, considering the range of possible temperatures
{0.01, 0.03, 0.07, 0.1, 0.25, 0.4, 0.5, 0.67, 0.85, 1.0} and compare best-performing models. However,
and very importantly, we use the loss on the recovered discrete model — not the trained continuous
one — to select the best performing model. This avoids the potential issue of having one model
produce better discrete relaxations which are closer to the vertices of the simplex, while result-
ing in a larger continuous loss as the other model is allowed to use the simplex more freely. All
implementation details are in the appendix.

4.1 Approximating a Poisson Distribution

Here we compare the ability of the IGR-SB and the GS to approximate distributions with countably
infinite support. The top panels of Figure 1 show an approximation with the IGR-SB to a Poisson
distribution with λ = 50, while the bottom panels show the same approximations when using a GS
with different number K of discrete components. These approximations are computed by optimizing
the objective in equation 14. We can see how the IGR-SB outperforms the GS without having to
specify K. We show further comparisons when approximating other distributions in the appendix.

4.2 Variational Autoencoders

We trained VAEs composed of 20 discrete variables with 10 categories each. VAEs are latent variable
models which maximize the ELBO, a lower bound on the log likelihood involving a KL term (see
appendix for details). For MNIST and Omniglot we used a fixed binarization and a Bernoulli decoder,
whereas for FMNIST we use a Gaussian decoder. Table 1 shows test log-likelihoods (not ELBOs,
these are obtained as in Burda et al. [4] with m = 1000, and are computed on the recovered discrete
model) plus/minus one standard deviation for two different architectures. We highlight best results
and those within error. The IGR performs best or is within error, except in a single scenario. We
report the test log-likelihood as it is the most relevant metric from a machine learning perspective,
but from an optimization point of view, the discretized training ELBO is of more interest, as it more
accurately measures how well the original objective is being maximized. We include this evaluation,
which is also favorable to IGR, in the appendix. It is also worth mentioning that the execution times
between the IGR and the GS were almost identical for the I and SB variants. Nonetheless, the IGR
Planar is about 30% slower than all the other alternatives.

To verify how much of our performance improvement is due to our closed form KL, we also trained
the VAE using the sticking the landing gradient estimator proposed by Roeder et al. [28], which does
not involve a closed form KL divergence. Results are also shown in Table 1 (with the label SL). Note
that all SL models outperform their non-SL counterparts, suggesting that the closed form KL of the
IGR is not a key component of its superior empirical performance. We note that closed form KL
remains an attractive theoretical property which could prove more useful in other applications.

In Figure 2 we show that the IGR also outperforms the GS on the continuous model (not only the
discrete one). The plot contains error bars, but these are almost imperceptible due to their size and
the scale of the plot. Note that while we include this comparison for completeness, as we believe that
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Figure 1: Approximations to a Poisson distribution for IGR-SB (top right panel) and GS (bottom right
panel) after 1,000 training steps. Initial values of the approximations are displayed on the respective
left panels. Due to the stick-breaking procedure, a random initialization concentrates to the left.

Architecture Discrete Models MNIST FMNIST Omniglot

Linear

IGR-I -94.65 ± 0.14 -38.12 ± 0.12 -128.14 ± 0.40
IGR-Planar -96.21 ± 0.14 -38.72 ± 0.17 -130.76 ± 0.17
IGR-SB -96.74 ± 0.36 -41.70 ± 0.50 -124.77 ± 0.40
GS -106.17 ± 1.00 -46.65 ± 0.89 -138.98 ± 1.01

Non-linear

IGR-I -91.98 ± 1.29 -34.80 ± 3.33 -135.30 ± 1.71
IGR-Planar -92.91 ± 2.51 -34.10 ± 3.23 -133.63 ± 1.86
IGR-SB -94.92 ± 0.66 -34.57 ± 3.09 -139.82 ± 9.27
GS -98.06 ± 1.73 -29.72 ± 2.77 -147.71 ± 3.04

Linear

IGR-I + SL -94.18 ± 0.37 -38.16 ± 0.35 -122.96 ± 1.32
IGR-Planar + SL -95.97 ± 0.53 -38.59 ± 0.29 -127.96 ± 3.75
IGR-SB + SL -96.05 ± 0.74 -39.52 ± 0.32 -124.35 ± 1.10
GS + SL -103.80 ± 0.73 -43.86 ± 1.22 -133.45 ± 1.88

Non-Linear

IGR-I + SL -91.38 ± 0.86 -34.39 ± 0.67 -134.60 ± 0.68
IGR-Planar + SL -88.81 ± 0.49 -33.99 ± 1.82 -129.47 ± 1.06
IGR-SB + SL -92.67 ± 1.48 -34.86 ± 1.30 -135.82 ± 2.58
GS + SL -97.87 ± 0.61 -28.81 ± 0.64 -140.37 ± 0.25

Table 1: Test log-likelihood on MNIST, FMNIST and Omniglot for IGR and GS. Higher is better.

the most relevant comparisons are on the recovered discrete model, it is interesting to see that the
performance gains of the IGR over the GS on discretized models do not come at the cost of poorer
continuous ones.

Finally, we compared IGR and the GS using the variance reduction technique of Grathwohl et al.
[10], whose use is enabled thanks to proposition 2. We include this comparison — which was yet
again favorable to IGR — and the corresponding discussion, along with a comparison against the
estimator proposed by Kool et al. [16], in the appendix.

4.3 Structured Output Prediction

We consider a Structured Output Prediction task, where we reconstruct the lower part of an image
given the upper part by using a binary stochastic feedforward neural network. In contrast to our
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Discrete Models MNIST
IGR-I -57.28 ± 0.07
IGR-Planar -56.61 ± 0.13
IGR-SB -45.12 ± 1.61
GS -59.31 ± 0.21

Table 2: Test log-likelihood on
MNIST. Higher is better.
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Figure 2: Test ELBO (of continuous model) on MNIST.
Higher is better. This result is expected to defer from the
discrete log-likelihood in Table 1 (see appendix for details).

Discrete Models MNIST Omniglot
IGR-SB-MM + SL -81.79 ± 0.35 -129.06 ± 0.30
DLDPMM + SL -81.90 ± 0.30 -128.72 ± 0.22

Table 3: Test log-likelihood on MNIST, FMNIST and Omniglot for IGR and GS. Higher is better.

previous experiments, this is a task that does not require the computation of a KL divergence. It was
first proposed in Raiko et al. [24] and replicated by Gu et al. [11], Jang et al. [12] and Maddison et al.
[19], and does not involve a KL. The results of this experiment are in Table 2, where we can see that
once again, IGR outperforms the GS.

4.4 Nonparametric Modeling

In our last experiment, we show that the truncation strategy that we use in equation 19 not only
enables the use of continuous relaxations in the countably infinite setting, but that it also allows us
to have reparameterizable distributions on S∞ (the difference being that one should concentrate
most of its mass around the vertices while the other one not necessarily). In order to show this, we
follow Nalisnick et al. [23], who use a VAE with a Dirichlet Process mixture of Gaussians as the
prior. For the approximate posterior, they apply the stick-breaking procedure to K Kumaraswamy
random variables, where K has to be specified in advance and is thus treated as a hyperparameter
[22]. We note that this prespecification of K is problematic, as while the prior remains nonparametric,
the resulting optimization objective matches the ELBO that would be obtained using a Dirichlet
mixture of Gaussians with K components as the prior, effectively losing the nonparametric aspect of
the model. In contrast, we use an IGR distribution as the approximate posterior, and the truncation
strategy from equation 19 allows us to retain the true nonparametric nature of the model.

Since this task does not require a continuous relaxation but just a reparameterizable distribution on the
simplex, we use equation 17 but replace g with the identity function, thus dropping the temperature
hyperparameter. We use the label IGR-SB-MM to make this explicit, and use the label DLDPMM for
the model of Nalisnick et al. [23]. Table 3 compares the two methods, where we trained DLDPMM
with K = 7, 9, 11, 13, 15, 17 and report the best result. We can see that not only does IGR enable
truly nonparametric inference thus not requiring an expensive hyperparameter search over K, but also
that this does not come at the cost of decreased performance. We also note that a single IGR-SB-MM
run takes the same amount of time as a single DLDPMM run.

5 Conclusion

In this paper we propose IGR, a flexible discrete reparameterization as an alternative to the GS in
which Gaussian noise is transformed through an invertible function onto the simplex. At the cost of
losing the parameter interpretability of the GS, our method results in a more natural and more flexible
distribution, which has the further advantage of admitting closed form KL evaluation. We show that
IGR significantly outperforms the GS and that, perhaps surprisingly, this improvement is not due
to this nice theoretical property. Finally, IGR also extends the reparameterization trick to discrete
distributions with countably infinite support and can be incorporated in nonparametric settings.
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