
9 Appendix

For all the following derivations, we use DKL[P (X)||Q(X)] to denote the KL-divergence between
two distributions P and Q:

DKL[P (X)||Q(X)] = Ex∼p(x) log
p(x)

q(x)
=

∫
X

p(x) log
p(x)

q(x)
dx.

Accordingly, when P (X|Z) and Q(X|Z) are conditional distributions, DKL[P ||Q] denotes their
conditional KL-divergence:

DKL[P (X|Z)||Q(X|Z)] =

∫
Z×X

p(z)p(x|z) log
p(x|z)
q(x|z)

dxdz.

For simplicity, we will equivalently use Ex∼p(x)[·] and Ep(x)[·] to denote certain expectation in which
x is sampled from the distribution P (X).

9.1 Derivation of Surrogate Objective

We first refer Lemma 1 from [10] for a complete presentation:
Lemma 1.

DKL[µπ(s, a, s′)||µE(s, a, s′)] = DKL[µπ(s, a)||µE(s, a))].

Proof.

DKL[µπ(s, a, s′)||µE(s, a, s′)] =

∫
S×A×S

µπ(s, a, s′) log
µπ(s, a) · P (s′|s, a)

µE(s, a) · P (s′|s, a)
ds′dads

=

∫
S×A×S

µπ(s, a, s′) log
µπ(s, a)

µE(s, a)
ds′dads

=

∫
S×A

µπ(s, a) log
µπ(s, a)

µE(s, a)
dads

= DKL[µπ(s, a)||µE(s, a)].

Lemma 2.

DKL[µπ(s, s′)||µE(s, s′)] ≤ DKL[µπ(s, a)||µE(s, a)].

Proof. As defined in Table 1, µπ(a|s, s′) is the inverse-action transition probability induced by policy
π:

µπ(a|s, s′) =
µπ(s, a, s′)

µπ(s, s′)
=

H
HHµπ(s)π(a|s)P (s′|s, a)∫

A
HHHµπ(s)π(ā|s)P (s′|s, ā)dā

=
π(a|s)P (s′|s, a)∫
A π(ā|s)P (s′|s, ā)dā

.

Based on this notion, we can derive:

DKL[µπ(s, a)||µE(s, a)]

=DKL[µπ(s, a, s′)||µE(s, a, s′)]︸ ︷︷ ︸
Lemma 1

=

∫
S×A×S

µπ(s, a, s′) log
µπ(s, a, s′)

µE(s, a, s′)
ds′dads

=

∫
S×A×S

µπ(s, s′)µπ(a|s, s′) log
µπ(s, s′)× µπ(a|s, s′)
µE(s, s′)× µE(a|s, s′)

ds′dads

13

=

∫
S×A×S

µπ(s, s′)µπ(a|s, s′) log
µπ(s, s′)

µE(s, s′)
ds′dads+

∫
S×A×S

µπ(s, s′)µπ(a|s, s′) log
µπ(a|s, s′)
µE(a|s, s′)

ds′dads

=

∫
S×A×S

µπ(s, s′) log
µπ(s, s′)

µE(s, s′)
ds′ds+DKL[µπ(a|s, s′)||µE(a|s, s′)]

=DKL[µπ(s, s′)||µE(s, s′)] +DKL[µπ(a|s, s′)||µE(a|s, s′)] (12)

≥DKL[µπ(s, s′)||µE(s, s′)].

Based on Lemma2, we can derive the upper-bound of our original objective:

Theorem 1 (Surrogate Objective as the Divergence Upper-bound).

DKL[µπ(s, s′)||µE(s, s′)] ≤ Eµπ(s,s′)[log
µR(s, s′)

µE(s, s′)
] +DKL[µπ(s, a)||µR(s, a)].

Proof.

DKL[µπ(s, s′)||µE(s, s′)] =

∫
S×S

µπ(s, s′) log
µπ(s, s′)

µE(s, s′)
dsds′

=

∫
S×S

µπ(s, s′) log
(µR(s, s′)

µE(s, s′)
× µπ(s, s′)

µR(s, s′)

)
dsds′

=

∫
S×S

µπ(s, s′) log
µR(s, s′)

µE(s, s′)
dsds′ +

∫
S×A

µπ(s, s′) log
µπ(s, s′)

µR(s, s′)
dsds′

= Eµπ(s,s′)[log
µR(s, s′)

µE(s, s′)
] +DKL[µπ(s, s′)||µR(s, s′)]

≤ Eµπ(s,s′)[log
µR(s, s′)

µE(s, s′)
] +DKL[µπ(s, a)||µR(s, a)].︸ ︷︷ ︸

derived from Lemma 2

9.2 Connections between LfO and LfD

Theorem 2.

DKL[µπ(a|s, s′)||µE(a|s, s′)] = DKL[µπ(s, a)||µE(s, a)]−DKL[µπ(s, s′)||µE(s, s′)].

Proof. We can refer Eq (12) from the proof of Lemma 2:

DKL[µπ(s, a)||µE(s, a)] = DKL[µπ(s, s′)||µE(s, s′)] +DKL[µπ(a|s, s′)||µE(a|s, s′)].

9.3 An Unoptimizable Gap Between LfO and LfD
Remark 1: In a non-injective MDP, the discrepancy of DKL[µπ(a|s, s′)||µE(a|s, s′)] cannot be
optimized without knowing expert actions.

Proof. We provide proof with a counter-example. Consider a non-injective MDP in a tabular case,
whose transition dynamics is shown in Table 3, with |S| = 3, and |A| = 4. Especially, there
exists two actions which lead to the same deterministic transition, i.e. for s1, s2 ∈ S, ∃ a0, a2 ∈ A,
s.t. P (s2|s1, a2) = P (s2|s1, a0) = 1, as illustrated in Figure 5.

In this MDP, there is an expert policy πE as listed in Table 5. Trajectories generated by this expert are
illustrated as blue lines in Figure 5. In a LfO scenario, a learning agent only has access to sequences

14

P a0 a1 a2 a3
P (s1|s1, ·) 0 1 0 0
P (s2|s1, ·) 1 0 1 0
P (s3|s1, ·) 0 0 0 1
P (s1|s2, ·) 0 1 0 0
P (s2|s2, ·) 0 0 1 0
P (s3|s2, ·) 0 0 0 1
P (s1|s3, ·) 0 1 0 0
P (s2|s3, ·) 0 0 1 0
P (s3|s3, ·) 0 0 0 1

Table 3: A deterministic but
non-injective MDP.

π s1 s2 s3
a0 0.5 0 0
a1 0 0 1
a2 0.5 0 0
a3 0 1 0

Table 4: Learning Policy π.

πE s1 s2 s3
a0 0 0 0
a1 0 0 1
a2 1 0 0
a3 0 1 0

Table 5: Expert Policy πE .

s1

s2s3

a2

a1

a2a3

a0

a3

a1

a2

a3

a1

Figure 5: Transition of an non-injective MDP.

of states visited by the expert: RE = {s1, s2, s3, s1, s2, s3, · · · }, without knowing what actions have
been taken by the expert.

Based on the given observations RE , a policy π can only satisfy the state distribution matching
withDKL[µπ(s, s′)||µE(s, s′)] = 0, but unable to optimizeDKL[µπ(a|s, s)||µE(a|s, s)], as both a0
and a2 lead to a deterministic transition of s1 → s2. In lack of expert actions, the best guess for a
learning policy is to equally distribute action probabilities with π(a0|s1) = (a2|s1) = 0.5. which
results in µπ(a0|s1, s2) = µπ(a2|s1, s2) = 0.5, whereas µE(a2|s1, s2) = 1, µE(a0|s0, s1) = 0.
Consequently, we reach at DKL[µπ(a|s, s′)||µE(a|s, s′)] > 0.

Remark: In a deterministic and injective MDP, it satisfies that ∀ π : S →
A, DKL[µπ(a|s, s′)||µE(a|s, s′)] = 0.

We provide proof in a finite, discrete state-action space, although the conclusion is valid to extend to
continuous cases.

Proof. In a deterministic and injective MDP, we can interpret the transition dynamics with a deter-
ministic function g:

∃g : S × A → S, s.t. ∀ (s, a, s′), g(s, a) = s′ ⇐⇒ P (s′|s, a) = 1, and g(s, a) 6= s′ ⇐⇒
P (s′|s, a) = 0.

since this MDP is also injective, given arbitrary policy π and a transition s→ s′, (s, s′) ∼ µπ(s, s′),
there exists one and only action a which satisfies g(s, a) = s′, P (s′|s, a) = 1.

Accordingly, µπ(a|s, s′) = π(a|s)P (s′|s,a)
Eā∼π(·|s)[P (s′|s,a)] = 1[g(s, a) = s′] depends only on the transition

dynamics, where 1(x) is an indicator function. The same conclusion applies to µE(a|s, s′) as well.
Therefore, we reach at:

∀ π : S → A, DKL[µπ(a|s, s′)||µE(a|s, s′)]

15

=Eµπ(s,a,s′)
[

log
1[g(s, a) = s′]

1[g(s, a) = s′]

]
=Eµπ(s,a,s′)

[
log

1

1

]
= 0.

9.4 Upper-bound of the KL-Divergence

Theorem 3. For two arbitrary distributions P and Q, and an f -divergence with f(x) = 1
2x

2, it
satisfies that DKL[P ||Q] ≤ Df [P ||Q] .

Proof. Given two distributions P and Q, their density ratio is denoted as wp|q , with wp|q = p(x)
q(x) ≥ 0.

If we consider a function g(w) = w log(w)− 1
2w

2, g(w) is constantly decreasing when w ∈ (0,∞),
as ∂g

∂w = logw + 1− w ≤ 0 ∀w ≥ 0.

Since KL-Divergence is a special case of f -divergence with fKL(x) = x log x, it is sufficient to
show that:

DKL[P ||Q]−Df [P ||Q] =

∫
X
q(x)

(
wp/q log(wp/q)−

1

2
(wp/q)

2
)
dx

≤
∫
X
q(x) sup

w∈(0,+∞)

(w log(w)− 1

2
w2)dx

=

∫
X
q(x) lim

w→0+
(w log(w)− 1

2
w2)dx

= 0.

9.5 Forward Distribution Matching

9.5.1 Lower-bound of the BC Objective

Theorem 4.

DKL[πE(a|s)||π(a|s)] = DKL[µE(s′|s)||µπ(s′|s)] +DKL[µE(a|s, s′)||µπ(a|s, s′)].

Proof. Based on the definition of µπ(a|s, s′) in Table 1:

µπ(a|s, s′) =
π(a|s)P (s′|s, a)∫
A π(ā|s)P (s′|s, ā)dā

=
π(a|s)P (s′|s, a)

µπ(s′|s)
, (13)

and similar for µE(a|s, s′), we can derive at the following:

DKL[πE(a|s)||π(a|s)]

=

∫
S×A

µE(s)πE(a|s) log
πE(a|s)
π(a|s)

dads

=

∫
S×A

µE(s, a) log
πE(a|s)
π(a|s)

dads

=

∫
S×A×S

µE(s, a)P (s′|s, a) log
πE(a|s)P (s′|s, a)

π(a|s)P (s′|s, a)
ds′dads

=

∫
S×A×S

µE(s, a, s′) log
πE(a|s)P (s′|s, a)

π(a|s)P (s′|s, a)
ds′dads

=

∫
S×A×S

µE(s, a, s′) log
µE(a|s, s′)µE(s′|s)
µπ(a|s, s′)µπ(s′|s)︸ ︷︷ ︸

Eq (13)

ds′dads

16

=

∫
S×A×S

µE(s, a, s′)
(

log
µE(a|s, s′)
µπ(a|s, s′)

+ log
µE(s′|s)
µπ(s′|s)

)
ds′dads

=

∫
S×A×S

µE(s, a, s′) log
µE(a|s, s′)
µπ(a|s, s′)

ds′dads+

∫
S×A×S

µE(s, a, s′) log
µE(s′|s)
µπ(s′|s)

ds′dads

=DKL[µE(a|s, s′)||µπ(a|s, s′)] +DKL[µE(s′|s)||µπ(s′|s)].

9.5.2 Policy Regularization as A Forward Distribution Matching

Without loss of generality, in this section we provide proof based on a finite, discrete state-action
space.
Assumption 1 (Deterministic MDP). ∃g : S × A → S a deterministic function,
s.t. ∀ (s, a, s′), g(s, a) 6= s′ ⇐⇒ P (s′|s, a) = 0, and g(s, a) = s′ ⇐⇒ P (s′|s, a) = 1.

Based on Assumption 1, we have the following:
Corollary 1. In a deterministic MDP, ∀ π : S → A, µπ(a|s, s′) > 0 =⇒ P (a|s, s′) = 1.

Proof. µπ(a|s, s′) ∝ π(a|s)P (s′|s, a) > 0 =⇒ P (s′|s, a) > 0. Based on Assumption 1, it holds
that g(s, a) = s′, therefore P (s′|s, a) = 1.

Assumption 2 (Support Coverage). The support of expert transition distribution µE(s, s′) is covered
by µR(s, s′):

µE(s, s′) > 0 =⇒ µR(s, s′) > 0.

Combing Corollary 1 and Assumption 2, we can reach at the following:
Corollary 2. ∀(s, s′) ∼ µE(s, s′), µR(a|s, s′) > 0 =⇒ P (a|s, s′) = 1.

Lemma 3. Given a policy π̂, s.t. ∀(s, s′) ∼ µE(s, s′), π̂(a|s) ∝ µR(a|s, s′), then it satisfies that:

∀π : S → A, DKL[µE(s′|s)||µπ(s′|s)] ≥ DKL[µE(s′|s)||µπ̂(s′|s)].

Proof. In a discrete state-action space, µπ(s′|s) can be denoted as µπ(s′|s) = Ea∼π(·|s)[P (s′|s, a)],
and the similar for µπ̂(s′|s):

DKL[µE(s′|s)||µπ̂(s′|s)]−DKL[µE(s′|s)||µπ(s′|s)]

=EµE(s,s′)

[
log

µE(s′|s)
µπ̂(s′|s)

− log
µE(s′|s)
µπ(s′|s)

]
=EµE(s,s′)

[
logµπ(s′|s)]− logµπ̂(s′|s)

]
=EµE(s,s′)

[
logEa∼π(·|s)[P (s′|s, a)]

]
− EµE(s,s′)

[
logEa∼π̂(·|s)[P (s′|s, a)]

]
=EµE(s,s′)

[
logEa∼π(·|s)[P (s′|s, a)]

]
− EµE(s,s′)

[
logEa∼µR(·|s,s′)[P (s′|s, a)]

]
=EµE(s,s′)

[
logEa∼π(·|s)[P (s′|s, a)]

]
− EµE(s,s′)

[
logEa∼µR(·|s,s′)[1]

]︸ ︷︷ ︸
Corollary 2

=EµE(s,s′)

[
logEa∼π(·|s)[P (s′|s, a)]

]
≤EµE(s,s′)

[
logEa∼π(·|s)[1]

]
=0.

Remark 2. In a deterministic MDP, assuming the support of µE(s, s′) is covered by µR(s, s),
s.t. µE(s, s′) > 0 =⇒ µR(s, s′) > 0, then regulating policy using µR(·|s, s′) can minimize
DKL[µE(s′|s)||µπ(s′|s)]:

∃π̃ : S → A, s.t. ∀(s, s′) ∼ µE(s, s′), π̃(·|s) ∝ µR(·|s, s′) =⇒ π̃ = arg min
π
DKL[µE(s′|s)||µπ(s′|s)].

17

Proof. Based on Lemma 3, we have that:
∀π : S → A, DKL[µE(s′|s)||µπ(s′|s)] ≥ DKL[µE(s′|s)||µπ̃(s′|s)].

Therefore, π̃ = arg minπ DKL[µE(s′|s)||µπ(s′|s)].

9.5.3 Estimating the Inverse Action Distribution

Theorem 5.
max

PI :S×S→A
−DKL[µR(a|s, s′)||PI(a|s, s′)] ≡ max

PI :S×S→A
E(s,a,s′)∼µR(s,a,s′)[logPI(a|s, s′)].

Proof.
−DKL[µR(a|s, s′)||PI(a|s, s′)]

= −
∫
S×S×A

µR(s, s′)µR(a|s, s′) log
µR(a|s, s′)
PI(a|s, s′)

dadsds′

= −
∫
S×S×A

µR(s, s′)µR(a|s, s′)
(

logµR(a|s, s′)− logPI(a|s, s′)
)
dadsds′

= H[µR(a|s, s′)]︸ ︷︷ ︸
fixed w.r.t. PI

+

∫
S×S×A

µR(s, s′)µR(a|s, s′) logPI(a|s, s′)dadsds′

= H[µR(a|s, s′)]︸ ︷︷ ︸
fixed w.r.t. PI

+EµR(s,a,s′)[logPI(a|s, s′)].

Note that we use H[µR(a|s, s′)] to denote the conditional entropy of µR(a|s, s′), with
H[µR(a|s, s′)] = EµR(s,a,s′)[− logµR(a|s, s′)].

9.6 Derivation of Eq (8):

Jopolo(π,Q) = E(s,a,s′)∼µπ(s,a,s′)[r(s, s
′)− (BπQ−Q)(s, a)] + E(s,a)∼µR(s,a)[f∗((BπQ−Q)(s, a))],

where BπQ(s, a) = Es′∼P (·|s,a),a′∼π(·|s′)

[
r(s, s′) + γQ(s′, a′)

]
, and r(s, s′) = log µE(s,s′)

µR(s,s′)
.

Proof. The first term in the RHS of the above equation can be reduced to the following:
E(s,a,s′)∼µπ(s,a,s′)[r(s, s

′)− (BπQ−Q)(s, a)]

=E(s,a)∼µπ(s,a)

[
Es′∼P (·|s,a)

[
r(s, s′)−

(
(BπQ−Q)(s, a)

)]]
=E(s,a)∼µπ(s,a)

[
Es′∼P (·|s,a)[r(s, s

′)] +Q(s, a)− Es′∼P (·|s,a)[BπQ(s, a)]
]

=E(s,a)∼µπ(s,a)

[
Es′∼P (·|s,a)

XXXX[r(s, s′)] +Q(s, a)− Es′∼P (·|s,a),a′∼π(·|s′)[
XXXXr(s, s′) + γQ(s′, a′)]

]
=E(s,a)∼µπ(s,a)

[
Q(s, a)− γEs′∼P (·|s,a),a′∼π(·|s′)[Q(s′, a′)]

]
= (1− γ)

∞∑
t=0

γtEs∼µπt (s),a∼π(s)︸ ︷︷ ︸
see Table 1

[Q(s, a)]− (1− γ)

∞∑
t=0

γt+1Es∼µπt ,a∼π(·|s),s′∼P (·|s,a),a′∼π(·|s′)[Q(s′, a′)]]

=(1− γ)

∞∑
t=0

γtEs∼µπt ,a∼π(s)[Q(s, a)]− (1− γ)

∞∑
t=0

γt+1Es∼µπt+1,a∼π(·|s)[Q(s, a)]]

=(1− γ)Es∼p0,a0∼π(·|s0)[Q(s0, a0)].

Therefore:
Jopolo(π,Q) = (1− γ)Es∼p0,a0∼π(·|s0)[Q(s0, a0)] + E(s,a)∼µR [f∗((BπQ−Q)(s, a))].

18

9.7 Implementation Details

9.7.1 Practical Considerations for Algorithm Implementation

We provide some practical considerations to effectively implement our algorithm:

Initial state sampling: To increase the diversity of initial samples, we use state samples from an
off-policy buffer and treat them as virtual initial states. A similar strategy is adopted by [3].

Constant shift on synthetic rewards: In practice, we adopt the same strategy of prior art [10] to use
r(s, s′) = − log(1−D(s, s′)), instead of log(D)− log(1−D) as the discriminator output. A fully
optimized discriminator D∗ satisfies − log(1−D∗(s, s′)) = log(1 + µE(s,s′)

µR(s,s′)
), which corresponds

to a constant shift on µE(s,s′)
µR(s,s′)

before the log term.

Q and π network update: We follow the advice of AlgeaDICE [31] by using a target Q network
and policy gradient clipping. Especially, when taking the gradients of Jopolo(π,Q, α) w.r.t.Q, we
use the value from a target Q network to calculate BπQ(s, a) in order to stabilize training; on the
other hand, since an optimal x∗(s, a) = (BπQ∗ −Q∗)(s, a) = µπ(s,a)

µR(s,a)
represents a density ratio and

should always be non-negative, we clip (BπQ−Q)(s, a) to above 0 when taking gradients w.r.t.π.

9.7.2 Hyper-parameters

Table 6 lists the hyper-parameters for GAIL [2], GAIfO [9], BCO [17], DAC [4], and our proposed
approach OPOLO. Specifically, for off-policy approaches, each self-generated interaction will be
stored the replay buffer in a FIFO manner, and update frequency is the number of interactions sampled
from the MDP after which the module is updated. Moreover, considering the different scales for the
gradients of J(πθ, Qφ) and JReg(πθ) in Algorithm 1, we apply a coefficient λ for OPOLO to adjust
the regularization strength when calculating the total policy loss:

θ ← θ + α
(
JOθ(πθ, Qφ) + λJOθJReg(πθ)

)
.

Hyper-parameters Value
Shared Parameters for Off-Policy Approaches

Buffer size 107

Batch size 100
Learning rate 3e−4

Discount factor γ 0.99
Network architecture MLP [400, 300]
Q, π update frequency / gradient steps 103/103

D update frequency / gradient steps 500/10
Shared Parameters for On-Policy Approaches

Batch size 2048
mini-Batch size 256
Learning rate 3e−4

Discount factor γ 0.99
Network architecture MLP [400, 300]

BCO
PI pre-train gradient steps 104

PI update frequency / gradient steps 103/100
DAC

Number of extra absorbing states 1
OPOLO
PI update frequency / gradient steps 500/50
PI regularization coefficient λ 0.1

Table 6: Hyper-parameters for Different Algorithms

19

9.8 Challenges of DICE without Expert Actions
In this section, we analyze the principle of offline imitation learning using DICE [30, 33, 31] and the
reason that impedes its direct application to an LfO setting.

In a LfO setting where expert actions are unavailable, the learning objective is to minimize the
discrepancy of state-only distributions induced by the agent and the expert. Without loss of generality,
we consider an arbitrary f-divergence Df as the discrepancy measure:

max
π
−Df [µπ(s, s′)||µE(s, s′)]

= max
π

min
x:S×S→R

Eµπ(s,s′)[−x(s, s′)] + EµE(s,s′)[f
∗(x(s, s′))], (14)

in which f∗(x) is the conjugate of f(x) for the f -divergence. To remove the on-policy dependence
of µπ(s, s′), we follow the rationale of DICE and use a similar change-of-variable trick mentioned in
Sec 3.2 to learn a value function v(s, s′):

v(s, s′) := −x(s, s′) + γEa′∼π(.|s′),s′′∼P (.|s′,a′)[v(s′, s′′)] = −x(s, s′) + Bπv(s, s′).

This value function is a fixed point solution to an variant Bellman operator Bπ, which, however,
is problematic in a model-free setting. To see this, we substitute x(s, s′) by (Bπv − v)(s, s′) to
transform Eq (14) into the following:

max
π

min
x:S×S→R

Eµπ(s,s′)[−x(s, s′)] + EµE(s,s′)[f
∗(x(s, s′))]

= max
π

min
v:S×S→R

(1− γ)Es0∼p0,s1∼P (·|s0,π(s0))︸ ︷︷ ︸
term 1

[v(s0, s1)] + EµE(s,s′)[f
∗((Bπv − v)(s, s′))]︸ ︷︷ ︸

term 2

.

where Bπv(s, s′) = γEa′∼π(.|s′),s′′∼P (.|s′,a′)[v(s′, s′′)]. Optimizing this objective is troublesome,
in that the Bπv(s, s′) in term 2 requires knowledge of P (·|s, π(s)), ∀s ∼ µE(s). In another word,
for any state sampled from the expert distribution, we need to know what would be the next state if
following policy π from this state. A similar issue is echoed in term 1, where s1 is sampled from
P (·|s0, π(s0)). Consequently, directly applying DICE loses its advantage in a LfO setting, as it incurs
a dependence on a forward transition model, which is costly to estimate and may counteract the
efficiency brought by off-policy learning.

20

