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1 Proof of Theorem 1

Given two input vector x and f , the result of convolutional operation on a specific point of the image
is the dot product of two vectors. Thus, Eq.(7) in the main paper can be written as:
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Thus, the transformation in Eq.(7) in the main paper can be expressed as a linear combination of
infinite kernel functions, which means the output space is mapped to an infinite dimensional space.
Also note that when n→∞, L also goes to infinity, which means that the input space is mapped to
an infinite dimensional space.
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2 More Experimental Results of PKKD

In this section, more experimental results of PKKD are conducted. We compared the proposed
method with other methods, such as ANN+dropout, Snapshot-KD [3], SP-KD [2], Gift-KD [4] and
AT [5] on ResNet-20 using CIFAR-10 dataset as shown in Tab. 1.

Table 1: Compared with other methods on ResNet-20 using CIFAR-10 dataset.

PKKD ANN + dropout Snapshot-KD [3] SP-KD [2] Gift-KD [4] AT [5]
92.96% 92.20% 92.33% 92.38% 92.22% 92.27%

Then, we show the superiority of the proposed methods on the traditional CNN distillation. We
compared the proposed method with vanilla KD [1] on ImageNet dataset using ResNet-152 as teacher
model and ResNet-18 as student model. The results are shown in Tab. 2.

Table 2: PKKD and KD in CNN distillation.

Model Top-1 acc Top-5 acc
ResNet-18 69.8% 89.1%

PKKD 73.1% 91.3%
Vanilla KD [1] 72.5% 90.9%

Finally, we show the experimental results of using different settings of PKKD on ImageNet with
ResNet-50 in Tab. 3.

Table 3: Ablation study on ImageNet with ResNet-50. ’K / NK’ stands for using kernel or not. ’P /
NP’ stands for using progressive or fixed teacher.

CNN ANN K + P (PKKD) NK + P K + NP NK + NP
76.2% / 92.9% 74.9% / 91.7% 76.8% / 93.3% 75.9% / 92.6% 75.6% / 92.2% 75.2% / 92.0%
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