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where (1) is due to the geometric mean—harmonic mean inequality. O

Proposition 2. Letx € R ~ N(0,0%1), and r = l|Ix||5. We have

1 ’I"D 1 7"2 d )
p(r) = 2D/ 1T(D)2) oP eXp(—M> and r—\Do % N(0,62/2) when D — co.
Proof. Since x ~ N'(0,021), we have s 2 ||x3 /o2 ~ x5, i.e.,
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Because = ||x||, = 0y/s, we can use the change of variables formula to get
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which proves our first result. Next, we notice that if z ~ A(0, 02), we have 22 /0? ~ x7 and thus
E[z] = 02, Var[z] = 20%. As aresult, if 71,22, -+ ,2p '~ N(0,02), the law of large numbers
and the central limit theorem will imply that as D — oo, both of the following hold:
xf+x§—|—--~—|—a:2D
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Equivalently,

Applying the delta method, we obtain

\/5(\/% - g) 4 N(0,02/2),

and therefore r — /Do -5 N(0,02/2). O

2
of;_l. Foroa = ¢ - Z; (as in Algorithm 1), we have x ~ N (0, s2.1), where
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Proposition 3. Let v =

L

Proof. First, the conditions we know are
X0 ~ Po;_, (x) = N(0, 02'2—11)7
X
Xer1 ¢ Xt + aVx logps, (%) + V2az = x4 — aa—; + V2az,
i

where z; ~ N(0, I). Therefore, the variance of x; satisfies

022_1] ift=0
Var[x;] = 2 .
1— %) Var[x; ] +2al otherwise.
Now let v £ 20T, we have
()
2
Var[x] — v = (1 - 2) (Var[x¢—1] — v).
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Therefore,
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Substituting € 02 /0% for « in Eq. (7), we immediately obtain Eq. (6). O
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B Experimental details

B.1 Network architectures and hyperparameters

The original NCSN in [1] uses a network structure based on RefineNet [24]—a classical architecture
for semantic segmentation. There are three major modifications to the original RefineNet in NCSN:
(i) adding an enhanced version of conditional instance normalization (designed in [1] and named
CondInstanceNorm++) for every convolutional layer; (ii) replacing max pooling with average pooling
in RefineNet blocks; and (iii) using dilated convolutions in the ResNet backend of RefineNet. We
use exactly the same architecture for NCSN experiments, but for NCSNv2 or any other architecture
implementing Technique 3, we apply the following modifications: (i) setting the number of classes
in CondInstanceNorm++ to 1 (which we name as InstanceNorm-++); (ii) changing average pooling
back to max pooling; and (iii) removing all normalization layers in RefineNet blocks. Here (ii)
and (iii) do not affect the results much, but they are included because we hope to minimize the
number of unnecessary changes to the standard RefineNet architecture (the original RefineNet
blocks in [24] use max pooling and have no normalization layers). We name a ResNet block
(with InstanceNorm++ instead of BatchNorm) “ResBlock™, and a RefineNet block “RefineBlock”.
When CondInstanceNorm++ is added, we name them “CondResBlock” and “CondRefineBlock”
respectively. We use the ELU activation function [25] throughout all architectures.

To ensure sufficient capacity and receptive fields, the network structures for images of different
resolutions have different numbers of layers and filters. We summarize the architectures in Table 2
and Table 3.

Table 2: The architectures of NCSN for images of various resolutions.

(a) NCSN 322-642 (b) NCSN 962-128?
3x3 Conv2D, 128 3x3 Conv2D, 128
CondResBlock, 128 CondResBlock, 128
CondResBlock, 128 CondResBlock, 128
CondResBlock down, 256 CondResBlock down, 256
CondResBlock, 256 CondResBlock, 256
CondResBlock down, 256 CondResBlock down, 256
dilation 2 CondResBlock, 256
CondRpsBlock, 256 CondResBlock down, 512
dilation 2 .
dilation 2
CondResBlock down, 256 CondResBlock, 512
dilation 4 o
dilation 2
CondResBlock, 256 CondResBlock down, 512
dilation 4 .
dilation 4
CondRefineBlock, 256 CondResBlock, 512
CondRefineBlock, 256 dilation 4
CondRefineBlock, 128 CondRefineBlock, 512
CondRefineBlock, 128 CondRefineBlock, 256
3x3 Conv2D, 3 CondRefineBlock, 256

CondRefineBlock, 128
CondRefineBlock, 128
3x3 Conv2D, 3
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Table 3: The architectures of NCSNv2 for images of various resolutions.

(a) NCSNv2 322-642

(b) NCSNv2 962-1282

3x3 Conv2D, 128

(c) NCSNv2 2562

ResBlock, 128

3x3 Conv2D, 128

ResBlock, 128

ResBlock, 128

3x3 Conv2D, 128

ResBlock down, 256

ResBlock, 128

ResBlock, 128

ResBlock, 256

ResBlock down, 256

ResBlock, 128

ResBlock down, 256
dilation 2

ResBlock, 256

ResBlock down, 256

ResBlock down, 256

ResBlock, 256

ResBlock, 256
dilation 2

ResBlock, 256

ResBlock down, 256

ResBlock down, 256
dilation 4

ResBlock down, 512
dilation 2

ResBlock, 256

ResBlock down, 256

ResBlock, 256
dilation 4

ResBlock, 512
dilation 2

ResBlock, 256

RefineBlock, 256

ResBlock down, 512
dilation 4

ResBlock down, 512
dilation 2

RefineBlock, 256

RefineBlock, 128

ResBlock, 512
dilation 4

ResBlock, 512
dilation 2

RefineBlock, 128

RefineBlock, 512

ResBlock down, 512
dilation 4

3x3 Conv2D, 3

RefineBlock, 256

RefineBlock, 256

ResBlock, 512
dilation 4

RefineBlock, 128

RefineBlock, 512

RefineBlock, 128

RefineBlock, 256

3x3 Conv2D, 3

RefineBlock, 256

RefineBlock, 256

RefineBlock, 128

RefineBlock, 128

3x3 Conv2D, 3

We use the Adam optimizer [26] for all models. When Technique 3 is not in effect, we choose the
learning rate 0.001; otherwise we use a learning rate 0.0001 to avoid loss explosion. We set the ¢
parameter of Adam to 10~ for FFHQ and 10~® otherwise. We provide other hyperparameters in
Table 4, where o1, L, T, and € of NCSNV2 are all chosen in accordance with our proposed techniques.
When the number of training data is larger than 60000, we randomly sample 10000 of them and
compute the maximum pairwise distance, which is set as g; for NCSNv2.

Table 4: Hyperparameters of NCSN/NCSNv2. The latter is configured according to Technique 1-4.
o1 and L determine the set of noise levels. 7" and e are parameters of annealed Langevin dynamics.

Model Dataset o1 L T € Batch size  Training iterations
NCSN CIFAR-10 322 1 10 100  2e-5 128 300k
NCSN CelebA 642 1 10 100 2e-5 128 210k
NCSN LSUN church_outdoor 962 1 10 100 2e-5 128 200k
NCSN LSUN bedroom 1282 1 10 100  2e-5 64 150k
NCSNv2 CIFAR-10 322 50 232 5 6.2e-6 128 300k
NCSNv2 CelebA 642 90 500 5 3.3e-6 128 210k
NCSNv2  LSUN church_outdoor 962 140 788 4 4.9e-6 128 200k
NCSNv2  LSUN bedroom/tower 1282 190 1086 3 1.8e-6 128 150k
NCSNv2 FFHQ 2562 348 2311 3 0.9e-7 32 80k
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B.2 Additional settings

Datasets: We use the following datasets in our experiments: CIFAR-10 [2], CelebA [16], LSUN [27],
and FFHQ [28]. CIFAR-10 contains 50000 training images and 10000 test images, all of resolution
32 x 32. CelebA contains 162770 training images and 19962 test images with various resolutions.
For preprocessing, we first center crop them to size 140 x 140, and then resize them to 64 x 64.
We choose the church_outdoor, bedroom and tower categories in the LSUN dataset. They contain
126227, 3033042, and 708264 training images respectively, and all have 300 validation images. For
preprocessing, we first resize them so that the smallest dimension of images is 96 (for church_outdoor)
or 128 (for bedroom and tower), and then center crop them to equalize their lengths and heights.
Finally, the FFHQ dataset consists of 70000 high-quality facial images at resolution 1024 x 1024.
We resize them to 256 x 256 in our experiments. Because FFHQ does not have an official test dataset,
we randomly select 63000 images for training and the remaining 7000 as the test dataset. In addition,
we apply random horizontal flip as data augmentation in all cases.

Metrics: We use FID [13] and HYPE, [29] scores for quantitative comparison of results. When
computing FIDs on CIFAR-10 32 x 32, we measure the distance between the statistics of samples
and training data. When computing FIDs on CelebA 64 x 64, we follow the settings in [30] where
the distance is measured between 10000 samples and the test dataset. We use the official website
https://hype.stanford.edu for computing HYPE, scores. Regarding model selection, we follow the
settings in [1], where we compute FID scores on 1000 samples every 5000 training iterations and
choose the checkpoint with the smallest FID for computing both full FID scores (with more samples
from it) and the HYPE, scores.

Training: We use the Adam [26] optimizer with default hyperparameters. The learning rates and
batch sizes are provided in Appendix B.1 and Table 4. We observe that for images at resolution
128 x 128 or 256 x 256, training can be unstable when the loss is near convergence. We note,
however, this is a well-known problem of the Adam optimizer, and can be mitigated by techniques
such as AMSGrad [31]. We trained all models on Nvidia Tesla V100 GPUs.

Settings for Section 3.3: The loss curves in Fig. 3 are results of two settings: (i) Technique 1, 2, 4
and 5 are in effect, but the model architecture is the same as the original NCSN (i.e., Table 2a); and
(i1) all techniques are in effect, i.e., the model is the same as NCSNv2 depicted in Table 3a. We apply
EMA with momentum 0.9 to smooth the curves in Fig. 3. We observe that despite being simpler
to implement, the new noise conditioning method proposed in Technique 3 performs as well as the
original and arguably more complex one in [1] in terms of the training loss. See the ablation studies
in Section 6 and Appendix C.4 for additional results.

Interpolation: We can interpolate between two different samples from NCSN/NCSNv2 via interpo-
lating the Gaussian random noise injected by annealed Langevin dynamics. Specifically, suppose
we have a total of L noise levels, and for each noise level we run 7" steps of Langevin dynamics.
Let {Zij}lgigL,lgng £ {Z11, Z12," " yZ1T,221,222," "+ , 22T, """ ,ZL1,Z[2," " 7ZLT} denote
the set of all Gaussian noise used in this procedure, where z;; is the noise injected at the j-th
iteration of Langevin dynamics corresponding to the ¢-th noise level. Next, suppose we have two
samples x1) and x(2) with the same initialization x¢, and denote the corresponding set of Gaussian

samples between x(!) and x(?), where for the k-th interpolated sample we use Gaussian noise

1 . 2 e e
{cos (2(]]\311)>Z’Ej) + sin (2(]]\6111))Z7Ej)}1§i§L71§j§T and initialization x.

C Additional experimental results

C.1 Additional results without the denoising step

We further demonstrate the stabilizing effect of EMA in Fig. 8, where FIDs are computed without
the denoising step. As indicated by Figs. 4 and 8, EMA can stabilize training and remove sample
artifacts regardless of whether denoising is used or not.

FID scores should be interpreted with caution because they may not align well with human judgement.
For example, the samples from NCSNv2 as demonstrated in Fig. 10b have an FID score of 28.9
(without denoising), worse than NCSN (Fig. 10a) whose FID is 26.9 (without denoising), but arguably
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Figure 8: FIDs and color artifacts over the course of training (best viewed in color). The FIDs of
NCSN have much higher volatility compared to NCSN with EMA. Samples from the vanilla NCSN
often have obvious color shifts. All FIDs are computed without the denoising step.
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Figure 9: FIDs for different groups of techniques.
Subscripts of “NCSN” are IDs of techniques in Figure 10: Uncurated samples from NCSN
effect. “NCSNv2” uses all techniques. Results (a) and NCSNv2 (b) on CelebA 64 x 64.

are computed without the denoising step.

produce much more visually appealing samples. To investigate whether FID scores align well with
human ratings, we use the HYPE, [29] score (higher is better), a metric of sample quality based
on human evaluation, to compare the two models that generated samples in Figs. 10a and 10b.
We provide full results in Table 5, where all numbers except those for NCSN and NCSNv2 are
directly taken from [29]. As Table 5 shows, our NCSNv2 achieves 37.3 on CelebA 64 x 64 which
is comparable to ProgressiveGAN [32], whereas NCSN achieves 19.8. This is completely different
from the ranking indicated by FIDs.

Table 5: HYPE scores on CelebA 64 x 64. *With truncation tricks.

Model HYPE_.(%) Fakes Error(%) Reals Error(%) Std.
StyleGAN* [28] 50.7 62.2 39.3 1.3
ProgressiveGAN [32] 40.3 46.2 344 0.9
BEGAN [33] 10 6.2 13.8 1.6
WGAN-GP [19] 3.8 1.7 5.9 0.6
NCSN 19.8 22.3 17.3 0.4
NCSNv2 37.3 49.8 24.8 0.5

* with truncation tricks

Finally, we provide ablation results without the denoising step in Fig. 9. It is qualitatively similar to
Fig. 5 where results are computed with denoising.
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C.2 Training and sampling speed

In Table 6, we provide the time cost for training and sampling from NCSNv2 models on various
datasets considered in our experiments.

Table 6: Training and sampling speed of NCSNv2 on various datasets.

Dataset Device  Sampling time Training time
CIFAR-10 2x V100 2 min 22h
CelebA 4x V100 7 min 29h
Church 8x V100 17 min 52h
Bedroom 8x V100 19 min 52h
Tower 8x V100 19 min 52h
FFHQ 8x V100 50 min 41 h

C.3 Color shifts

Ui 8= [ g 0
(a) NCSN (Iter. = 50k) (b) NCSN (Iter. = 100k) (c) NCSN (Iter. = 200k)

Figure 11: EMA reduces undesirable color shifts on CIFAR-10. We show samples from NCSN and
NCSN with EMA at the 50k/100k/200k-th training iteration.
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Figure 12: EMA reduces undesirable color shifts on CelebA-10. We show samples from NCSN and
NCSN with EMA at the 50k/100k/150k-th training iteration.

C.4 Additional results on ablation studies

As discussed in Section 6, we partition all techniques into three groups: (i) Technique 5, (ii)
Technique 1,2,4, and (iii) Technique 3, and investigate the performance of models after successively
removing (iii), (ii), and (i) from NCSNv2. Aside from the FID curves in Figs. 5 and 9, we also provide
samples from different models for visual inspection in Figs. 13 and 14. To generate these samples, we
compute the FID scores on 1000 samples every 5000 training iterations for each considered model,
and sample from the checkpoint of the smallest FID (the same setting as in [1]). From samples in
Figs. 13 and 14, we easily observe that removing any group of techniques leads to worse samples.
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(g) NCSNv2 on CIFAR-10 (h) NCSNv2 on CelebA

Figure 13: Samples from models with different groups of techniques applied. NCSN is the original
model in [1] and does not use any of the newly proposed techniques. Subscripts of “NCSN” denote
the IDs of techniques in effect. NCSNj5 only applies EMA. NCSN; » 4 5 applies both EMA and
technique group (ii). NCSNV2 is the result of all techniques combined. Checkpoints are selected
according to the lowest FID (with denoising) over the course of training.
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(g) NCSNv2 on CIFAR-10 (h) NCSNv2 on CelebA

Figure 14: Samples from models with different groups of techniques applied. NCSN is the original
model in [1] and does not use any of the newly proposed techniques. Subscripts of “NCSN” denote
the IDs of techniques in effect. NCSNj5 only applies EMA. NCSN; » 4 5 applies both EMA and
technique group (ii). NCSNV2 is the result of all techniques combined. Checkpoints are selected
according to the lowest FID (without denoising) over the course of training.
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C.5 Generalization

C.5.1 Loss curves

First, we demonstrate that our NCSNv2 does not overfit to the training dataset by showing the curves
of training/test loss in Fig. 15. Since the loss on the test dataset is always close to the loss on the
training dataset during the course of training, this indicates that our model does not simply memorize

training data.
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Figure 15: Training vs. test loss curves of NCSNv2.

C.5.2 Nearest neighbors

Starting from this section, all samples are from NCSNv2 at the last training iteration. For each
generated sample, we show the nearest neighbors from the training dataset, measured by /5 distance
in the feature space of a pre-trained InceptionV3 network. Since we apply random horizontal flip
when training, we also take this into consideration when computing nearest neighbors, so that we can
detect cases in which NCSNv2 memorizes a flipped training data point.

Y VA . N ;"- | . .‘.ﬁ}. ‘g Rt

Figure 16: Nearest neighbors on CIFAR-10. NCSNv2 samples are on the left side of the red vertical
line. Corresponding nearest neighbors are on the right side in the same row.
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Figure 19: Nearest neighbors on FFHQ 256 x 256.
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C.5.3 Additional interpolation results

We generate samples from NCSNv2 and interpolate between them using the method described in
Appendix B.2.
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Figure 22: NCSNv2 interpolation results on LSUN bedroom 128 x 128.
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Figure 23: NCSNv2 interpolation results on LSUN tower 128 x 128.
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Figure 24: NCSNv2 interpolation results on FFHQ 256 x 256.
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C.6 Additional uncurated samples
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Figure 25: Uncurated CIFAR-10 32 x 32 samples from NCSNv2.
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Figure 27: Uncurated LSUN church_outdoor 96 x 96 samples from NCSNv2.
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Figure 28: Uncurated LSUN bedroom 128 x 128 samples from NCSNv2.
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Figure 29: Uncurated LSUN tower 128 x 128 samples from NCSNv2.
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Figure 30: Uncurated FFHQ 256 x 256 samples from NCSNv2.
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