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Abstract

We investigate online convex optimization in non-stationary environments and
choose the dynamic regret as the performance measure, defined as the difference
between cumulative loss incurred by the online algorithm and that of any feasible
comparator sequence. Let T be the time horizon and PT be the path-length
that essentially reflects the non-stationarity of environments, the state-of-the-art
dynamic regret is O(

√
T (1 + PT )). Although this bound is proved to be minimax

optimal for convex functions, in this paper, we demonstrate that it is possible
to further enhance the dynamic regret by exploiting the smoothness condition.
Specifically, we propose novel online algorithms that are capable of leveraging
smoothness and replace the dependence on T in the dynamic regret by problem-
dependent quantities: the variation in gradients of loss functions, the cumulative
loss of the comparator sequence, and the minimum of the previous two terms. These
quantities are at most O(T ) while could be much smaller in benign environments.
Therefore, our results are adaptive to the intrinsic difficulty of the problem, since
the bounds are tighter than existing results for easy problems and meanwhile
guarantee the same rate in the worst case.

1 Introduction

In many real-world applications, data are inherently accumulated over time, and thus it is of great
importance to develop a learning system that updates in an online fashion. Online Convex Optimiza-
tion (OCO) is a powerful paradigm for learning in such a circumstance, which can be regarded as an
iterative game between a player and an adversary. At iteration t, the player selects a decision xt from
a convex set X and the adversary reveals a convex function ft : X 7→ R. The player subsequently
suffers an instantaneous loss ft(xt). The performance measure is the (static) regret [1],

S-RegretT =

T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x), (1)

which is the difference between cumulative loss incurred by the online algorithm and that of the best
decision in hindsight. The rationale behind such a metric is that the best fixed decision in hindsight is
reasonably good over all the iterations. However, this is too optimistic and may not hold in changing
environments, where data are evolving and the optimal decision is drifting over time. To address this
limitation, dynamic regret is proposed to compete with changing comparators u1, . . . ,uT ∈ X ,

D-RegretT (u1, . . . ,uT ) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut), (2)

which draws considerable attention recently [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. The measure is also
called the universal dynamic regret (or general dynamic regret), in the sense that it gives a universal
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guarantee that holds against any comparator sequence. Note that static regret (1) can be viewed as
its special form by setting comparators as the fixed best decision in hindsight. Moreover, a variant
appeared frequently in the literature is the worst-case dynamic regret defined as

D-RegretT (x∗1, . . . ,x
∗
T ) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ), (3)

which specializes the general form (2) by setting ut = x∗t ∈ arg minx∈X ft(x). However, the
worst-case dynamic regret is often too pessimistic, whereas the universal one is more adaptive to the
non-stationary environments. We refer the readers to [8] for more detailed explanations.

There are many studies on the worst-case dynamic regret [2, 3, 4, 5, 6, 7, 10, 13], but only few results
are known for the universal dynamic regret. Zinkevich [1] shows that online gradient descent (OGD)
achieves an O(

√
T (1 + PT )) universal dynamic regret, where PT =

∑T
t=2‖ut−1 − ut‖2 is the

path-length of comparators u1, . . . ,uT and thus reflects the non-stationarity of the environments.
Nevertheless, there exists a large gap between this upper bound and the Ω(

√
T (1 + PT )) minimax

lower bound established recently by Zhang et al. [8], who further propose a novel online algorithm,
attaining an O(

√
T (1 + PT )) universal dynamic regret, and thereby close the gap.

Although the rate is minimax optimal for convex functions, we would like to design algorithms with
more adaptive bounds, replacing the dependence on T by certain problem-dependent quantities that
areO(T ) in the worst case while could be much smaller in benign environments (i.e., easy problems).
In the study of static regret, we can attain such bounds when additional curvature like smoothness is
presented, including small-loss bounds [14] and variation bounds [15]. Thus, a natural question arises
whether it is possible to leverage smoothness to achieve more adaptive universal dynamic regret?

Our results. In this paper, we provide an affirmative answer by designing algorithms with problem-
dependent dynamic regret bounds. Specifically, we focus on the following two adaptive quantities:
the gradient variation of online functions VT and the cumulative loss of the comparator sequence FT ,

VT =

T∑
t=2

sup
x∈X
‖∇ft−1(x)−∇ft(x)‖22, and FT =

T∑
t=1

ft(ut). (4)

We propose a novel online approach for convex and smooth functions, named Smoothness-aware
online learning with dynamic regret (abbreviated as Sword). There are three versions, including
Swordvar, Swordsmall, and Swordbest. All of them enjoy problem-dependent dynamic regret bound:

• Swordvar enjoys a gradient-variation bound of O(
√

(1 + PT + VT )(1 + PT ));

• Swordsmall enjoys a small-loss bound of O(
√

(1 + PT + FT )(1 + PT ));

• Swordbest enjoys a best-of-both-worlds bound ofO(
√

(1 + PT + min{VT , FT })(1 + PT )).

Comparing to the minimax rate of O(
√
T (1 + PT )), our bounds replace the dependence on T by the

problem-dependent quantity PT + min{VT , FT }. Since the quantity is at most O(T ), our bounds
become much tighter when the problem is easy (for example when PT and VT /FT are sublinear
in T ), and meanwhile safeguard the same guarantee in the worst case. Therefore, our results are
adaptive to the intrinsic difficulty of the problem and the non-stationarity of the environments.

Technical contributions. We highlight challenges and technical contributions of this paper. First,
we note that there exist studies showing that the worst-case dynamic regret can benefit from smooth-
ness [5, 6, 13]. However, their analyses do not apply to our case, since we cannot exploit the
optimality condition of comparators u1, . . . ,uT , in stark contrast with the worst-case dynamic regret
analysis. Therefore, we adopt the meta-expert framework to hedge the non-stationarity while keeping
the adaptivity. We can use variants of OGD as the expert-algorithm to exploit the smoothness, but
it is difficult to design an appropriate meta-algorithm. Existing meta-algorithms and their variants
either lead to problem-independent regret bounds or introduce terms that are incompatible to the
desired problem-dependent quantity. To address the difficulty, we adopt the technique of optimistic
online learning [16, 17], in particular OptimisticHedge, to design novel meta-algorithms.

For Swordvar, we apply OptimisticHedge with carefully designed optimism, which allows us to exploit
the negative term in the regret analysis of OptimisticHedge [17]. In this way, the meta-regret only
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depends on the gradient variation. The construction of the special optimism is the most challenging
part of our paper. For Swordsmall, the design of meta-algorithm is simple, and we directly use the
vanilla Hedge, which can be treated as OptimisticHedge with null optimism. Finally, for Swordbest,
we still employ OptimisticHedge as the meta-algorithm, but introduce a parallel meta-algorithm to
learn the best optimism to ensure a best-of-both-worlds dynamic regret guarantee.

2 Gradient-Variation and Small-Loss Bounds

We first list assumptions used in the paper, and then propose online algorithms with gradient-variation
and small-loss dynamic regret bounds, respectively. All the proofs can be found in the full paper [18].

2.1 Assumptions

We introduce the following common assumptions that might be used in the theorems.
Assumption 1. The norm of the gradients of online functions over the domain X is bounded by G,
i.e., ‖∇ft(x)‖2 ≤ G, for all x ∈ X and t ∈ [T ].

Assumption 2. The domain X ⊆ Rd contains the origin 0, and the diameter of the domain X is at
most D, i.e., ‖x− x′‖2 ≤ D for any x,x′ ∈ X .
Assumption 3. All the online functions are L-smooth, i.e., for any x,x′ ∈ X and t ∈ [T ],

‖∇ft(x)−∇ft(x′)‖2 ≤ L‖x− x′‖2. (5)

Assumption 4. All the online functions are non-negative.

Note that in Assumption 4 we require the online functions to be non-negative outside the domain
X , which is a precondition for establishing the self-bounding property for smooth functions [14].
Meanwhile, we treat double logarithmic factors in T as a constant, following previous studies [19, 20].

2.2 Gradient-Variation Bound

We design an approach in a meta-expert framework, and prove its gradient-variation dynamic regret.

2.2.1 Expert-Algorithm

In the study of static regret, Chiang et al. [15] propose the following online extra-gradient descent
(OEGD) algorithm, and show that the algorithm enjoys gradient-variation static regret bound. The
OEGD algorithm performs the following update:

x̂t+1 = ΠX [x̂t − η∇ft(xt)] ,
xt+1 = ΠX [x̂t+1 − η∇ft(x̂t+1)] ,

(6)

where x̂1,x1 ∈ X , η > 0 is the step size, and ΠX [·] denotes the projection onto the nearest point
in X . For convex and smooth functions, Chiang et al. [15] prove that OEGD achieves an O(

√
VT )

static regret. We further demonstrate that OEGD also enjoys gradient-variation type dynamic regret.
Theorem 1. Under Assumptions 1, 2, and 3, by choosing η ≤ 1

4L , OEGD (6) satisfies

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤
D2 + 2DPT

2η
+ ηVT +GD = O

(1 + PT
η

+ ηVT

)
.

for any comparator sequence u1, . . . ,uT ∈ X .

Theorem 1 shows that it is crucial to tune the step size to balance non-stationarity (path-length PT )
and adaptivity (gradient variation VT ). Notice that the optimal tuning η∗ =

√
(D2 + 2DPT )/(2VT )

requires the prior information of PT and VT that are generally unavailable. We emphasize that VT is
empirically computable, while PT remains unknown even after all iterations due to the fact that the
comparator sequence is unknown and can be chosen arbitrarily as long as it is feasible in the domain.
Therefore, the doubling trick [21] can only remove the dependence on the unknown VT but not PT .

To handle the uncertainty, we adopt the meta-expert framework to hedge the non-stationarity while
keeping the adaptivity, inspired by the recent advance in learning with multiple learning rates [22,
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23, 8]. Concretely, we first construct a pool of candidate step sizes to discretize value range of the
optimal step size, and then initialize multiple experts simultaneously, denoted by E1, . . . , EN . Each
expert Ei returns its prediction xt,i by running OEGD (6) with a step size ηi from the pool. Finally,
predictions of all the experts are combined by a meta-algorithm as the final output xt to track the best
expert. From the procedure, we observe that the dynamic regret can be decomposed as,

D-RegretT =

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) =

T∑
t=1

ft(xt)− ft(xt,i)︸ ︷︷ ︸
meta-regret

+

T∑
t=1

ft(xt,i)− ft(ut)︸ ︷︷ ︸
expert-regret

,

where {xt}t=1,...,T denotes the final output sequence, and {xt,i}t=1,...,T is the prediction sequence
of expert Ei. The first part is the difference between cumulative loss of final output sequence and that
of prediction sequence of expert Ei, which is introduced by the meta-algorithm and thus named as
meta-regret; the second part is the dynamic regret of expert Ei and therefore named as expert-regret.

The expert-algorithm is set as OEGD (6), and Theorem 1 upper bounds the expert-regret. The main
difficulty lies in the design and analysis of an appropriate meta-algorithm.

2.2.2 Meta-Algorithm

Formally, there areN experts and expert Ei predicts xt,i at iteration t, and the meta-algorithm requires
to produce xt =

∑N
i=1 pt,ixt,i, a weighted combination of expert predictions, where pt ∈ ∆N is the

weight vector. It is natural to use Hedge [24] for weight update in order to track the best expert.

In order to be compatible to the gradient-variation expert-regret, the meta-algorithm is required to
incur a problem-dependent meta-regret of orderO(

√
VT lnN). However, the meta-algorithms used in

existing studies [23, 8] cannot satisfy the requirements. For example, the vanilla Hedge (multiplicative
weights update) suffers from an O(

√
T lnN) meta-regret, which is problem-independent and thus

not suitable for us. To this end, we design a a novel variant of Hedge by leveraging the technique of
optimistic online learning with carefully designed optimism, specifically for our problem.

The optimistic online learning is developed by Rakhlin and Sridharan [16] and further expanded
by Syrgkanis et al. [17]. For the prediction with expert advice setting, they consider that at the
beginning of iteration (t + 1), in addition to the loss vector `t ∈ RN returned by the experts, the
learner can receive a vector mt+1 ∈ RN called optimism. The authors propose the OptimisticHedge
algorithm [16, 17], which updates the weight vector pt+1 ∈ ∆N by

pt+1,i ∝ exp

(
−ε
( t∑
s=1

`s,i +mt+1,i

))
, ∀i ∈ [N ]. (7)

Syrgkanis et al. [17] prove the following regret guarantee for OptimisticHedge.
Lemma 1 ([17, Theorem 19]). The meta-regret of OptimisticHedge is upper bounded by

T∑
t=1

〈pt, `t〉 − `t,i ≤
2 + lnN

ε
+ ε

T∑
t=1

‖`t −mt‖2∞ −
1

4ε

T∑
t=2

‖pt − pt−1‖21, (8)

which holds for any expert i ∈ [N ]. Denote by D∞ =
∑T
t=1‖`t −mt‖2∞ to measure the adaptivity.

With proper learning rate tuning, OptimisticHedge enjoys an O(
√
D∞ lnN) meta-regret.

The optimistic online learning is very powerful for designing adaptive methods, in that the adaptivity
D∞ in Lemma 1 is very general and can be specialized flexibly with different configurations of the
feedback loss `t and optimism mt. Based on the OptimisticHedge, we propose VariationHedge, the
meta-algorithm for Swordvar, by specializing OptimisticHedge as follows:

• the feedback loss `t is set as the linearized surrogate loss, namely, `t,i = 〈∇ft(xt),xt,i〉;
• the optimism mt is set with a careful design: for each i ∈ [N ]

mt,i = 〈∇ft−1(x̄t),xt,i〉, where x̄t =

N∑
i=1

pt−1,ixt,i. (9)
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Algorithm 1 Swordvar: Meta (VariationHedge)
Input: step size poolHvar; learning rate ε
1: Initialization: ∀i ∈ [N ], p0,i = 1/N
2: for t = 1 to T do
3: Receive xt+1,i from expert Ei (ηi)
4: Update weight pt+1,i by (10)
5: Predict xt+1 =

∑N
i=1 pt+1,ixt+1,i

6: end for

Algorithm 2 Swordvar: Expert (OEGD)
Input: step size ηi
1: Let x̂1,i,x1,i be any point in X
2: for t = 1 to T do
3: x̂t+1,i = ΠX

[
x̂t,i − ηi∇ft(xt,i)

]
4: xt+1,i = ΠX

[
x̂t+1,i − ηi∇ft(x̂t+1,i)

]
5: Send xt+1,i to meta-algorithm
6: end for

So the meta-algorithm of Swordvar (namely, VariationHedge) updates the weight by

pt+1,i ∝ exp

(
−ε
( t∑
s=1

〈∇fs(xs),xs,i〉+ 〈∇ft(x̄t+1),xt+1,i〉
))

, ∀i ∈ [N ]. (10)

Algorithm 1 summarizes detailed procedures of the meta-algorithm, which in conjunction with the
expert-algorithm of Algorithm 2 yields the Swordvar algorithm.

Remark 1. The design of optimism in (9) (in particular, x̄t) is crucial, and is the most challenging
part in this work. The key idea is to exploit the negative term in the regret of OptimisticHedge, as
shown in (8), to convert the adaptive quantity D∞ to the desired gradient variation VT . Indeed,

‖`t −mt‖2∞
(9)
= maxi∈[N ]〈∇ft(xt)−∇ft−1(x̄t),xt,i〉2

≤ D2‖∇ft(xt)−∇ft−1(x̄t)‖22
≤ 2D2(‖∇ft(xt)−∇ft−1(xt)‖22 + ‖∇ft−1(xt)−∇ft−1(x̄t)‖22)

≤ 2D2 supx∈X ‖∇ft(x)−∇ft−1(x)‖22 + 2D2L2‖xt − x̄t‖22
where the last step makes use of smoothness. Therefore, D∞ can be upper bounded by the gradient
variation VT and the summation of ‖xt − x̄t‖22. The latter one can be further expanded as

‖xt − x̄t‖22 =
∥∥∥ N∑
i=1

(pt,i − pt−1,i)xt,i
∥∥∥2
2
≤
( N∑
i=1

|pt,i − pt−1,i|‖xt,i‖2
)2
≤ D2‖pt − pt−1‖21,

which can be eliminated by the negative term in (8), with a suitable setting of the learning rate ε.

2.2.3 Regret Guarantees

We prove that the meta-regret of VariationHedge is O(
√
VT lnN), compatible to the expert-regret.

Theorem 2. Under Assumptions 1, 2, and 3, by setting the learning rate optimally as ε =
min{

√
1/(8D4L2),

√
(2 + lnN)/(2D2VT )}, the meta-regret of VariationHedge is at most

meta-regret ≤ 2D
√

2VT (2 + lnN) + 4
√

2D2L(2 + lnN) = O(
√
VT lnN).

Note that the dependence on VT in the optimal learning rate tuning can be removed by the doubling
trick. Furthermore, actually we can set the optimal learning rate of the meta-algorithm with V̂T =∑T
t=2‖∇ft(xt) − ∇ft−1(xt)‖22 instead of the original gradient variation VT via a more refined

analysis. The quantity V̂T can be regarded as an empirical approximation of VT , and it can be
calculated directly without involving the inner problem of supx∈X ‖∇ft(x)−∇ft−1(x)‖22. Thereby,
we can perform the doubling trick by monitoring V̂T with much less computational efforts. Combining
Theorem 1 (expert-regret) and Theorem 2 (meta-regret), we have the following dynamic regret bound.

Theorem 3. Under Assumptions 1, 2, and 3, setting the pool of candidate step sizesHvar as

Hvar =

{
ηi = 2i−1

√
D2

2GT
, i ∈ [N1]

}
, (11)
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where N1 = d2−1 log2(GT/(8D2L2))e+ 1.1 Then Swordvar (Algorithms 1 and 2) satisfies
T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ O
(√

(1 + PT + VT )(1 + PT )
)

for any comparator sequence u1, . . . ,uT ∈ X .

Remark 2. Compared with the existing O(
√
T (1 + PT )) dynamic regret [8], our result is more

adaptive in the sense that it replaces T by the problem-dependent quantity PT + VT . Therefore,
the bound will be much tighter in easy problems, for example when both VT and PT are o(T ).
Meanwhile, it safeguards the same minimax rate, since both quantities are at most O(T ).
Remark 3. Because the universal dynamic regret studied in this paper holds against any comparator
sequence, it specializes the static regret by setting all comparators as the best fixed decision in
hindsight, i.e., u1 = . . . = uT = x∗ ∈ arg minx∈X

∑T
t=1 ft(x). Under such a circumstance, the

path-length PT =
∑T
t=2‖ut−1−ut‖2 will be zero, so the regret bound in Theorem 3 actually implies

an O(
√
VT ) variation static regret bound, which recovers the result of Chiang et al. [15].

2.3 Small-Loss Bound

In this part, we turn to another problem-dependent quantity, cumulative loss of the comparator
sequence, and prove the small-loss dynamic regret. We start from the online gradient descent (OGD),

xt+1 = ΠX
[
xt − η∇ft(xt)

]
. (12)

Srebro et al. [14] prove that OGD achieves an O(
√
F ∗T ) static regret, where F ∗T =

∑T
t=1 ft(x

∗) is
the cumulative loss of the comparator benchmark x∗. For the dynamic regret, since the benchmark
is changing, a natural replacement is the cumulative loss of the comparator sequence u1, . . . ,uT ,
namely FT =

∑T
t=1 ft(ut). We show that OGD indeed enjoys such a small-loss dynamic regret.

Theorem 4. Under Assumptions 2, 3, and 4, by choosing any step size η ≤ 1
4L , OGD satisfies

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤
D2 + 2DPT
2η(1− 2ηL)

+
2ηL

1− 2ηL

T∑
t=1

ft(ut) = O
(1 + PT

η
+ ηFT

)
for any comparator sequence u1, . . . ,uT ∈ X .

Similar to Swordvar, the step size needs to balance between non-stationarity (PT ) and adaptivity (FT ,
this time). Notice that the optimal tuning depends on PT and FT , both of which are unknown even
after all T iterations. Therefore, we again compensate the lack of this information via the meta-expert
framework to hedge the non-stationarity while keeping the adaptivity. The expert-algorithm is set as
OGD. The meta-algorithm is required to suffer a small-loss meta-regret of order O(

√
FT lnN). We

discover that vanilla Hedge with linearized surrogate loss is qualified, which updates the weight by

pt+1,i ∝ exp
(
− ε

t∑
s=1

〈∇fs(xs),xs,i〉
)
, ∀i ∈ [N ]. (13)

Notice that vanilla Hedge can be treated as OptimisticHedge with null optimism, i.e., mt+1 = 0.
Therefore, by Lemma 1 we know that its meta-regret is of order O(

√
D∞ lnN) and

D∞ =

T∑
t=1

maxi∈[N ]〈∇ft(xt),xt,i〉2 ≤ D2
T∑
t=1

‖∇ft(xt)‖22 ≤ 4D2L

T∑
t=1

ft(xt), (14)

where the last inequality follows from the self-bounding property of smooth functions [14, Lemma
3.1]. As a result, the meta-regret is now O(

√
Fx
T lnN), where Fx

T =
∑T
t=1 ft(xt) is the cumulative

loss of decisions. Note that the term Fx
T can be further processed to the desired small-loss quantity

FT =
∑T
t=1 ft(ut), the cumulative loss of comparators. We will present details in the proof.

To summarize, Swordsmall chooses OGD (12) as the expert-algorithm, and uses the vanilla Hedge
with linearized surrogate loss as the meta-algorithm shown in the update form (13). The theorem
below shows that the proposed algorithm enjoys the small-loss dynamic regret bound.

1The number of candidate step sizes is denoted by N1 instead of N to distinguish it with that of Swordsmall.
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Theorem 5. Under Assumptions 1, 2, 3, and 4, setting the pool of candidate step sizesHsmall as

Hsmall =

{
ηi = 2i−1

√
D

16LGT
, i ∈ [N2]

}
, (15)

where N2 = d2−1 log2(GT/(DL))e+ 1. Setting the learning rate of meta-algorithm optimally as
ε =

√
(2 + lnN2)/(D2Fx

T ), then Swordsmall satisfies

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ O
(√

(1 + PT + FT )(1 + PT )
)
.

for any comparator sequence u1, . . . ,uT ∈ X .

Note that the optimal learning rate tuning requires the knowledge of Fx
T , which can be easily removed

by doubling trick or self-confident tuning [25], since it is empirically evaluable at each iteration.
Moreover, the O(

√
(1 + PT + FT )(1 + PT )) universal dynamic regret in Theorem 5 specializes to

the O(
√
FT ) static regret [14] when setting the comparators as the fixed best decision in hindsight.

3 Best-of-Both-Worlds Bound

In the last section, we propose Swordvar and Swordsmall that achieve variation and small-loss bounds
respectively. Due to different problem-dependent quantities are involved, these two bounds are
generally incomparable and are favored in different scenarios. Therefore, it is natural to ask for a
best-of-both-worlds guarantee: the regret of the minimum of variation and small-loss bounds.

Table 1: Summary of expert-algorithms and meta-algorithms
as well as different optimism used in the proposed algorithms
(including three variants of Sword).

Method Expert Meta Optimism
Swordvar OEGD VariationHedge by (9)
Swordsmall OGD vanilla Hedge mt+1 = 0
Swordbest OEGD & OGD OptimisticHedge by (18), (21)

To this end, we require a meta-algorithm
that can enjoy both kinds of adaptiv-
ity to combine all the experts, with
an O(

√
min{VT , FT } lnN) meta-regret.

Based on the observation that both Vari-
ationHedge and vanilla Hedge are essen-
tially special cases of OptimisticHedge
with different configurations of optimism,
we adopt the OptimisticHedge to be the meta-algorithm for Swordbest, where a parallel meta-algorithm
is introduced to learn the best optimism for OptimisticHedge to ensure best-of-both-worlds meta-
regret. In the following we describe the expert-algorithm and meta-algorithm of Swordbest.

Expert-algorithm. We aggregate the experts of Swordvar and Swordsmall, so there areN = N1+N2

experts in total and the step size of each experts is set according to the pool H = Hvar ∪ Hsmall
(cf. (11) and (15) for definitions). The first N1 experts run OEGD (6) with the step size chosen from
Hvar, and the other N2 experts perform OGD (12) with step size specified byHsmall. At iteration t,
the final output is a weighted combination of predictions returned by the expert-algorithms, namely,

xt =

N∑
i=1

pt,ixt,i =

N1∑
i=1

pt,ix
v
t,i +

N1+N2∑
i=N1+1

pt,ix
s
t,i, (16)

where pt ∈ ∆N1+N2 is the weight, xt,i = xvt,i for i = 1, . . . , N1 are predictions returned by the
expert-algorithms (OEGD) of Swordvar, and xt,i = xst,i for i = N1 + 1, . . . , N1 +N2 are predictions
returned by the expert-algorithms (OGD) of Swordsmall. It remains to specify the meta-algorithm.

Meta-algorithm. We adopt the OptimisticHedge algorithm along with the linearized surrogate loss
as the meta-algorithm, where the weight vector pt+1 ∈ ∆N1+N2

is updated according to

pt+1,i ∝ exp

(
−ε
( t∑
s=1

〈∇fs(xs),xs,i〉+mt+1,i

))
, (17)

where the optimism mt+1 ∈ RN1+N2 . In order to facilitate the meta-algorithm with both kinds of
adaptivity (VT and FT ), it is crucial to design best-of-both-worlds optimism.
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Algorithm 3 Swordbest: Meta (OptimisticHedge)
Input: step size poolH; learning rate ε
1: Let N = N1 +N2, ∀i ∈ [N ], p0,i = 1/N
2: for t = 1 to T do
3: Receive prediction xt+1,i from expert Ei
4: Set Mv

t+1 and Ms
t+1 by (19) and (20)

5: Update the weight βt+1 by (22)
6: Obtain the optimism Mt+1 (21)
7: Update the weight pt+1,i by (17) and (18)
8: Output the prediction

xt+1 =
∑N
i=1 pt+1,ixt+1,i

9: end for

Algorithm 4 Swordbest: Expert (OEGD & OGD)
Input: step size ηi
1: Let x̂1,i,x1,i be any point in X
2: for t = 1 to T do
3: if i ∈ {1, . . . , N1} then
4: x̂t+1,i = ΠX

[
x̂t,i − ηi∇ft(xt,i)

]
5: xt+1,i = ΠX

[
x̂t+1,i − ηi∇ft(x̂t+1,i)

]
.

6: else
7: xt+1,i = ΠX

[
xt,i − ηi∇ft(xt,i)

]
.

8: end if
9: Send prediction xt+1,i to meta-algorithm

10: end for

We set the optimism mt+1 in the following way: for each i ∈ [N1 +N2]

mt+1,i = 〈Mt+1,xt+1,i〉, (18)

where Mt+1 ∈ Rd is called the optimistic vector. So we are left with the task of determining the term
of Mt+1 in (18). Inspired by the seminal work of Rakhlin and Sridharan [16], we treat the problem of
selecting the sequence of optimistic vectors as another online learning problem. The idea is to build a
parallel meta-algorithm for learning the optimistic vectorMt+1, which is then fed to OptimisticHedge
of (17) for combining multiple experts, to achieve a best-of-both-worlds meta-regret.

Specifically, consider the following learning scenario of prediction with two expert advice. At the
beginning of iteration (t+ 1), we receive two optimistic vectors Mv

t+1,M
s
t+1 ∈ Rd, based on which

the algorithm determines the optimistic vector Mt+1 ∈ Rd for Swordbest. Then the online function
ft+1 is revealed, and we subsequently observe the loss of dt+1(Mv

t+1) and dt+1(Ms
t+1), where

dt+1(M) = ‖∇ft+1(xt+1)−M‖22. In above, the vectors of Mv
t+1 and Ms

t+1 are
Mv
t+1 = ∇ft(x̄t+1), and Ms

t+1 = 0, (19)
where x̄t+1 is the instrumental output. Similar to the construction of (9), it is designed as

x̄t+1 =
∑N1

i=1
pt,ix

v
t+1,i +

∑N1+N2

i=N1+1
pt,ix

s
t+1,i. (20)

Notice that the function dt : Rd 7→ R is 2-strongly convex with respect to ‖ · ‖2-norm, we thus choose
Hedge of strongly convex functions [26, Chapter 3.3] as the parallel meta-algorithm for updating,

Mt+1 = βt+1M
v
t+1 + (1− βt+1)Ms

t+1, (21)
where the weight βt+1 ∈ [0, 1] for learning optimistic vectors is updated by

βt+1 =
exp(−2Dv

t )

exp(−2Dv
t ) + exp(−2Ds

t )
(22)

with Dv
t =

∑t
τ=1 dτ (Mv

τ ) and Ds
t =

∑t
τ=1 dτ (Ms

τ ).

Algorithm 3 summarizes the meta-algorithm of Swordbest. In the last two columns of Table 1, we
present comparisons of the meta-algorithms and optimism designed for different methods .

Regret Analysis. Recall that the meta-regret of OptimisticHedge is of order O(
√
D∞ lnN). From

the setting of surrogate loss (17) and optimism (18), we have

D∞ =

T∑
t=1

maxi∈[N ] (〈∇ft(xt)−Mt,xt,i〉)2 ≤ D2
T∑
t=1

‖∇ft(xt)−Mt‖22.

Besides, the regret analysis of Hedge for strongly convex functions [26, Proposition 3.1] implies
T∑
t=1

‖∇ft(xt)−Mt‖22 =

T∑
t=1

dt(Mt) ≤ min
{
V̄T , F̄T

}
+

ln 2

2
,

where V̄T =
∑T
t=2‖∇ft(xt) −∇ft−1(x̄t)‖22 and F̄T =

∑T
t=1‖∇ft(xt)‖22. The two terms can be

further converted to the desired gradient variation VT and small loss FT , by exploiting the smoothness
and expert-regret analysis. We can thus ensure the following meta-regret bound.
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Theorem 6. Under Assumptions 1, 2, 3, and 4, by setting the learning rate optimally as ε =
min{

√
1/(8D4L2), ε∗}, the meta-algorithm of Swordbest satisfies

meta-regret ≤ 2D
√

(2 + lnN)(min{2VT , F̄T }+ ln 2) + 4
√

2D2L(2 + lnN)

where ε∗ =
√

(2 + lnN)/(D2 min{2VT , F̄T }+D2 ln 2).

Because VT and F̄T are both empirically observable, we can easily get rid of their dependence in
the optimal learning rate tuning. Also see the discussion below Theorem 2 about replacing the
original gradient variation VT by its empirical approximation V̂T =

∑T
t=2‖∇ft(xt)−∇ft−1(xt)‖22

to save computational costs. Besides, the F̄T term of meta-regret will be converted to the desired
small-loss quantity FT in the final regret bound. Combining above meta-regret analysis as well as the
expert-regret analysis of OEGD and OGD algorithms, we can finally achieve the best of both worlds.
Theorem 7. Under Assumptions 1, 2, 3, and 4, setting the pool of candidate step sizes as

H = Hvar ∪Hsmall, (23)

whereHvar andHsmall are defined in (11) and (15). Then Swordbest (Algorithms 3 and 4) satisfies
T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤ O
(√

(1 + PT + min{VT , FT })(1 + PT )
)
,

for any comparator sequence u1, . . . ,uT ∈ X .
Remark 4. The dynamic regret bound in Theorem 7 achieves a minimum of gradient-variation and
small-loss bounds, and therefore combines their advantages and enjoys both kinds of adaptivity.
Moreover, the result also implies an O(

√
min{VT , FT }) static regret by setting the sequence of

comparators to be the best fixed decision in hindsight, where we note that FT is now the same as the
notation of F ∗T used below (12), the cumulative loss of the comparators benchmark.

4 Conclusion

In this paper, we exploit smoothness to enhance the universal dynamic regret, with the aim to replace
the time horizon T in the state-of-the-art O(

√
T (1 + PT )) bound by problem-dependent quantities

that are at most O(T ) but can be much smaller in easy problems. We achieve this goal by proposing
two meta-expert algorithms: Swordvar which attains a gradient-variation dynamic regret bound of or-
der O(

√
(1 + PT + VT )(1 + PT )), and Swordsmall which enjoys a small-loss dynamic regret bound

of order O(
√

(1 + PT + FT )(1 + PT )). Here, VT measures the variation in gradients and FT is the
cumulative loss of the comparator sequence. They are at most O(T ) yet could be very small when
the problem is easy, and thus reflect the difficulty of the problem instance. As a result, our bounds
improve the minimax rate of universal dynamic regret by exploiting smoothness. Finally, we design
Swordbest to combine advantages of both gradient-variation and small-loss algorithms and achieve a
best-of-both-worlds dynamic regret bound of order O(

√
(1 + PT + min{VT , FT })(1 + PT )). We

note that all of attained dynamic regret bounds are universal in the sense that they hold against
any feasible comparator sequence, and thus the algorithms are more adaptive to the non-stationary
environments. In the future, we will investigate the possibility of exploiting other function curvatures,
such as strong convexity or exp-concavity, into the analysis of the universal dynamic regret.
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