
#Reviewer1. Thank you for acknowledging the key contributions of our paper. R1.1 Novelty: The novel practical1

impacts of our work are as follows. Firstly, to our best knowledge, JCL is the first that attempts to address the contrastive2

learning problem where infinite many of keys are considered. Secondly, by capitalizing on the proposed probabilistic3

model, JCL eases the aforementioned infinity scenario by simply using only a few key samples. Thirdly, JCL relies4

on a memory economical calculation, while its vanilla multi-key counterpart is less memory efficient when achieving5

similar performance (also see R2.1 & R2.2). We believe that all of these nontrivial efforts explore and shed further light6

on important properties of contrastive learning. R1.2 Generalize to video: As suggested, we conducted additional7

experiments on video data (UCF101) to evaluate the JCL pre-trained features for action recognition downstream task8

via linear classification. The top-1 accuracy of JCL pre-trained features is 48.6%, which outperforms MoCo v2 (47.3%).9

Generalization of JCL for other data modalities (sound, language, video) will be included in our future work.10

#Reviewer2. We appreciate the comments. Regarding your concerns of the written quality and typos (e.g., Algorithm 111

line 8), we would carefully polish throughout the paper. R2.1 & R2.2 Memory and accuracy: Regarding the memory12

cost, the vanilla explicitly involves a batchsize that is M times larger than the conventional contrastive learning. In13

contrast, the batchsize for JCL remains the same as the conventional contrastive learning. Although M ′ positive keys14

are required to compute the sufficient statistics for JCL, the batchsize and the incurred multiplications (between query15

and key) are reduced. Particularly, JCL utilizes multiple keys merely to reflect the statistics, which helps JCL more16

efficiently exploit these samples. Therefore, JCL is more memory efficient than vanilla when they achieve the same17

performance, and JCL always offers better performance when the both cost similar memories. For fair comparison, we18

run the additional experiments to compare vanilla against JCL when the number of positive keys used is identical (i.e.,19

M =M ′ = 5). The top-1 accuracy on ImageNet100 for vanilla (ResNet-50) is 80.9% while JCL achieves 82.0%. We20

will add the discussions. R2.3 SimCLR: The top-5 accuracy we reported (87.3%) for SimCLR was extracted from the21

primary Fig. B.1 in the arxiv version of SimCLR. R2.4 Hyperparameters: The experiments in Table1 are performed22

on ImageNet1K with ResNet-50, whereas all the experiments for Figure2 correspond to the training on a subset of23

ImageNet1K (ImageNet100 [37]) with ResNet-18. The detailed setting of Figure2 can be referred to Supplementary24

Material (Section S.3). Thus, there is no one-one correspondence between the data in Table1 and Figure2. In fact,25

MoCo v2 [8] uses τ = 0.2, which differs from τ = 0.07 used in MoCo [17]. For SimCLR, we directly extracted the26

results from the paper, which uses default τ = 0.1 (τ = 0.5 is used for CIFAR10 instead of ImageNet). R2.5 MoCo v227

in Table 2: The MoCo v2 paper [8] only reports the results on ImageNet1K and VOC (a relatively small dataset for28

object detection), while our paper instead presents the results on MS COCO (more challenging benchmark for object29

detection & instance segmentation). As suggested, we conducted additional experiments and evaluated MoCo v2 on30

MS COCO for object detection & instance segmentation tasks. The results are 37.6% (APbb) and 35.3% (APmk), which31

are lower than ours (38.1% APbb, 35.6% APmk). We will add the results. R2.6 Fig.3(b): Yes, we use diag(Σk+
i
) for32

the histogram in Fig.3(b). R2.7 Impact of λ: According to Gaussian model and Eq.(8), a relatively small λ introduces33

reasonable variance into the mean positive keys that is beneficial for JCL, as more variants of positive key are potentially34

included. But when λ grows large enough, the introduced variance Σk+
i

starts to dominate the positive mean µk+
i

35

value. This large λ therefore will distort the magnitude scale of positive keys and dilute the impact of negative keys36

in Eq.(8). Consequently, the distribution of the k+i,m and k−i,j would also significantly be distorted. When λ grows37

to infinity, the effect of negative keys completely vanishes owing to the overwhelming λ and the associated positive38

keys, and JCL has no motivation to distinguish between positive and negative keys. R2.8 References: Thanks for the39

references, we would carefully check these and discuss the differences in detail.40

Figure 1: Accuracy on ImageNet100.

Epochs 200 300 400 500
MoCo v2 80.0 82.7 83.5 84.1

JCL 82.0 83.9 84.5 85.0

#Reviewer3. Many thanks for the positive comments. #R3.1 More iterations: As41

MoCo sees more samples, JCL also benefits from seeing more variants of positive42

keys (owing to the role of Σk+
i

, see Algorithm 1) as training proceeds longer. In43

addition, JCL enforces intra-class invariance, and thus intrinsically offers structural44

advantage that is absent in MoCo, even if both run till the convergence. To verify this, we run JCL and MoCo v245

for more epochs ([200, 500]) and evaluated both of the algorithms on linear classification in a subset of ImageNet1K46

(ImageNet100 [37]). As shown in Figure 1, although the performance gap between the two indeed drops from 2.0% to47

1.2% when the epoch number increases to 300, we observe consistent performance gains (∼ 1%) offered by JCL when48

epoch number > 300. The results further justify the effectiveness of JCL even in longer iterations.49

#Reviewer4. R4.1 Second contribution: Thanks. Regarding the second contribution, Line 46 means the derivations in50

our algorithm lead to analytic closed form of gradients that can be easily approached, e.g., by using PyTorch (although51

we did not explicitly present the calculation of these gradients and these could be added in the revision). Lines 47-4852

indicate that the experiments in Fig. 3 justify the hypotheses in Sec. 3.3 (e.g., JCL favors a more consistent feature53

invariance within each instance-specific distribution). We will rephrase these to ensure clarity. R4.2 Code: We actually54

provided the link of all source codes in supplementary material. R4.3 200 epochs: For fair comparisons with the most55

recent competitors (SimCLR, MoCo, MoCo v2) under the same epochs, we follow the commonly adopted settings (20056

epochs) as in [8] to pre-train our JCL. R4.4 Writing: Thanks, we will carefully modify the paper structure.57


