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1 Proof of Theorem 1

Given two input vector x and f, the result of convolutional operation on a specific point of the image
is the dot product of two vectors. Thus, Eq.(7) in the main paper can be written as:
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Thus, the transformation in Eq.(7) in the main paper can be expressed as a linear combination of
infinite kernel functions, which means the output space is mapped to an infinite dimensional space.
Also note that when n — oo, L also goes to infinity, which means that the input space is mapped to
an infinite dimensional space.
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2 More Experimental Results of PKKD

In this section, more experimental results of PKKD are conducted. We compared the proposed
method with other methods, such as ANN-+dropout, Snapshot-KD [3], SP-KD [2], Gift-KD [4] and
AT [5] on ResNet-20 using CIFAR-10 dataset as shown in Tab. E}

Table 1: Compared with other methods on ResNet-20 using CIFAR-10 dataset.

PKKD | ANN + dropout | Snapshot-KD [3] | SP-KD [2] | Gift-KD [#] | AT [3]
92.96% |  92.20% | 9233% | 9238% | 92.22% | 9227%

Then, we show the superiority of the proposed methods on the traditional CNN distillation. We
compared the proposed method with vanilla KD [[1]] on ImageNet dataset using ResNet-152 as teacher
model and ResNet-18 as student model. The results are shown in Tab.

Table 2: PKKD and KD in CNN distillation.

Model | Top-1 acc | Top-5 acc
ResNet-18 69.8% 89.1%
PKKD 73.1% 91.3%

Vanilla KD [[1]] 72.5% 90.9%

Finally, we show the experimental results of using different settings of PKKD on ImageNet with
ResNet-50 in Tab.

Table 3: Ablation study on ImageNet with ResNet-50. K / NK’ stands for using kernel or not. "P /
NP’ stands for using progressive or fixed teacher.

CNN | ANN | K+P(PKKD) | NK+P | K+NP | NK+NP

76.2%192.9% | 74.9%/91.7% | 76.8% /93.3% [ 75.9%/92.6% | 75.6%/92.2% | 75.2%/92.0%
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