
We thank the reviewers for their useful comments. We first clarify the minor confusion raised by Reviewer 4 about the1

focus of our approach (discriminative v/s generative). We then address all the individual reviewer recommendations.2

Essence of our work: The purpose of our algorithm is to produce undirected graphical models to perform inference1,3

by conditioning on any subset of our random variables. We do not want to bake in any information about specific future4

test inference tasks during training. It is true that when test inference tasks are known in advance, a model trained on a5

mixture of those may outperform us2 (Reviewer 4) or our model may be incrementally better (Reviewer 3). But how6

well do we perform, compared to a model trained on the mixture, when we are both facing a completely new task?7

Experiment II, our main experiment, now bolstered as described below, shows our superior generalization capabilities8

to unseen inference tasks. Experiment III touches upon the generative capabilities of our model, such as the ability to9

produce samples in one shot, only to show the added perks of choosing our method for inference in the first place.10

Expanding experiment II (reviewer baselines, larger data sets): All of [1],[2],[3] from Reviewer 2 have now been11

absorbed into related work. They allow conditioning on arbitrary subsets of variables, like us. However, being purely12

neural, they require masks defined over the random variables during training, to match query patterns expected in13

test inference tasks, but we are completely agnostic to inference during training. These models fit perfectly into our14

experiment II setting. In table (a) below, we now use [1] under the MIX and MIX-1 scenarios 3, under model name15

VAEAC. As expected, MIX accuracies are high as the tasks were seen before, but accuracies of MIX-1 fall drastically,16

showing the comparative strength of AGM, which generalizes better to unseen tasks. The same is seen across data sets.17

[1] was shown to be better than [2] in their paper and code for [3] is unavailable. GibbsNet (with CONV layers, as18

requested by Reviewer 2) is also added to experiment II as baseline. Although inference-agnostic as us during training,19

GibbsNet learns a latent space and is not resistant to corruption of pixels (c=0.5 task in table (a) below). The VAEAC20

and GibbsNet baselines compare data-generating approaches to our potential-generating approach (Reviewer 2).21

As shown in figure (b) below, experiment II now also includes the larger SVHN (Reviewer 2) and Stanford Background22

Semantic Segmentation (Reviewer 4) data sets (+MNIST and Caltech-101). Metrics for each of these data sets are23

reported in tables like (a). All our experiments show the trends seen in the original paper, but we did enough repeats to24

include error bars (Reviewer 2, Reviewer 4) with maximum width of ±0.5.25

Other related work: Models [1],[2],[3] mentioned by Reviewer 4, now added to our related work section, involve26

graphical models like us, combined with neural modules, for inference. However, they assume a fixed set of input and27

output variables, solving problems such as image tagging [1],[3] and classification [2], by learning: potentials in [1],28

and energy functions in [2] and [3]. These methods do not solve our problem formulated in our paper introduction,29

where we do not separate purely-input from purely-output variables, and we permute the identity of input and output30

variable indices across data points. As an analogy, one of our models should be able to solve image tagging as in [1] or31

[3], the inverse of that problem, as well as any inpainting pattern on the images. Reviewer 3 rightly pointed out that the32

idea of one model producing parameters for another, has its roots in meta-learning. We have consolidated the related33

work section with: Meta Networks [Munkhdalai, 2017] and Learning feed-forward one-shot learners [Bertinetto 2016].34

Additional analysis on method: We add time and memory complexity of our method as requested by Reviewer 2,35

relating the complexity of fully-parallelized belief propagation [Bixler, 2018] to edge set cardinalities induced by data,36

and to the ensemble size used at test time. As requested by Reviewer 4, for every data set used in experiment I, we now37

plot how accuracy, and variance of predictions changes with the number of samples (size of ensemble), in the appendix.38

(a) Updated table for experiment II, with baseline models:
VAEAC and GibbsNet (with CONV). See footnote 3 for MIX
and MIX-1 definitions.

(b) SVHN (top), Stanford Background semantic segmentation
(bottom). Per row: Target (image 1), 70% query pixels (red)
(image 2), output of AGM (image 3).

1We agree with Reviewer 4 for a title change to ‘Training Ensembles of Discrete Undirected Graphical Models Adversarially, for
Generalizable Inference’, to avoid insinuating that we are learning inference algorithms.

2Note to Reviewer 4: indeed, our training procedure uses ‘unconditioned’ samples, but at test time, when answering one query,
every graphical model in the ensemble is conditioned on the same observed data, as shown in figure 1(b) of the original paper.

3In table (a) above, MIX is a model trained on the whole mixture of tasks shown horizontally, while MIX-1 is trained on all tasks
but the one it is being tested on, to evaluate generalization to unseen tasks. Task definitions are given in the original paper.


