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Abstract

We present a new method for linear and nonlinear, lagged and contemporaneous
constraint-based causal discovery from observational time series in the presence
of latent confounders. We show that existing causal discovery methods such as
FCI and variants suffer from low recall in the autocorrelated time series case
and identify low effect size of conditional independence tests as the main reason.
Information-theoretical arguments show that effect size can often be increased if
causal parents are included in the conditioning sets. To identify parents early on,
we suggest an iterative procedure that utilizes novel orientation rules to determine
ancestral relationships already during the edge removal phase. We prove that the
method is order-independent, and sound and complete in the oracle case. Extensive
simulation studies for different numbers of variables, time lags, sample sizes, and
further cases demonstrate that our method indeed achieves much higher recall than
existing methods for the case of autocorrelated continuous variables while keeping
false positives at the desired level. This performance gain grows with stronger
autocorrelation. At github.com/jakobrunge/tigramite we provide Python
code for all methods involved in the simulation studies.

1 Introduction

Observational causal discovery [Spirtes et al., 2000, |Peters et al., 2017|] from time series is a chal-
lenge of high relevance to many fields of science and engineering if experimental interventions are in-
feasible, expensive, or unethical. Causal knowledge of direct and indirect effects, interaction pathways,
and time lags can help to understand and model physical systems and to predict the effect of interven-
tions [Pearl, 2000]. Causal graphs can also guide interpretable variable selection for prediction and
classification tasks. Causal discovery from time series faces major challenges [Runge et al., 2019al]
such as unobserved confounders, high-dimensionality, and nonlinear dependencies, to name a few.
Few frameworks can deal with these challenges and we here focus on constraint-based methods
pioneered in the seminal works of Spirtes, Glymour, and Zhang [Spirtes et al., 2000, [Zhang, 2008]].
We demonstrate that existing latent causal discovery methods strongly suffer from low recall in the
time series case where identifying lagged and contemporaneous causal links is the goal and autocor-
relation is an added, ubiquitous challenge. Our main theoretical contributions lie in identifying low
effect size as a major reason why current methods fail and in introducing a novel sound, complete,
and order-independent causal discovery algorithm that yields strong gains in recall for autocorrelated
continuous data. Our practical contributions lie in extensive numerical experiments that can serve
as a future benchmark and in open-source Python implementations of our and major previous time
series causal discovery algorithms. The paper is structured as follows: After briefly introducing
the problem and existing methods in Sec. 2] we describe our method and theoretical results in Sec. [3]
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Section ] provides numerical experiments followed by a discussion of strengths and weaknesses as
well as an outlook in Sec. [6] The paper is accompanied by Supplementary Material (SM).

2 Time series causal discovery in the presence of latent confounders

2.1 Preliminaries

We consider multivariate time series V/ = (V/, V7 ,,...) for j =1,..., N that follow a stationary
discrete-time structural vector-autoregressive process described by the structural causal model (SCM)
V/ = fi(pa(Vy).m) withj=1,....N. (1)

The measurable functions f; depend non-trivially on all their arguments, the noise variables ng are
jointly independent, and the sets pa(V/) C (Vi, Vi_1,...,V;_,,.) define the causal parents of
th . Here, V; = (V,}, V2, ...) and py; is the order of the time series. Due to stationarity the causal
relationship of the pair of variables (V;'__, th ), where 7 > 0 is known as lag, is the same as that of all

time shifted pairs (V%__, V;). This is why below we always fix one variable at time ¢. We assume that
there are no cyclic causal relationships, which as a result of time order restricts the contemporaneous
(7 = 0) interactions only. We allow for unobserved variables, i.e., we allow for observing only a

subset X = {X! ... . XV} CV ={V! V2 .} of time series with N < N. We further assume
that there are no selection variables and assume the faithfulness [Spirtes et al., 2000] condition, which
states that conditional independence (CI) in the observed distribution P(V') generated by the SCM
implies d-separation in the associated time series graph G over variables V.

We assume the reader is familiar with the Fast Causal Inference (FCI) algorithm [Spirtes et al., 1995|
Spirtes et al., 2000, [Zhang, 2008]| and related graphical terminology, see Secs. [SI|and [S2]of the SM
for a brief overview. Importantly, the MAGs (maximal ancestral graphs) considered in this paper can
contain directed (—) and bidirected (++) edges (interchangeably also called links). The associated
PAGs (partial ancestral graphs) may additionally have edges of the type o— and o—o.

2.2 Existing methods

The tsFCI algorithm [Entner and Hoyer, 2010] adapts the constraint-based FCI algorithm to time
series. It uses time order and stationarity to restrict conditioning sets and to apply additional
edge orientations. SVAR-FCI [Malinsky and Spirtes, 2018]) uses stationarity to also infer additional
edge removals. There are no assumptions on the functional relationships or on the structure of
confounding. Granger causality [Granger, 1969] is another common framework for inferring the
causal structure of time series. It cannot deal with contemporaneous links (known as instantaneous
effects in this context) and may draw wrong conclusions in the presence of latent confounders, see
e.g. [Peters et al., 2017] for an overview. The ANLTSM method [[Chu and Glymour, 2008] restricts
contemporaneous interactions to be linear, and latent confounders to be linear and contemporaneous.
TS-LiNGAM [Hyvirinen et al., 2008] is based on LINGAM [Shimizu et al., 2006] that is rooted in
the structural causal model framework [Peters et al., 2017, |Spirtes and Zhang, 2016]. It allows for
contemporaneous effects, assumes linear interactions with additive non-Gaussian noise, and might fail
in the presence of confounding. The TiMINo [Peters et al., 2013|] method restricts interactions to an
identifiable function class or requires an acyclic summary graph. Yet another approach are Bayesian
score-based or hybrid methods [Chickering, 2002} Tsamardinos et al., 2006]. These often become
computationally infeasible in the presence of unobserved variables, see [Jabbari et al., 2017] for a
discussion, or make restrictive assumptions about functional dependencies or variable types.

In this paper we follow the constraint-based approach that allows for general functional relationships
(both for lagged and contemporaneous interactions), general types of variables (discrete and continu-
ous, univariate and multivariate), and that makes no assumption on the structure of confounding. The
price of this generality is that we will not be able to distinguish all members of a Markov equivalence
class (although time order and stationarity allow to exclude some members of the equivalence class).
Due to its additional use of stationarity we choose SVAR-FCI rather than tsFCI as a baseline and
implement the method, restricted to no selection variables, in Python. As a second baseline we
implement SVAR-RFCI, which is a time series adaption of RFCI along the lines of SVAR-FCI (also
restricted to no selection variables). The RFCI algorithm [Colombo et al., 2012] is a modification of
FCT that does not execute FCI’s potentially time consuming second edge removal phase.
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Figure 1: Latent confounder example of the model in eq. (3)) (Sec. ) with linear ground truth links
shown for the LPCMCI case (right panel). All auto-coefficients are 0.9, all cross-coefficients are 0.6
(colored links), false links or links with false orientations are grey. True and false adjacency detection
rates shown as link width. Detection rates based on 500 realizations run at o = 0.01 for 7" = 500.

2.3 On maximum time lag, stationarity, soundness, and completeness

In time series causal discovery the assumption of stationarity and the length of the chosen time
lag window t — Tpax < t' < ¢ play an important role. In the causally sufficient case (X = V)
the causal graph stays the same for all 7,,,.x > p:s. Not so in the latent case: Let M(G)™=x be
the MAG obtained by marginalizing over all unobserved variables and also all generally observed
variables at times ¢’ < ¢ — Tynax. Then, increasing the considered time lag window by increasing
Tmax May result in the removal of edges that are fully contained in the original window, even in
the case of perfect statistical decisions. In other words, M (G)™=x1 with Tmax,1 < Tmax,2 need not
be a subgraph of M (G)™=x.2, Hence, Tynax may be regarded more as an analysis choice than as a
tunable parameter. For the same reason stationarity also affects the definition of MAGs and PAGs
that are being estimated. For example, SVAR-FCI uses stationarity to also remove edges whose
separating set extends beyond the chosen time lag window. It does, therefore, in general not determine
a PAG of M(G)™=x. To formalize this let i) M(G)7r, be the MAG obtained from M (G)max
by enforcing repeating adjacencies, let i3) P(G) %, be the maximally informative PAG for the
Markov equivalence class of M(G)7>*,, which can be obtained from running the FCI orientation
rules on M(G)7m=,, and let iii) P(G). "% o be the PAG obtained when additionally enforcing time
order and repeating orientations at each step of applying the orientation rules. Note that P(G) 7%
may have fewer circle marks, i.e., may be more informative than P(G)7,. Our aim is to estimate
P(G)a0- We say an algorithm is sound if it returns a PAG for M(G) 14, and complete if it
returns P (G) >, . Below we write M(G) = M(G)Iz2, and P(G) = P(G) e, o for simplicity.

2.4 Motivational example

We illustrate the challenge posed by unobserved variables with the example of Fig. [T} SVAR-FCI
with the partial correlation (ParCorr) CI test correctly identifies the auto-links but misses the true
lagged link Y;_1—Z; and returns a false link Y;_>—Z; instead. In most realizations the algorithm
fails to detect the contemporaneous adjacency X;<+Y; and, if detected, fails to orient it as bidirected.
The reason are wrong CI tests in its edge removal and orientation phases. When it iterates through
conditioning sets of cardinality p = 0 in the edge removal phase, the correlation p(X;;Y;) is
non-significant in many realizations since the high autocorrelation of both X and Y increases their
variance and decreases their signal-to-noise ratio (the common signal due to the latent confounder).
Further, for p = 1 also the lagged correlation p(Y;_1; Z;|Y;_2) often is non-significant and the true
link Y;_1—Z,; gets removed. Here conditioning away the autocorrelation of Y;_; decreases the
signal while the noise level in Z; is still high due to Z’s autocorrelation. This false negative has
implications for further CI tests since Y;_1 won’t be used in subsequent conditioning sets: The path
Y;_o—Y;_1—Z, can then not be blocked anymore and the false positive Y; _o— Z; remains even after
the next removal phase. In the orientation phase of SVAR-FCI rule R 1 yields tails for all auto-links.
Even if the link X;0—0Y} is detected, it is in most cases not oriented correctly. The reason again lies
in wrong CI tests: In principle the collider rule RO should identify X,;<+Y; since the middle node of
the triple X;_;0—X;0—0Y; does not lie in the separating set of X;_; and Y; (and similarly for X and
Y swapped). In practice R0 is implemented with the majority rule [[Colombo and Maathuis, 2014|]
to avoid order-dependence, which involves further CI test given subsets of the adjacencies of X;_;
and Y;. SVAR-FCI here finds independence given Y;_; (correct) but also given X; (wrong, due



to autocorrelation). Since the middle node X, is in exactly half of the separating sets, the triple is
marked as ambiguous and left unoriented. The same applies when X and Y are swapped.

Autocorrelation is only one manifestation of a more general problem we observe here: Low signal-
to-noise ratio due to an ‘unfortunate’ choice of conditioning sets that leads to low effect size (here
partial correlation) and, hence, low statistical power of CI tests. Wrong CI tests then lead to missing
links, and these in turn to false positives and wrong orientations. In the following we analyze effect
size more theoretically and suggest a general idea to overcome this issue.

3 Latent PCMCI

3.1 Effect size in causal discovery

The detection power of a true link X;__+— X7, where below we write A = X;__ and B = X} to
emphasize that the discussion also applies to the non-time series case, quantifies the probability of
the link not being erroneously removed due to a wrong CI test. It depends on i) the sample size
(usually fixed), i7) the CI tests’ significance level « (fixed by the researcher as the desired false
positives level), iii) the CI tests’ estimation dimensions (kept at a minimum by SVAR-FCI’s design
to preferentially test small conditioning sets), and iv) the effect size. We here define effect size as
the minimum of the CT test statistic values I(A; B|S) taken over all conditioning sets S that are
being tested (for fixed A and B). As observed in the motivating example, this minimum can become
very small and hence lead to low detection power. The central idea of our proposed method Latent
PCMCI (LPCMCI) is to increase effect size by a) restricting the conditioning sets S that need to be
tested in order to remove all wrong links, and by b) extending those sets S that do need to be tested
with so called default conditions S5 that increase the CI test statistic values and at the same time
do not induce spurious dependencies. Regarding a), Lemmaproves that it is sufficient to only
consider conditioning sets that consist of ancestors of A or B only. Regarding b), and well-fitting
with a), Lemmaproves that no spurious dependencies are introduced if S, consist of ancestors
of A or B only. Further, the following theorem shows that taking Sgc s as the union of the parents of
A and B (without A and B themselves) improves the effect size of LPCMCI over that of SVAR-FCI.
This generalizes the momentary conditional independence (MCI) idea that underlies the PCMCI and
PCMCI™ algorithms [Runge et al., 2019b} [Runge, 2020] to causal discovery with latent confounders.
We state the theorem in an information theoretic framework, where I denotes (conditional) mutual
information and Z(A; B; C|D) = I(A; B|D) — I(A; B|C U D) the interaction information.

Theorem 1 (LPCMCI effect size). Let Ax—B (with A = XZ_T and B = Xg) be a link (— or <)
in M(G). Consider the default conditions Sqc5 = pa({A, B}, M(G)) \ {4, B} and denote X* =
X\ Sges. Let S = argmingcx«\{a,8} [ (A; B|S U Sacy) be the set of sets that define LPCMCI’s
effect size. If i) there is S* € S with §* C adj(A, M(G)) \ Sgey or S* C adj(B, M(G)) \ Saef
and i1) there is a proper subset Q C Sqey such that T(A; B; Sgey \ Q|S* U Q) < 0, then

min ~ I(A;B|SUSgy) >  min I(A;B|S). ()

SCX*\{A,B} SCX\{A,B)}

If the assumptions are not fulfilled, then (trivially) ">" holds in eq. (2)).

The second assumption only requires that any subset Sg. s \ @) of the parents contains information that
increases the information between A and B. A sufficient condition for this is detailed in Corollary

These considerations lead to two design principles behind LPCMCT: First, when testing for conditional
independence of A and B, discard conditioning sets that contain known non-ancestors of A and B.
Second, use known parents of A and B as default conditions. Unless the higher effect size is overly
counteracted by the increased estimation dimension (due to conditioning sets of higher cardinality),
this leads to higher detection power and hence higher recall of true links. While we do not claim that
our choice of default conditions as further detailed in Sec. [3.4]is optimal, our numerical experiments
in Sec. [ and the SM indicate strong increases in recall for the case of continuous variables with
autocorrelation. In [Runge et al., 2019b, Runge, 2020]] it is discussed that, in addition to higher effect
size, conditioning on the parents of both A and B also leads to better calibrated tests which in turn
avoids inflated false positives. Another benefit is that fewer conditioning sets need to be tested, which
is also the motivation for a default conditioning on known parents in [Lee and Honavar, 2020]].

The above design principles are only useful if some (non-)ancestorships are known before all CI test
have been completed. LPCMCI achieves this by entangling the edge removal and edge orientation



phases, i.e., by learning ancestral relations before having removed all wrong links. For this purpose
we below develop novel orientation rules. These are not necessary in the causally sufficienct setting
considered by PCMCI™ [Runge, 2020] because there the default conditions need not be limited to
ancestors of A or B (although PCMCI™ tries to keep the number of default conditions low). While
not considered here, background knowledge about (non-)ancestorships can easily be incorporated.

3.2 Introducing middle marks and LPCMCI-PAGs

To facilitate early orientation of edges we give an unambiguous causal interpretation to the graph at
every step of the algorithm. This is achieved by augmenting edges with middle marks. Using generic
variable names A, B, and C' indicates that the discussion also applies to the non-time series case.

Middle marks are denoted above the link symbol and can be ‘?°, ‘L, ‘R’, ‘!’, or ©’ (empty). The
‘L’ (‘R’) on A+“xB (A*"xB) asserts that if A < B (B < A) then B ¢ an(A,G) or there is no
S C pa(A, M(G)) that m-separates A and B in M(G). Here < is any total order on the set of
variables. Its choice is arbitrary and does not influence the causal information content, the sole purpose
being to disambiguate A+« B from A*"«B. Moreover, ‘*” is a wildcard that may stand for all three
edge marks (tail, head, circle) that appear in PAGs. Further, the ‘I’ on AxxB asserts that both
A"+ B and A" B are true, and the empty middle mark on A B says that A € adj(B, M(G)).
Lastly, the ‘?” on A+« B doesn’t promise anything. Non-circle edge marks (here potentially hidden
by the “x’ symbol) still convey their standard meaning of ancestorship and non-ancestorship, and
the absence of an edge between A and B still asserts that A ¢ adj(B, M(G)). We call a PAG C(G)
whose edges are extended with middle marks a LPCMCI-PAG for M (G), see Sec.|S3|in the SM for
a more formal definition. The ‘*’ symbol is also used as a wildcard for the five middle marks.

Note that we are not changing the quantity we are trying to estimate, this is still the PAG P(G) as
explained in Sec.[2.3] The notion of LPCMCI-PAGs is used in intermediate steps of LPCMCI and
has two advantages. First, Ax—B is reserved for A € adj(B, M(G)) and thus has an unambiguous
meaning at every point of the algorithm, unlike for (SVAR-)FCI and (SVAR-)RFCI. In fact, even
if LPCMClI is interrupted at any arbitrary point it still yields a graph with unambiguous and sound
causal interpretation. Second, middle marks carry fine-grained causal information that allows to
determine definite adjacencies early on:

Lemma 1 (Ancestor-parent-rule). In LPCMCI-PAG C(G) one may replace 1.) A~B by A—B, 2.)
A5 B for A > Bby A—B, and 3.) A% B for A < B by A—B.

When LPCMCT has converged all middle marks are empty and hence C(G) is a PAG. We choose a

total order consistent with time order, namely X;_, < X} iff 7 > 0or7 =0 andi < j. Lagged
links can then be initialized with edges oX» (contemporaneous links as o%o).

3.3 Orientations rules for LPCMCI-PAGs

We now discuss rules for edge orientation in LPCMCI-PAGs. For this we need a definition:

Definition 1 (Weakly minimal separating sets). In MAG M(G) let A and B be m-separated by S.
The set S is a weakly minimal separating set of A and B if i) it decomposes as S = §;U Ss with
81 C an({A, B}, M(G)) such that ii) if ' = S;US) with S§ C Sy m-separates A and B then
Sh = So. The pair (S1,S2) is called a weakly minimal decomposition of S.

This generalizes the notion of minimal separating sets, for which additionally S; = (). Since LPCMCI
is designed to extend conditioning sets by known ancestors, the separating sets it finds are in general
not minimal. However, they are still weakly minimal. The following Lemma, a generalization of the
unshielded triple rule [Colombo et al., 2012], is central to orientations in LPCMCI-PAGs:

Lemma 2 (Strong unshielded triple rule). Let Ax*xBx*xC' be an unshielded triple in LPCMCI-PAG
C(G) and Sac the separating set of A and C. 1.) If i) B € Sac and ii) Sac is weakly minimal,
then B € an({A,C},G). 2.) Let Tap C an({A4, B}, M(G)) and Tcp C an({C, B}, M(G)) be
arbitrary. If i) B ¢ Sac, i) A and B are not m-separated by Sac U Tap \ {4, B}, iii) C and B
are not m-separated by Sac U Top \ {C, B}, then B ¢ an({A, C}, G). The conditioning sets in ii)
and iii) may be intersected with the past and present of the later variable.

Part 2.) of this Lemma generalizes the FCI collider rule R0 to rule R0’ (of which there are several
variations when restricting to particular middle marks), and part 1.) generalizes R1 to R1’. Rules R2



and R8 generalize trivially to triangles in C(G) with arbitrary middle marks, giving rise to R2’ and
R8'. Rules R3, R9 and R10 are generalized to R3’, R9" and R10’ by adding the requirement that
the middle variables of certain unshielded colliders are in the separating set of the two outer variables,
and that these separating sets are weakly minimal. Since there are no selection variables, rules R5, R6
and R7 are not applicable. Rule R4’ generalizes the discriminating path rule [Colombo et al., 2012]]
of RFCI. These rules are complemented by the replacements specified in Lemma [T] and a rule for
updating middle marks. Precise formulations of all rules are given in Sec. [S4]of the SM.

We stress that these rules are applicable at every point of the algorithm and that they may be executed
in any order. This is different from the (SVAR-)FCI orientation phase which requires that prior to
orientation a PAG has been found. Also (SVAR-)RFCI orients links only once an RFCI-PAG has
been determined, and both (SVAR-)FCI and (SVAR-)RFCI require that all colliders are oriented
before applying their other orientation rules.

3.4 The LPCMCI algorithm

LPCMCI is a constraint-based causal discovery algorithm that utilizes the findings of Sec. to
increase the effect size of CI tests. High-level pseudocode is given in Algorithm[1] After initializing
C(G) as a complete graph, the algorithm enters its preliminary phase in lines 2 to 4. This involves
calls to Algorithm [S2] (pseudocode in Sec. [S3|of the SM), which removes many (but in general not
all) false links and, while doing so, repeatedly applies the orientation rules introduced in the previous
section. These rules identify a subset of the (non-)ancestorships in G and accordingly mark them
by heads or tails on edges in C(G). This information is then used as prescribed by the two design
principles of LPCMCI that were explained in Sec. 3.1} The non-ancestorships further constrain
the conditioning sets S of subsequent CI tests, the ancestorships are used to extend these sets to
S U Syef where Sgep = pa({X]_., X{},C(G)) are the by then known parents of those variables
whose independence is being tested. All parentships marked in C(G) after line 3 are remembered and
carried over to an elsewise re-initialized C(G) before the next application of Alg. Conditioning
sets can then be extended with known parents already from the beginning. The purpose of this
iterative process is to determine an accurate subset of the parentships in G. These are then passed
on to the final phase in lines 5 - 6, which starts with one final application of Alg.[S2] At this point
there may still be false links because Alg.|S2| may fail to remove a false link between variables
X?__ and X7 if neither of the two is an ancestor of the other. This is the purpose of Algorithm
(pseudocode in Sec.[S5]of the SM) that is called in line 6, which thus plays a similar role as the second
removal phase in (SVAR-)FCI. Algorithm [S3|repeatedly applies orientation rules and uses identified
(non-)ancestorships in the same way as Alg.[S2] As stated in the following theorems, LPCMCI will
then have found the PAG P(G). Moreover, its output does not depend on the order of the N time
series variables X7. The number k of iterations in the preliminary phase is a hyperparameter and
we write LPCMCI(k = ky) when specifying k = k(. Stationarity is enforced at every step of the
algorithm, i.e., whenever an edge is removed or oriented all equivalent time shifted edges (called
‘homologous’ in [Entner and Hoyer, 2010]) are removed too and oriented in the same way.

Algorithm 1 LPCMCI
Require: Time series dataset X = {X!, ..., X"}, maximal considered time lag Tyay, Significance
level o, Cl test CI( X, Y, S), non-negative integer k ‘
Initialize C(G) as complete graph with X} o5 X7 (0 < 7 < Tyayx) and X;_, 020 X; (1 = 0)
for0<I<k-—1do

Remove edges and apply orientations using Algorithm

Repeat line 1, orient edges as X;_, X7 if X]__*X] was in C(G) after line 3
Remove edges and apply orientations using Algorithm [S2]

Remove edges and apply orientations using Algorithm [S3]
return PAG C(G) = P(G) = P(G) a0

N ke

Theorem 2 (LPCMCI is sound and complete). Assume that there is a process as in eq. (I) without
causal cycles, which generates a distribution P that is faithful to its time series graph G. Further
assume that there are no selection variables, and that we are given perfect statistical decisions about
CI of observed variables in P. Then LPCMCI is sound and complete, i.e., it returns the PAG P(G).



Theorem 3 (LPCMCl is order-independent). The output of LPCMCI does not depend on the order
of the N time series variables X7 (the j-indices may be permuted).

3.5 Back to the motivational example in Fig.[T]

The first iteration (! = 0) of LPCMCI also misses the links Y;_1—Z; and finds X;*—Y} in only
few realizations (we here suppress middle marks for simpler notation), but orientations are already
improved as compared to SVAR-FCI. Rule R1’ applied after p = 1 orients the auto-links X; 1 — X,
and Y;_1—Y;. This leads to the parents sets pa(X:,C(G)) = {X;—1} and pa(Y:,C(G)) = {Yi—1},
which are then used as default conditions in subsequent CI tests. This is relevant for orientation
rule RO’ that tests whether the middle node of the unshielded triple X;_ 10— X;0-0Y; does not lie
in the separating set of X;_; and Y;. Due to the extra conditions the relevant partial correlation
p(Xi_1; Y| Xy, Xi—2, Y;—1) now correctly turns out significant. This identifies X, as collider and
(since the same applies with X and Y swapped) the bidirected edge X;<+Y; is correctly found. The
next iteration ([ = 1) then uses the parents obtained in the [ = 0 iteration, here the autodepen-
dencies plus the (false) link Y;_o—Z,, as default conditions already from the beginning for p = 0.
While the correlation p(X¢; Y;) used by SVAR-FCI is often non-significant, the partial correlation
p(Xt; Ye| Xi—1,Y:—1) is significant since the autocorrelation noise was removed and effect size in-
creased (indicated as link color in Fig.[I)) in accord with Theorem|[I] Also the lagged link is correctly
detected because p(Y;_1; Z¢|Yi—2, Z:—1) is larger than p(Y;_1; Z;|Y;—2). The false link Y;_o—Z;
is now removed since the separating node Y;_; was retained. This wrong parentship is then also not
used for default conditioning anymore. Orientations of bidirected links are facilitated as before and
Y;_1—Z, is oriented by rule R1’.

4 Numerical experiments

We here compare LPCMCI to the SVAR-FCI and SVAR-RFCI baselines with CI tests based on linear
partial correlation (ParCorr), for an overview of further experiments presented in the SM see the end
of this section. To limit runtime we constrain the cardinality of conditioning sets to 3 in the second
removal phase of SVAR-FCI and in Alg. of LPCMCI (excluding the default conditions Sy, i.e.,
|S| < 3but |SUSgs| > 3is allowed). We generate datasets with this variant of the SCM in eq. (I):

V/ =,V + Sieifi(Viy,) +n] for je{l,....N} 3

Autocorrelations a; are drawn uniformly from [max(0, a — 0.3), a] for some a as indicated in Fig.

For each model we in addition randomly choose L = N linear (i.e., f; = id) cross-links with
the corresponding non-zero coefficients ¢; drawn uniformly from 4[0.2, 0.8]. 30% of these links
are contemporaneous (i.e., 7; = 0), the remaining 7; are drawn from [1, p;s = 3]. The noises

' ~ N(0, ajz-) are iid with o; drawn from [0.5, 2]. We only consider stationary models. From the N

variables of each model we randomly choose N' = [(1—A) N for A = 0.3 as observed. As discussed
in Sec. the true PAG P(G) of each model depends on 7y,,x. In Fig. we show the relative average
numbers of directed, bidirected, and (partially) unoriented links. For performance evaluation true
positive (= recall) and false positive rates for adjacencies are distinguished between lagged cross-links
(i # j), contemporaneous, and autodependency links. False positives instead of precision are shown
to investigate whether methods can control these below the a-level. Orientation performance is
evaluated based on edgemark recall and precision. In Fig. 2] we also show the average of minimum
absolute ParCorr values as an estimate of effect size and the average maximum cardinality of all
tested conditioning sets. All metrics are computed across all estimated graphs from 500 realizations
of the model in eq. (3) at time series length 7". The average and 90% range of runtime estimates were
evaluated on Intel Xeon Platinum 8260.

In Fig. 2A we show LPCMClI for k = 0, .. ., 4 against increasing autocorrelation a. Note that ¢ = 0
implies a different true PAG than ¢ > 0. The largest gain, both in recall and precision, comes
already from k£ = 0 to £ = 1. For higher ¥ LPCMCI maintains false positive control and orientation
precision, and improves recall before converging at kK = 4. The gain in recall is largely attributable
to improved effect size. On the downside, larger k increase cardinality (estimation dimension) and
runtime. However, the runtime increase is only marginal because later [-steps converge faster and
the implementation caches CI test results. Fig. shows a comparison of LPCMCI with SVAR-
FCI and SVAR-RFCI against autocorrelation, depicting LPCMCI for £ = 0 and k = 4. Already



A LPCMCI(k=0) [ LPCMCI(k=2) [l LPCMCI(k=4) N=5.T=500.Tnsx=54=03 B LPCMCI(k=0) [l SVAR-FCI [Il SVAR-RFCI N'=5.T=500, Tmax =5,4=0.3
LPCMCI(k=1) || LPCMCI(k = 3) ParCorr, a=0.01 B LPCMCl(k = 4) ParCorr, @ =0.01
Adj. TPR Orient. recall Effect size Runtime [s] Adj. TPR Orient. recall Effect size Runtime [s]
10 10 - — piso 10 10 .
0a{ o8 - 125 0.8 08 - ™ 20
- 03]™ m s ] -~ . 03{e, = # ¥ ®
B T i SRS I N R - e
T - w02 . = 75 R = aw 02 /I
o] # IEPS e 4 : b [so S L P h"‘
02 R ) ~ 3 1] ot - g totes 02 P TR . Sy ot ceth ®
0.0 0.0 0.0 Lo 0.0 Lo 0.0 @ e ‘e 0.0 - o
oo Adj. FPR Orient. precision Cardinality True PAG " Lo Adj.FPR Orient. precision Cardinality True PAG -
o Lagged + Auto s s 28 » directed o Lagged  + Auto B i3 » directed
u Contemp. “lg-E=w 22 ¢ bigiregted,  [°° | Contemp. ClpedPE B . ¢ bigiregted,  [°°
010 06 = - @ wnorented Lo 010 O R . , @ unorented Lo
3 3
04 # 4 > 04 Ot oadt N > 04
2 2 PR L
001 e 02 = L e 001 02 = b L e
AarEus q= NS E R
0.00 0.0 *ee o 0.0 0.00 ‘ e wow 0.0 b o0 0.0
00 05 09 095059 00 05 09 085059 00 05 03 055059 00 05 09 095059 00 05 09 085059 00 05 09 095059 00 05 09 085099 00 05 03 085059
Autocorrelation a Autocorrelation a
C LPCMCI(k=0) [l SVAR-FCI [ SVAR-RFCI T=500,2=0.95Tmx=54=03 [y LPCMCI(k=0) [l SVAR-FCI [ SVAR-RFCI N=57T=500a=0954=03
W LPCMCi(k = 4) ParCorr, a =0.01 W LPCMCi(k = 4) ParCorr, a=0.01
10 Adj. TPR 1o Orient. recall Effect size Runtime [s] 10 Adj. TPR 10 Orient. recall Effect size Runtime [s]
TR 1 X I
08 = 08 03] W w0 osd 08 04 o
« 01{ 2 I 50 . - ) s tso
0.2 « 02 © ’ d I 02 v '« 02 ~ 01 o
B E T e, Thua ek S Xxop'y CYRT -
0.0 ¢ e ee o * 0.0 o 0.0 - 0.0 ® ¢ 0.0 0
Adj. FPR Orient. precision Cardinality True PAG Adj. FPR Orient. precision Cardinality True PAG
100 10 . 10 100 10 3 10
o Lagged * Auto 6 " > directed o Lagged  * Auto T > directed
o Contemp. 08 gD y ng e o idirected o8 | Contemp. 08 rwe F o ¥ o® bidirecte® [0
010 0 % % L | v . IR © unoriefted 06 o010 06 %84 ¢ : . © unoriented 06
+ v " * o4 3 04 ’ + 0.4 3 04
¢ >
0.01 g 0.2 24 e e e .. > > » » 0.2 0.01 '—'—02 2 % WG W, e LS S 02
. u ¢ . T L r =
000l _¢wERD o0 1 bewe . 0o oood s s v s oo 2 B LIRS S P9
HEREES HEREE] R R HEREE] IR EE) HEEEREE) IR T 5 70

Number of variables N Time lag Tmax

Figure 2: Results of numerical experiments for (A) LPCMCI(k) for different &, LPCMCI compared
to SVAR-FCI and SVAR-RFCI for (B) varying autocorrelation, for (C) number of variables N, and
for (D) maximum time lag 7.« (other parameters indicated in upper right of each panel).

LPCMCI(k = 0) has higher adjacency and orientation recall than SVAR-FCI and SVAR-RFCI for
increasing autocorrelation while they are on par for a = 0. This comes at the price of precision,
especially lagged orientation precision. LPCMCI(k = 4) has more than 0.4 higher contemporaneous
orientation recall and still 0.1 higher lagged orientation recall than SVAR-FCI and SVAR-RFCI.
Lagged precision is higher for high autocorrelation and contemporaneous precision is slightly lower.
LPCMCI(k = 4) maintains high recall for increasing autocorrelation a > 0.5 while SVAR-FCI and
SVAR-RFCT’s recall sharply drops. These results can be explained by improved effect size while the
increased cardinality (= 5) of separating sets is still moderate compared to the sample size 7" = 500.
LPCMCI(k = 0) has similar low runtime as SVAR-RFCI, for LPCMCI(k = 4) it is comparable to
that of SVAR-FCI. In Fig. ZIC we show results for different numbers of variables N. As expected, all
methods have decreasing adjacency and orientation recall for higher IV, but LPCMCI starts at a much
higher level. For N = 3 both SVAR-FCI and SVAR-RFCI cannot control false positives for lagged
links while for larger IV false positives become controlled. The reason is the interplay of ill-calibrated
CI tests for smaller N due to autocorrelation (inflating false positives) with sequential testing for
larger N (reducing false positives), as has been discussed in [Runge et al., 2019b, Runge, 2020] for
the similar PC algorithm [Spirtes and Glymour, 1991]. LPCMCI better controls false positives here,
its decreasing recall can be explained by decreasing effect size and increasing cardinality. Runtime
becomes slightly larger than that of SVAR-FCI for larger N. Fig.[2D shows results for different
maximum time lags 7,.x. Note that these imply different true PAGs, especially since further lagged
links appear for larger 7,,x. All methods show a decrease in lagged recall and precision, whereas
contemporaneous recall and precision stay almost constant. For SVAR-FCI there is an explosion of
runtime for higher 7,,,,x due to excessive searches of separating sets in its second removal phase. In
LPCMCT this is partially overcome since the sets that need to be searched through are more restricted.

In Sec.[S9)in the SM we present further numerical experiments. This includes more combinations
of model parameters N, a, A, T, nonlinear models together with the nonparametric GPDC CI test
[Runge et al., 2019b]], and a comparison to a residualization approach. In these cases the results are
largely comparable to those above regarding relative performances. For non-time series models we
find that, although all findings of Secs. [3.1] through [3.4] still apply, LPCMCI(k) is on par with the
baselines for k = 0 while it shows inflated false positives for £ = 4. Similarly, for models of discrete
variables together with a GG-test of conditional independence LPCMCI(k) performs comparable to



the baselines for k¥ = 0 and gets worse with increasing k. A more detailed analysis of LPCMCI’s
performance in these two cases, non-time series and discrete models, is subject to future research.

S Application to real data

We here discuss an application of LPCMCI to average daily discharges of rivers in the upper
Danube basin, measurements of which are made available by the Bavarian Environmental Agency at
https://www.gkd.bayern.de. We consider measurements from the Iller at Kempten (X'), the Danube at
Dillingen (Y), and the Isar at Lenggries (£). While the Iller discharges into the Danube upstream
of Dillingen with the water from Kempten reaching Dillingen within about a day, the Isar reaches
the Danube downstream of Dillingen. We thus expect a contemporaneous link X;—Y; and no direct
causal relationships between the pairs X, Z and Y, Z. Since all variables may be confounded by
rainfall or other weather conditions, this choice allows to test the ability of detecting and distinguishing
directed and bidirected links. To keep the sample size comparable with those in the simulation studies
we restrict to the records of the past three years (2017-2019). We set Tmax = 2 and apply LPCMCI(k)
fork =0,...,4and a = 0.01 with ParCorr CI tests. Restricting the discussion to contemporaneous
links, LPCMCI correctly finds X;—Y; for k = 1,...,4 and for £ = 0 wrongly finds X;<Y;. For all
k it infers the bidirected link X;<+Z;, which is plausible due to confounding by weather. For k = 3,4
LPCMCI wrongly finds the directed link Z;,—Y;, which should either be absent or bidirected. The
results are similar for o = 0.05, with the difference that LPCMCI then always correctly finds X;—Y;
but wrongly infers Z;—Y; also for k = 1, 2. In comparison, SVAR-FCI with ParCorr CI tests finds
the contemporaneous adjacencies Y;o—0X;0—Z; for « = 0.01,0.03,0.05,0.08,0.1,0.3,0.5 and
Y;+o0X 007, for a = 0.8. The estimated PAGs are shown in Sec.[ST0]of the SM.

We note that since the discharge values show extreme events caused by heavy rainfall, the assump-
tion of stationarity is expected to be violated. For other analyses of the dataset of average daily
discharges see [Asadi et al., 2015, |[Engelke and Hitz, 2020, Mhalla et al., 2020, |Gnecco et al., 2020].
More detailed applications to and analyses of LPCMCI on real data are subject to future research.

6 Discussion and future work

Major strengths of LPCMCI lie in its significantly improved recall as compared to the SVAR-FCI
and SVAR-RFCI baselines for autocorrelated continuous variables, which grows with autocorrelation
and is particularly strong for contemporaneous links. At the same time LPCMCI (for k£ > 0) has
better calibrated CI test leading to better false positive control than the baselines. We cannot prove
false positive control, but are not aware of any such proof for other constraint-based algorithms
in the challenging latent, nonlinear, autocorrelated setting considered here. A general weakness,
which also applies to (SVAR-)FCI and (SVAR-)RFCI, is the faithfulness assumption. If violated in
practice this may lead to wrong conclusions. We did not attempt to only assume the weaker form of
adjacency-faithfulness [Ramsey et al., 2006]], which to our knowledge is however generally an open
problem in the causally insufficient case. Moreover, like all constraint-based methods, our method
cannot distinguish all members of Markov equivalence classes like methods based on the SCM frame-
work such as e.g. TS-LINGAM [Hyvirinen et al., 2008]] and TiMINo [Peters et al., 2013]] do. These,
however, restrict the type of dependencies. Concluding, this paper shows how causal discovery in au-
tocorrelated time series benefits from increasing the effect size of CI tests by including causal parents
in conditioning sets. The LPCMCI algorithm introduced here implements this idea by entangling the
removal and orientation of edges. As demonstrated in extensive simulation studies, LPCMCI achieves
much higher recall than the SVAR-FCI and SVAR-RFCI baselines for autocorrelated continuous
variables. We further presented novel orientation rules and an extension of graphical terminology
by the notions of middle marks and weakly minimal separating sets. Code for all studied methods
is provided as part of the tigramite Python package at https://github.com/jakobrunge/tigramite. In
future work one may relax assumptions of LPCMCI to allow for selection bias and non-stationarity.
Background knowledge about (non-)ancestorships may be included without any conceptual modifi-
cation. Since the presented orientation rules are applicable at any point and thus able to determine
(non-)ancestorships already after having performed only few CI tests, the rules may also be useful
for the narrower task of causal feature selection in the presence of hidden confounders. Lastly, it
would be interesting to combine the ideas presented here with ideas from the structural causal model
framework.


https://www.gkd.bayern.de/en/
https://github.com/jakobrunge/tigramite

Broader Impact

Observational causal discovery is especially important for the analysis of systems where experimental
manipulation is impossible due to ethical reasons, e.g., in climate research or neuroscience. Our work
focuses on the challenging time series case that is of particular relevance in these fields. Understanding
causal climate mechanisms from large observational satellite datasets helps climate researchers in
understanding and modeling climate change as a main challenge of humanity. Since all code will be
published open-source, our methods can be used by anyone. Causal discovery is a rather fundamental
topic and we deem the potential for misuse as low.
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