
Appendix A: Notation

Example Description
z Scalar
z Vector
Z Continuous random variable
K Discrete random variable
Z Continuous random vector
p(z) Continuous PDF
P (k) Discrete PMF
H[K] Discrete entropy
h[Z] Differential entropy
E[Z] Expectation

DKL[qZ|x || pZ] Kullback-Leibler divergence
DTV[q, p] Total variation distance

Appendix B: Computational complexity of reverse channel coding

Existing algorithms for lossy compression without quantization communicate a sample by simulating
a large number of random variables Zn ∼ p and then identifying an index N∗ such that ZN∗ is
distributed according to q, at least approximately in a total variation sense [e.g., 3, 4]. Here we show
that no polynomial time algorithm exists which achieves this, assuming RP 6= NP , where RP is
the class of randomized polynomial time algorithms.

Our result depends on the results of Long and Servedio [6, Theorem 13], who showed that simulating
restricted Boltzmann machines (RBMs) [8] approximately is computationally hard. For completeness,
we repeat it in slightly weakened but simpler form here:
Theorem 1. If RP 6= NP , then there is no polynomial-time algorithm with the following property:
Given as input θ = (A,a, b) such thatA is an M ×M matrix, the algorithm outputs an efficiently
evaluatable representation of a distribution whose total variation distance from an RBM with
parameters θ is at most 1

12 .

Here, an efficiently evaluatable representation of a distribution q is defined as a Boolean function

f : {0, 1}N → {0, 1}M (1)

with the following two properties. First, f(B) ∼ q ifB is a random vector of uniformly random bits.
Second, N and the function’s computational complexity are bounded by a polynomial in M .

One might hope that having access to samples from a similar distribution would help to efficiently
simulate an RBM. The following lemma shows that additional samples quickly become unhelpful as
the Kullback-Leibler divergence between the two distributions increases.
Lemma 1. Consider an algorithm which receives a description of an arbitrary probability distribution
q as input and is also given access to an unlimited number of i.i.d. random variables Zn ∼ p. It
outputs Z ∼ q̃ such that its distribution is approximately q in the sense that DTV[q̃, q] ≤ 1/12. If
RP 6= NP , then there is no such algorithm whose time complexity is polynomial in DKL[q || p].

Proof. Let z ∈ {0, 1}M be a binary vector and let

q(z) =
1

Z

∑
h∈{0,1}M

exp(a>z + h>Az + b>h) (2)

be the probability distribution of an RBM with normalization constant Z and parameters a, b ∈ RM

andA ∈ RM×M . Further, let p(z) = 2−M be the uniform distribution. Then

DKL[q || p] =
∑

z∈{0,1}M
q(z) log2

q(z)

2−M
= M −H[q] ≤M. (3)

If there is an algorithm which generates an approximate sample from an RBM’s distribution q in
a number of steps which is polynomial in DKL[q || p], then its computational complexity is also

1

bounded by a polynomial in M . In that time the algorithm can take into account at most N random
variables Zn where N is polynomial in M , that is, N = ψ(M) for some polynomial ψ. Since the
input random variables are independent and identical, we can assume without loss of generality that
the algorithm simply uses the first N random variables. The N random variables correspond to an
input of Mψ(M) uniformly random bits. Note that Mψ(M) is still polynomial in M .

However, Theorem 1 states that there is no such polynomial time algorithm if RP 6= NP .

Appendix C: Generalizations of universal quantization

Figure 1: A visualization of an example of the generalized uniform noise channel which can be
implemented efficiently. Blue dots represent a lattice and black lines indicate corresponding Voronoi
cells. The black dot corresponds to the coefficients y and the orange dots are realizations of the
random variable y +U .

While the approach discussed in the main text is statistically and computationally efficient, it only
allows us to communicate samples from a simple uniform distribution. We briefly discuss two
possible avenues for generalizing this approach.

One such generalization to lattice quantizers was already discussed by Ziv [10]. Let Λ be a lattice
and QΛ(y) be the nearest neighbor of y in the lattice. Further let V be a Voronoi cell of the lattice
and U ∼ U(V) be a random vector which is uniformly distributed over the Voronoi cell. Then [9,
Theorem 4.1.1]

QΛ(y −U) +U ∼ y +U . (4)

An example is visualized in Figure 1. For certain lattices and in high dimensional spaces, U will be
distributed approximately like a Gaussian [9]. This means universal quantization could be used to
approximately simulate an additive white Gaussian noise channel.

Another possibility to obtain Gaussian noise would be the following. Let S be a positive random
variable independent of Y and U ∼ U([−0.5, 0.5)). We assume that S like U is known to both the
encoder and the decoder. It follows that

(by/S − Ue+ U) · S ∼ y + SU ′ (5)

for another uniform random variable U ′. IfG ∼ Γ(3/2, 1/2) and S = 2σ
√
G, then SU ′ has a Gaussian

distribution with variance σ2 [7]. More generally, this approach allows us to implement any noise
which can be represented as a uniform scale mixture. However, the average number of bits required
for transmitting K = by/S − Ue can be shown to be (Appendix B)

H[K | U, S] = I[Y, (Z, S)] ≥ I[Y, Z], (6)

where Z = Y + SU ′. This means we require more bits than we would like to if all we want to
transmit is Z. However, if we consider (Z, S) to be the message, then again we are using only as
many bits as we transmit information.

2

Appendix D: Differentiability of soft-rounding

For α > 0, we defined a soft rounding function as

sα(y) = byc+
1

2

tanh(αr)

tanh(α/2)
+

1

2
, where r = y − byc − 1

2
. (7)

The soft-rounding function is differentiable everywhere. First, we show that the derivative exists at 0.
The right derivative of sα at 0 exists and is given by

lim
ε↓0

sα(ε)− sα(0)

ε
= lim

ε↓0

1

ε

(
bεc − 1

2

tanh(α(ε− bεc − 1
2))

tanh(α/2)
− 1

2

tanh(−α/2)

tanh(α/2)

)
(8)

= lim
ε↓0

1

ε

(
1

2

tanh(α(ε− 1
2))

tanh(α/2)
− 1

2

tanh(−α/2)

tanh(α/2)

)
(9)

= lim
ε↓0

tanh(α(ε− 1
2))− tanh(−α/2)

2ε tanh(α/2)
(10)

=
1

2 tanh(α/2)
lim
ε↓0

tanh(αε− α/2)− tanh(−α/2)

ε
(11)

=
1

2 tanh(α/2)

∂

∂x
tanh (αx− α/2)

∣∣∣∣
x=0

(12)

=
α

2

tanh′ (−α/2)

tanh(α/2)
. (13)

Similarly, the left derivative at 0 exists and is given by

lim
ε↑0

sα(ε)− sα(0)

ε
= lim

ε↑0

1

ε

(
bεc+

1

2

tanh(α(ε− bεc − 1
2))

tanh(α/2)
− 1

2

tanh(−α/2)

tanh(α/2)

)
(14)

= lim
ε↑0

1

ε

(
−1 +

1

2

tanh(α(ε+ 1
2))

tanh(α/2)
− 1

2

tanh(−α/2)

tanh(α/2)

)
(15)

= lim
ε↑0

−2 tanh(α/2) + tanh(α(ε+ 1
2)) + tanh(α/2)

2ε tanh(α/2)
(16)

=
1

2 tan(α/2)
lim
ε↑0

tanh(αε− α/2)− tanh(α/2)

ε
(17)

=
α

2

tanh′ (−α/2)

tanh(α/2)
. (18)

Since the left and right derivatives are equal, sα is differentiable at 0. Since sα(y + 1) = sα(y) + 1,
the derivative also exists for other integers and it is easy to see that sα is differentiable for y /∈ Z.
Hence, sα is differentiable everywhere.

Appendix E: Adapting density models

For the rate term we need to model the density of f(x) +U . When y = f(x) is assumed to have
independent components, we only need to model individual components Y + U . Following Ballé
et al. [2], we parameterize the model through the cumulative distribution cY of Y , as we have

pY+U (y) = cY (y + 0.5)− cY (y − 0.5). (19)

We can generalize this to model the density of s(Y) + U , where s : R→ R is an invertible function.
Since cs(Y) = cY (s−1(y)), we have

ps(Y)+U (y) = cY (s−1(y) + 0.5)− cY (s−1(y)− 0.5). (20)

This means we can easily adjust a model for the density of f(X) to model the density of sα(f(X)) +
U . In addition to being a suitable density, creating an explicit dependency on α has the added
advantage of automatically adapting the density if we choose to change α during training.

3

Appendix F: Additional experimental results

0.0 0.5 1.0 1.5 2.0 2.5
Bit-rate [bpp]

24

26

28

30

32

34

36

38

40

PS
NR

 [d
b]

Linear model

UN + UQ
UN + Q
UN + UQ + SR

A

0.0 0.5 1.0 1.5 2.0 2.5
Bit-rate [bpp]

0

25

50

75

100

125

150

175

200

M
SE

Linear model

UN + UQ
UN + Q
UN + UQ + SR

B

0.0 0.5 1.0 1.5 2.0 2.5
Bit-rate [bpp]

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

M
S-

SS
IM

Linear model

UN + UQ
UN + Q
UN + UQ + SR

C

Figure 2: Additional results for the linear model evaluated on the Kodak dataset [1]. A: The linear
model as described in the main text but instead of a random orthogonal initialization, the linear
transforms are initialized to the ones used by JPEG/JFIF [5]. That is, a YCC color transformation
followed by a DCT for the encoder and corresponding inverses for the decoder. B: The linear model
orthogonally initialized as in the main text but evaluated in terms of MSE instead of PSNR. C: The
same linear model (orthogonally initialized, trained with respect to MSE) evaluated in terms of
MS-SSIM.

4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Bit-rate [bpp]

0

20

40

60

80

100

120

140

M
SE

Hyperprior model

UN + UQ
UN + Q
UN + UQ + SR

A

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Bit-rate [bpp]

0.90

0.92

0.94

0.96

0.98

1.00

M
S-

SS
IM

Hyperprior model

UN + UQ
UN + Q
UN + UQ + SR

B

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Bit-rate [bpp]

28

30

32

34

36

38

40

PS
NR

 [d
b]

UN + UQ + SR

= 1, , 16 (E)
= 13 (E)
= 7 (E)
= 1, , 16
= 13
= 7

C

Figure 3: Additional results for the hyperprior model evaluated on the Kodak dataset [1]. A: The
hyperprior model from the main text but evaluated in terms of MSE instead of PSNR. B: The same
model evaluated in terms of MS-SSIM. C: The effect of expected gradients shown for the full bitrate
range.

Appendix G: Qualitative results

Below we include reconstructions of images from the Kodak dataset [1] for the three approaches UN
+ UQ, UN + Q, and UN + UQ + SR trained with the same trade-off parameter λ. We chose a low
bit-rate to make the differences more easily visible.

For the linear model (Figures 4-6), reconstructions using UN + Q and UN + UQ + SR have visible
blocking artefacts as would be expected given their similarity to JPEG/JFIF [5]. UN + UQ masks the
blocking artefacts almost completely at the expense of introducing grain.

For the hyperprior model (Figures 7-9), we noticed a tendency of UN + Q to produce grid artefacts
which we did not observe using UN + UQ + SR.

5

UN + UQ, bpp: 0.762 (113%), PSNR: 32.79

UN + Q, bpp: 0.672 (100%), PSNR: 34.33

UN + UQ + SR, bpp: 0.562 (83%), PSNR: 33.60

Figure 4: Linear model, kodim03

6

UN + UQ, bpp: 0.836 (111%), PSNR: 32.22

UN + Q, bpp: 0.750 (100%), PSNR: 33.09

UN + UQ + SR, bpp: 0.623 (83%), PSNR: 32.54

Figure 5: Linear model, kodim16

7

UN + UQ, bpp: 0.778 (115%), PSNR: 33.05

UN + Q, bpp: 0.674 (100%), PSNR: 34.71

UN + UQ + SR, bpp: 0.572 (84%), PSNR: 33.98

Figure 6: Linear model, kodim23

8

UN + UQ, bpp: 0.091 (143%), PSNR: 29.36

UN + Q, bpp: 0.063 (100%), PSNR: 28.78

UN + UQ + SR, bpp: 0.059 (93%), PSNR: 29.55

Figure 7: Hyperprior model, kodim02

9

UN + UQ, bpp: 0.099 (137%), PSNR: 29.31

UN + Q, bpp: 0.073 (100%), PSNR: 28.82

UN + UQ + SR, bpp: 0.072 (99%), PSNR: 29.56

Figure 8: Hyperprior model, kodim15

10

UN + UQ, bpp: 0.156 (130%), PSNR: 27.11

UN + Q, bpp: 0.120 (100%), PSNR: 26.75

UN + UQ + SR, bpp: 0.123 (102%), PSNR: 27.08

Figure 9: Hyperprior model, kodim21

11

References
[1] Kodak PhotoCD dataset. URL http://r0k.us/graphics/kodak/.

[2] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Variational Image
Compression with a Scale Hyperprior. ICLR, 2018.

[3] P. Cuff. Communication requirements for generating correlated random variables. In 2008 IEEE Interna-
tional Symposium on Information Theory, pages 1393–1397, 2008.

[4] M. Havasi, R. Peharz, and J. M. Hernández-Lobato. Minimal Random Code Learning: Getting Bits Back
from Compressed Model Parameters. In International Conference on Learning Representations, 2019.

[5] ITU-T. Recommendation ITU-T T.81: Information technology – Digital compression and coding of
continuous-tone still images – Requirements and guidelines, 1992.

[6] P. M. Long and R. A. Servedio. Restricted Boltzmann Machines are Hard to Approximately Evaluate or
Simulate. In Proceedings of the 27th International Conference on Machine Learning, 2010.

[7] Z. Qin, P. Damien, and S. Walker. Uniform Scale Mixture Models With Applications to Bayesian Inference.
In AIP Conference Proceedings, 2003.

[8] P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. In Parallel
Distributed Processing, volume 1, page 194–281. MIT Press, 1987.

[9] R. Zamir. Lattice Coding for Signals and Networks. Cambridge University Press, 2014.

[10] J. Ziv. On universal quantization. IEEE Transactions on Information Theory, 31(3):344–347, 1985.

12

http://r0k.us/graphics/kodak/

