
We thank the area chair and the four reviewers for their careful reading and helpful comments. We will begin with some1

general clarifications and then follow with specific response line by line.2

Our Contributions For the non-convex problem of matrix sensing, we define a function δsoc(X) that gives a precise3

threshold on the number of samples need to prevent X from becoming a spurious local minima. Although δsoc is4

difficult to compute exactly, we obtain a closed-form, sharp lower bound using convex optimization. As a result, we are5

able to characterize the tradeoff between the quality of the initial point and the sample complexity.6

Comparison with previous results on local convergence: Various previous works have shown that linear convergence7

occurs around a small, fixed neighborhood of the global min (see Bhojanapalli et al., Tu et al., etc). The proof techniques8

are similar: restricted local convexity holds when the sample size is sufficiently large. However, these proof techniques9

are incapable of charactering how the optimization landscape changes as sample complexity increases. Our work paints10

the full picture: the problem becomes more ‘non-convex’ (requiring more samples to eliminate spurious local min)11

as we get further and further away from the global min. Once outside Bε, it becomes necessary to rely on the global12

guarantees of Bhojanapalli et al. In contrast, previous work on local convergence only show convexity in a small13

neighborhood, and tells us nothing about the landscape outside that small neighborhood.14

How to find an initial point: As reviewer 1 points out, the main concern of our paper is understanding how the15

landscape changes with sample complexity. Therefore, we chose to view the initial point as a part of the problem16

structure. Nevertheless, there is a substantial body of previous work (e.g. Bhojopanalli et al., Tu et al., Candes et al.)17

that separately studies the problem of finding a good initialization. One possible difficulty, as reviewer 4 notes, is that18

some of these methods, such as spectral initialization, already require a large sample size. But we emphasize that this19

is not the only way to get an initial point. For example, matrix sensing arises in the electric grid application under20

the name “state estimation". Here, the ground truth corresponds to a physical quantity of interest. Domain-specific21

heuristics that depend on physical and engineering intuition are able to deliver high quality initial points that are then22

further refined via non-convex optimization.23

Response to reviewer 1: We thank the reviewer for the nice summary of our paper. We will move the related works24

section towards the end of the paper. Regarding the second question in section 3, we note that GD will always stay in25

the ε-ball when the sample size is large (but still on the order of O(nr)). In this case the inner product between ∇f(X)26

and ∇‖XXT − ZZT ‖2F is always positive. When the sample size is smaller, we can rely on problem structures to27

prevent the algorithm from leaving the neighborhood. For instance, with any descent algorithm, we are guaranteed to28

stay in the region if we initialize within a smaller interior (See [23]).29

Response to reviewer 2: We thank the reviewer for the positive feedback. We agree that the title of the paper is indeed30

too general and we will change it to How Many Samples is a Good Initial Point Worth in Low-Rank Matrix Recovery?31

Response to reviewer 3: We thank the reviewer for very detailed comments. (1) We agree that more motivation should32

be provided for the matrix sensing problem. We have added a brief section in the intro that discusses the application33

of matrix sensing in problems like quantum state tomography, metric learning, and electric grids. We also clarified34

our assumptions: the measurement matrices A1, . . . , An are fixed, and can be from any RIP ensemble. (2) Regarding35

the tightness of our lower bound: the plot in figure 1 shows the rank-1 case, where the bound has been shown to36

be tight for all ε (See [23]). In the high-rank case, δfoc is very close to 1 when ε is small, as indicated by Theorem37

5. Since δfoc ≤ δsoc < 1, the gap between δfoc and δsoc is small. When ε becomes large, we switch to the global38

lower bound δsoc(Rn×r) = 1/5, which is again exactly tight. (3) Arguably, matrix sensing is one of the handful39

non-convex problems that admits rigorous theoretical analysis, and our work provides deeper understanding of how40

non-convexity can be overcome with more training samples. We believe this is an important step towards understanding41

the relationship between sample complexity and the optimization landscape in deeper models. (4) Notice that when the42

number of measurements is below the threshold defined by δsoc, our results guarantee that there exists some choice43

of the measurement ensemble A such that the problem will have a spurious local minima. However, sampling from44

sub-Gaussians distributions in general does not find these adversarial cases. This is indeed a subtle point, and we have45

added a brief discussion in the numerical results section.46

Response to reviewer 4: We thank the reviewer for the helpful comments. For the concerns raised in section 3, please47

refer to our discussion at the beginning. We emphasize that our main contribution is not improved RIP-conditions.48

Rather, it is a new proof technique that establishes a tradeoff between sample complexity and the quality of the initial49

point. This is something that previous methods based on local convexity are incapable of characterizing, since their50

analysis depends on a fixed neighborhood. Note that lemma 4.2 in [1] only bounds the distance in the subspace spanned51

by the column of U , and the error along the orthogonal direction can still be large. Therefore, this lemma can’t actually52

eliminate spurious critical points, even when δ is arbitrarily small. In contrast, our analysis finds the precise number of53

samples to prevent any point from becoming a spurious critical point, allowing us to describe how the optimization54

landscape ‘evolves’ as sample complexity increases.55


