
Revisiting the Sample Complexity of Sparse
Spectrum Approximation of Gaussian Processes

Quang Minh Hoang
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, PA 15213

qhoang@andrew.cmu.edu

Trong Nghia Hoang
MIT-IBM Watson AI Lab

IBM Research
Cambridge, MA 02142
nghiaht@ibm.com

Hai Pham
Language Technologies Institute

Carnegie-Mellon University
Pittsburgh, PA 15213
htpham@cs.cmu.edu

David P. Woodruff
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, PA 15213

dwoodruf@cs.cmu.edu

Abstract

We introduce a new scalable approximation for Gaussian processes with provable
guarantees which hold simultaneously over its entire parameter space. Our ap-
proximation is obtained from an improved sample complexity analysis for sparse
spectrum Gaussian processes (SSGPs). In particular, our analysis shows that under
a certain data disentangling condition, an SSGP’s prediction and model evidence
(for training) can well-approximate those of a full GP with low sample complexity.
We also develop a new auto-encoding algorithm that finds a latent space to dis-
entangle latent input coordinates into well-separated clusters, which is amenable
to our sample complexity analysis. We validate our proposed method on several
benchmarks with promising results supporting our theoretical analysis.

1 Introduction
A Gaussian process (GP) [36] is a popular probabilistic kernel method for regression which has found
applications across many scientific disciplines. Examples of such applications include meteorological
forecasting, such as precipitation and sea-level pressure prediction [2]; sensing and monitoring of
ocean and freshwater phenomena such as temperature and plankton bloom [7, 12]; traffic flow and
mobility demand predictions over urban road networks [9, 10, 29]; flight delay predictions [15, 19, 20];
and persistent robotics tasks such as localization and filtering [43]. The broad applicability of GPs
is in part due to their expressive Bayesian non-parametric nature which provides a closed-form
prediction [36] in the form of a Gaussian distribution with formal measures of predictive uncertainty,
such as entropy and mutual information criteria [27, 39, 44]. Such expressiveness makes GPs not
only useful as predictive methods but also a go-to representation for active learning applications
[24, 23, 27, 44] or Bayesian optimization [38, 45, 22, 16] that need to optimize for information gain
while collecting training data.

Unfortunately, the expressive power of a GP comes at a cost of poor scalability (i.e., cubic time [36])
in the size of the training data (see Section 2.1 below), hence limiting its use to small datasets. This
prevents GPs from being applied more broadly to modern settings with increasingly growing volumes
of data [15, 19, 20]. To sidestep this limitation, a prevalent research trend is to impose sparse structural
assumptions [33, 34] on the GP’s kernel matrix to reduce its multiplication and inversion cost, which
comprises the main bulk of the training and inference complexity. This results in a broad family of

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

sparse Gaussian processes [15, 17, 19, 28, 37, 40] that are not only computationally efficient but
also amenable to various forms of parallelism [8, 29] and distributed computation [1, 13, 20, 21, 18],
further increasing their efficiency.

Despite such advantages, the sparsification components at the core of these methods are heuristically
designed and do not come with provable guarantees that explicitly characterize the interplay between
approximation quality and computational complexity. This motivates us to develop a more robust,
theoretically-grounded approximation scheme for GPs that is both provable and amenable to the
many fast computation schemes mentioned above. More specifically, our contributions include:

1. An analysis of a new approximation scheme that generates a sparse spectrum approximation
of a GP with provable bounds on its sample complexity, which practically becomes significantly
small when the input data exhibits a certain clustering structure. Furthermore, the impact of the
approximation on the resulting training and inference qualities is also formally analyzed (Section 3.1).

2. A data partitioning algorithm inspired from the above analysis, which learns a cluster embedding
that reorients the input distribution while ensuring reconstructability of the original distribution
(Section 3.3). We show that using sparse spectrum Gaussian processes (SSGP) [17, 28] on the
embedded space requires fewer samples to achieve the same level of approximation quality. This also
induces a linear feature map which enables efficient training and inference of GPs.

3. An empirical study on benchmarks that demonstrates the efficiency of the proposed method over
existing works in terms of its approximation quality versus computational efficiency (Section 4).

2 Related Work
In this section we provide an overview of Gaussian processes (Section 2.1), followed by a succinct
summary of their spectral representations (Section 2.2).

2.1 Gaussian Processes (GPs)
A Gaussian process [36] defines a probabilistic prior over a random function g(x) defined by mean
function m(x) = 01 and kernel function k(x,x′). These functions induce a marginal Gaussian prior
over the evaluations g = [g(x1) . . . g(xn)]> on an arbitrary finite subset of inputs {x1, . . . ,xn}. Let
x∗ be an unseen input whose corresponding output g∗ = g(x∗) we wish to predict. The Gaussian
prior over [g(x1) . . . g(xn) g(x∗)]

> implies the following conditional distribution:

g∗ , g(x∗) | g ∼ N
(
k>∗K−1g, k(x∗,x∗)− k>∗K−1k∗

)
, (1)

where k∗ = [k(x∗,x1) . . . k(x∗,xn)]> and K denotes the Gram matrix induced by k(x,x′) on
{x1, . . . ,xn} for which Kij = k(xi,xj). For a noisy observation y perturbed by Gaussian noise
such that y ∼ N(g(x), σ2), Eq. (1) above can be integrated with N(g, σ2I) to yield:

g∗ , g(x∗) | y ∼ N
(
k>∗ (K + σ2I)−1y, k(x∗,x∗)− k>∗ (K + σ2I)−1k∗

)
, (2)

which explicitly forms the predictive distribution of a Gaussian process. The defining parameter Θ
of k(x,x′) (see Section 2.2) is crucial to the predictive performance and needs to be optimized via
minimizing the negative log likelihood of y:

`(Θ) =
1

2
log
∣∣∣KΘ + σ2I

∣∣∣+
1

2
y>
(
KΘ + σ2I

)−1
y , (3)

where we now use the subscript Θ to indicate that K is a function of Θ. In practice, both training
Θ and prediction incur O(n3) processing cost, which prevents direct use of Gaussian processes on
large datasets that might contain more than tens of thousands of training inputs.

2.2 Sparse Spectrum Gaussian Processes
Sparse spectrum Gaussian processes (SSGPs) [14, 17, 28] exploit Theorem 1 below to re-express
the Gaussian kernel k(x,x′) , exp(−0.5 (x− x′)

>
Θ−1 (x− x′)) (where Θ , diag[θ21 . . . θ

2
d]) as

an integration over a spectrum of cosine functions such that the integrating distribution (over the
frequencies that parameterize these functions) is a multivariate Gaussian.

1For simplicity, we assume a zero mean function since we can always re-center the training outputs around 0.

2

Theorem 1 (Bochner Theorem). Let k(x,x′) denote a Gaussian kernel defined above and let
p(r) ∼ N(0, (4π2Θ)−1). It follows that:

k(x,x′) = Er∼p(r)

[
cos
(

2πr>(x− x′)
)]

, (4)

where r is a d-dimensional random variable that parameterizes cos(2πr>(x− x′)). In practice, r is
often referred to as the spectral frequency.

This allows us to approximate the original Gram matrix K with a low-rank matrix K′ constructed by
a linear kernel K′(x,x′) = Φ(x)>Φ(x) with feature map Φ(x) = [φ1(x) . . . φ2m(x)]> comprising
2m basis trigonometric functions [17]. Each pair of odd- and even-index basis functions φ2i−1(x) =
cos(2πr>i x) and φ2i(x) = sin(2πr>i x) is parameterized by the same sample of spectral parameter
ri ∼ p(r). For efficient computation, m is often selected to be significantly smaller than n (i.e.,
the number of training examples). However, to guarantee that ‖K−K′‖2 ≤ λ with probability at
least 1 − δ, m needs to be as large as O(n2/λ2 log(n/δ)) [31]2, which makes the total prediction
complexity much worse than that of a full GP.

Alternatively, one can use kernel sketching methods [3, 32, 35] to generate feature maps that scale
more favorably with the effective dimension of the kernel matrix, which empirically tends to be
on the order of O(log n). However, the pitfall of these methods is that without knowing the exact
parameter configuration Θ that underlies the data, they cannot sample from the true p(r), which
is necessary in their analyses. As such, existing random maps [3, 35] that were generated based
on this spectral construction often depend on a parameter initialization and their approximation
quality is only guaranteed for that particular parameter setting instead of uniformly over the entire
parameter space. This motivates us to revisit the sample complexity of SSGP from a setting which
specifically searches for a reorientation of the input distribution such that the reoriented data exhibits
a disentangled cluster structure. Such disentanglement provides a more sample-efficient bound as we
show in our analysis in Section 3.1 below.

3 Provable Approximation of SSGPs with Improved Sample Complexity
We first show how a sparse spectrum Gaussian process (SSGP) [28] can be approximated well with a
provably low sample complexity. This is achieved by revisiting its sample complexity which, unlike
prior work [3, 31, 35], explicitly characterizes and accounts for a certain set of data disentanglement
conditions. Importantly, our new analysis (Section 3.1) yields practical bounds on both an SSGP’s
prediction and model evidence (Section 3.2) that hold with high probability uniformly over the entire
parameter space3. Furthermore, our analysis also inspires an encoding algorithm that finds a latent
space to disentangle the encoded coordinates of data into well-separated clusters on which a sparse
spectrum GP can approximate a GP provably well (Section 3.3). Our experiments show that such a
latent space can be found for several real-world datasets (Section 4).

3.1 Practically Improved Sample Complexity for Sparse Spectrum Gaussian Processes

This section derives a new data-oriented feature map to approximate a Gaussian process parameterized
with a Gaussian kernel. Unlike existing work which assumes knowledge of the true kernel parameters
[3, 32, 35], our derivation remains oblivious to such parameters, and therefore holds universally
over their entire candidate space. We assume that the GP prior of interest is of the form g(x) ∼
GP(0, k(x,x′)) where k(x,x′) represents its Gaussian kernel in Section 2.2.

We give our analysis in three parts: (1) the spectral sampling scheme and a notion of approximation
loss; (2) a set of practical data conditions which can be either observed from a raw data distribution
or approximately imposed on the data via a certain embedding; (3) a theoretical analysis that delivers
our key result that establishes an improved sample complexity when our data conditions are met.

3.1.1 Spectral Sampling Scheme and Spectral Loss

We show that g(x) can be approximated by g′(x) =
∑p
i=1 gi(x) with provable data-oriented

guarantees where gi(x) ∼ GP(0, (1/
√
p)ki(x,x

′)). To achieve this, we first establish in Lemma 1

2See Theorem 6.28 in Chapter 6 of [31].
3In contrast, existing literature often generates bounds on either an SSGP’s prediction or its model evidence

(for training) for a single parameter configuration, which makes such an analysis only heuristic.

3

that the induced Gram matrix K of k(x,x′) on any dataset can be represented as an expectation over
a space of induced Gram matrices {Ki}pi=1 produced by a corresponding space of random kernels
{ki(x,x′)}pi=1.

Lemma 1. Let k(x,x′) and K denote a Gaussian kernel parameterized by Θ (Section 2.2) and its
induced Gram matrix on an arbitrary set of training inputs, respectively. There exists a space K of
random kernels κ(x,x′) and a Θ-independent distribution ρ over K for which K = Eκ[Kκ] where
Kκ denotes the induced Gram matrix of κ on the same set of training inputs.

This follows directly from Theorem 1 above which states that k(x,x′) = E[cos(2πr>(x−x′))] where
r ∼ N(0, (4π2Θ)−1). We can choose κ(x,x′; ε) = cos(ε>Θ−0.5(x − x′)) where ε ∼ N(0, I)
which implies k(x,x′) = Eε[κ(x,x′; ε)]. Thus, K = Eε[Kε] where the Θ-independent parameter
ε indexes κ and Kε is the induced Gram matrix of κ. Leveraging the result of Lemma 1, a naïve
analysis [31] using worst-case concentration bounds to derive a conservative estimate for a sufficient
number of samples would require a prohibitively expensive sample complexity of O(n2 log n).

Such analyses, however, often ignore the input distribution, which can be used to sample more
selectively, thereby significantly reducing the sample complexity. This is demonstrated below in
Theorem 2 which shows that when the input distribution exhibits a certain degree of compactness
and separation (as defined in Conditions 1-3), we only require O((log2 n/λ2) log log(n/δ)) sampled
kernels {κi}pi=1 indexed by {εi}pi=1 to produce an average Gram matrix K′ = 1

p

∑p
i=1 Kεi that is

sufficiently close to K in spectral norm (see Definition 1) with probability at least 1− δ.

Definition 1 (Spectral Closeness). Given λ > 0, the symmetric matrices K and K′ are λ-close if
‖K−K′‖2 ≤ λ where ‖K−K′‖2 = λmax(K−K′) denotes the largest eigenvalue of K−K′.

Thus, parameterizing the GP prior with K′ instead of K allows us to derive an upper bound on
the expected difference between their induced model evidence (for learning kernel parameters) and
prediction losses (for testing) with respect to the same parameter setup (Theorem 3). Theorem 3
importantly exploits the fact that the bound in Theorem 2 holds universally over the entire space of
parameters, which allows us to bound the prediction difference between the original and approximated
GPs with respect to their own optimized parameters (that are not necessarily the same).

3.1.2 Practical Conditions on Data Distributions
We now outline key practical data conditions, which can be satisfied approximately via an encoding
algorithm that transforms the input data into a latent space where such conditions are met. These
conditions are necessary for deriving a practically improved sample complexity in Section 3.1.3.

Condition 1. For each parameter configuration Θ = diag[θ21, . . . , θ
2
d], there exists a mixture

distributionM(x;γ = (γ1, . . . , γb),π = (π1, . . . , πb), c = (c1, . . . , cb)) with at most b = O(log n)

Gaussian components N(x; ci, γ
2
i Θ
−1) over the data space with the mixing weights πi ∝ 2

i
2 and

variances γi = O(1√
d
) that generate the observed data in d-dimensional space.

Condition 2. The ith Gaussian component as defined in Condition 1 above was used to generate 2
i
2

data points of the observed dataset. This can be substantiated easily with high probability given the
above setup in Condition 1 that assigns selection probability πi ∝ 2

i
2 to the ith-component.

Condition 3. For each parameter configuration Θ = diag[θ21, . . . , θ
2
d], the mixture distribution of

data in Condition 1 has sufficiently separated cluster centers. That is, for all i 6= j:∥∥∥Θ−1/2 (ci − cj)
∥∥∥2
2

>
3

2
log

(
2a

2a − 1

)
where a =

1

log 2
log

(
n4

n4 − λ4

)
. (5)

These conditions impose that the observed data can be separated into a number of clusters with
exponentially growing sizes and concentration (see the small variances defined in Condition 1 and
the imposed sizes of Condition 2). Intuitively, this means data points that belong to clusters with high
concentration are responsible for kernel entries with high values whereas those in clusters with low
concentration generate entries with low values. This is easy to see since high concentration reduces
the distance between data points, thus increasing their kernel values and vice versa.

Furthermore, as imposed by Condition 2, clusters with high concentration also have denser population
and induce kernel entries with high value. In addition, Condition 3 requires that clusters are well-
separated, which implies that a large number of kernel entries are small and therefore can be

4

approximated cheaply. Together, these conditions form the foundations of our reduced complexity
analysis for SSGP in Theorem 2. Interestingly, we show that such conditions also inspire the
development of a probabilistic algorithm that finds an encoding of the input that (approximately)
satisfies these conditions while preserving the statistical properties of the input (Section 3.3). This
results in an improved sample complexity for SSGPs in practice (see Section 3.1.3).

3.1.3 Main Results
To understand the intuition why an improved sample complexity can be obtained, we note that when
data is partitioned in clusters with different concentrations and sizes, the kernel entries are also
partitioned into multiple value-bands with narrow width (i.e., low variance). Exploiting this, we can
calibrate a significantly lower sample complexity for each band using concentration inequalities that
improve with lower variance [11, 25].

Then, to combine these in-band sample complexities efficiently, we further exploit the data conditions
in Section 3.1.2 to show that statistically, value bands with smaller width also tend to be populated
more densely4. This allows us to aggregate these in-band sample costs into an overall sample
complexity with low cost. In practice, this also inspires an embedding algorithm (Section 3.3) that
transforms the data in such a way that the distribution of their induced kernel entries will be denser in
narrower bands, which is advantageous in our analysis.

Formally, let C be the set of all kernel entries indexed by (u, v) in the Gram matrix K such that
xu and xv belong to the same cluster and C′ be its complement. Also, let C be partitioned5 into
b value-bands κi = {(u, v) ∈ C | 1 − O(21−i) ≤ K4

uv ≤ 1 − O(2−i)} for i ∈ [1 . . . b] and let
κ0 = {(u, v) ∈ C | K4

uv ≥ 1−O(2−b)} be a band that is only populated by very large kernel entries.
Theorem 2 below shows that we can construct a λ-spectral approximation of K with arbitrarily high
probability and low sample complexity.

Theorem 2. For any 1 ≥ δ ≥ O(exp(b−
√
d)), if the training data has n data points and satisfies

Conditions 1-3 above with respect to λ, then with probability at least 1 − 2δ, the approximation
K′ = (1/p)

∑p
i=1 Kεi where εi ∼ N(0, I) is λ- spectral close to K.

Proof Sketch. Our proof strategy is outlined below. The formal statements are spelled out in
Appendix A.

First, with a proper choice of a clustering partition, the cross-cluster entries in K are guaranteed to be
sufficiently small so as to be well-approximated by zero. We can then show with high probability that
any kernel entry that corresponds to a pair of unique data points from the same cluster can be well-
approximated with a sample complexity that scales favorably with the cluster’s variance. In particular,
we show that kernel values induced by data points generated by lower-variance clusters (see Condition
1) will have smaller approximation variances than those generated by data from higher-variance
clusters and therefore require fewer samples to produce the same level of approximation.

Second, for certain configurations of mixture weights, Condition 2 asserts that the number of data
points from each cluster is inversely proportional to the cluster variance, which implies that a small
sample complexity is enough to approximate the majority of kernel entries. More specifically,
Lemma 3 shows that when the input points are distributed into clusters with certain choices of
variances {γi}bi=1 and at an inversely proportional ratio O(γ−1i), then with high probability, over all
clusters, the kernel entries (excluding those on the diagonal) associated with pairs in the i-th cluster
belong to their corresponding band κi.

Lemma 5 shows that for p = O(log2 n/λ2 log(log n/δ)), with probability 1− δ/b, the total approx-
imation error of all kernel entries in the Ci will be at most λ2/4b, which implies with probability
1− δ, the total approximation cost for items in C is at most λ2/4. Next, Lemma 2 establishes that
with the above data distribution, C accounts for n2/4 entries while C′ accounts for 3n2/4 entries,
which needs to be approximated with error at most 3λ2/4.

Finally, Lemma 4 shows that when the clusters are sufficiently well-separated (see Condition 3), any
kernel value corresponding to an arbitrary data pair with points belonging to different clusters is
guaranteed to be smaller than λ2/n2, which then guarantees a total error of at most 3λ2/4 when they
are uniformly approximated with zero. Putting these together yields a total error of λ2 with probability

4The intuition here is that kernel entries in narrower bands are cheaper (in term of sample cost) to approximate.
5The exact bounds defining the band can be found in Appendix A.

5

1− 2δ, which implies K and K′ are λ-spectrally close since ‖K−K′‖2 ≤ ‖K−K′‖F ≤ λ. Please
see Appendix A for details.

3.2 Approximation Loss for Prediction and Model Evidence

In terms of prediction and model evidence approximation, our result holds simultaneously for all
parameter configurations and is thus oblivious to the choice of parameters (see Theorem 3). While
existing kernel sketch methods [3, 32] generically achieve near-linear complexity for the approximate
feature map6, they often require knowledge of the parameters to construct the kernel approximations.
In contrast, our result in Theorem 2 can be leveraged to bound the same prediction discrepancy when
the original and approximated GPs use their own optimized parameter configurations, as shown in
Theorem 4 below. To establish Theorem 4, however, we first establish an intermediate result that
bounds the prediction and model evidence in the case when both the original and approximated GPs
use the same parameter configurations.

Theorem 3. Let δ < 1 be a user-specified confidence as defined previously in Theorem 2 and let K′

be an approximation to K for which ‖K −K′‖22 ≤ λ2 with probability 1 − δ, uniformly over the
entire parameter space. Then, with probability 1− δ, the following hold:

E[g(x∗)] =

(
1± λ

σ2

)
E[g′(x∗)] and V[g(x∗)] =

(
1± λ

σ2

)
V[g′(x∗)] ±

λ

σ2
(6)

where σ2 is the noise of the variance (Eq. (2)), and g(x∗), g′(x∗) respectively denote the predictive
distributions of the full GP and the approximated GP pertaining to an arbitrary test input x∗.

Proof. This follows directly from Lemma 7 and Lemma 8 in Appendix B.

Finally, Theorem 4 analyzes how close the approximated predictive mean is to the full GP predictive
mean when both are evaluated at the optimizer of their respective training objective.
Theorem 4. Let δ < 1 be a user-specified confidence as defined in Theorem 2. Let K′ denote an
approximation to K for which ‖K−K′‖22 ≤ λ2 with probability at least 1− δ uniformly over the
entire parameter space. Let Θ∗ and Θ′∗ denote the optimal hyperparameters obtained by respectively
minimizing the negative log likelihood of a full GP and the approximated GP. With probability 1− δ,
the following holds:

E[g′(x∗; Θ
′
∗)] =

(
1± ρ(λ, σ,Θ∗,Θ

′
∗)
)
· E[g(x∗; Θ∗)] + ℘(λ, σ,Θ∗,Θ

′
∗) (7)

where ρ(λ, σ,Θ∗,Θ
′
∗) and ℘(λ, σ,Θ∗,Θ

′
∗) are constants with respect to λ, σ,Θ∗,Θ′∗.

Proof. This follows immediately from Lemma 11 in Appendix B, which was built on the result of
Theorem 3 above. This completes our loss analysis for SSGPs.

3.3 Optimizing Feature Map Complexity
We next present a practical probabilistic embedding algorithm that transforms the input data to
meet the requirements of Conditions 1-3. Our method is built on the rich literature of variational
auto-encoders (VAE) [26], which is a broad class of deep generative models that combine the rigor
of Bayesian methods and rich parameterization of (deep) neural networks to discover (non-linear)
low-dimensional embeddings of data while preserving their statistical properties. We first provide a
short review on VAEs below, followed by an augmentation that aims to achieve the impositions in
Conditions 1-3 above.

3.3.1 Variational Auto-Encoders (VAEs)
Let x be a random variable with density function p(x). We want to learn a latent variable model
pθ(x, z) = p(z)pθ(z|x) that captures this generative process. The latent variable model comprises a
fixed latent prior p(z) and a parametric likelihood pθ(z|x). To learn θ, we maximize the variational
evidence lower-bound (ELBO) L(x; θ, φ) of log pθ(x):

L(x; θ, φ) , Ez∼qφ

[
log pθ(x|z)

]
−KL

(
qφ(z||x)||p(z)

)
(8)

6[3, 32] achieves a complexity of O(nm2) where m scales with the effective dimension of the kernel matrix.

6

with respect to an arbitrary posterior surrogate qφ(z|x) ' pθ(z|x) over the latent variable z. The
ELBO is always a lower-bound on log pθ(x) regardless of our choice of qφ(z|x). This is due to the
non-negativity of the KL divergence as seen in the first part of the above equation.

This can be viewed as a stochastic auto-encoder with pθ(x|z) and qφ(z|x) acting as the encoder and
decoder, respectively. Here, θ and φ characterize the neural network parameterization of these models.
Their learning is enabled via a re-parameterization of qφ(z|x) that enables stochastic gradient ascent.

3.3.2 Re-configuring Data via an Augmenting Variational Auto-Encoder

To augment the above VAE framework [26, 30] to account for the impositions in Conditions 1 and
2, we ideally want to configure the parameterization of the above generative process to guarantee
that the marginal posterior q(z) =

∫
x
q(z|x)p(x)dx will manifest itself in the form of a mixture of

Gaussians with the desired concentration and population densities as stated in Condition 1.

However, it is often difficult to make such an imposition directly given that we typically have no prior
knowledge of p(x). We instead impose the desired structure on the latent prior p(z) and then penalize
the divergence between qφ(z) and p(z) while optimizing for the above ELBO in Eq. (8). That is,
we parameterize p(z) = π1 N(z; c1, γ

2
1Θ−1) + . . . + πb N(z; cb, γ

2
bΘ
−1) where πi ∝ 2i/2 (see

Condition 2), which encodes the desired clustering structure. This is then reflected on the marginal
posterior q(z) via augmenting the above ELBO as,

Lα(x; θ, φ) , Ez∼qφ

[
log pθ(x|z)

]
−KL

(
qφ(z||x)||p(z)

)
− αKL

(
q(z)||p(z)

)
, (9)

where the penalty term αKL(q(z)||p(z)) serves as an incentive to encourage q(z) to assume the
same clustering structure as p(z). The parameter α can be manually set to adjust the strength of the
incentive. To encourage separation among learned clusters (see Condition 3), we also add an extra
penalty term to the above augmented ELBO,

Lα,β(x; θ, φ) , Lα(x; θ, φ) + β
∑
i 6=j

KL
(
N
(
z; ci, γ

2
i Θ
−1I
)
||N

(
z; cj , γ

2
jΘ
−1I
))

. (10)

Once these clusters are learned, we can use the resulting encoding network qφ(z|x) to transform each
training input x into its latent projection and subsequently train an SSGP on the latent space of z
(instead of training it on the original data space). Our previous analysis can then be applied on z to
give the desired sample complexity. The empirical efficiency of the proposed method is demonstrated
in Section 4 below. Note that the cost of training the embedding is linear in the number of data points
and therefore does not noticeably affect our overall running time.

4 Experiments
Datasets. This section presents our empirical studies on two real datasets: (a) the ABALONE dataset
[42] with 3000 data points which was used to train a model that predicts the age of abalone (number
of rings on its shell) from physical measurements such as length, diameter, height, whole weight,
shucked weight, viscera weight and shell weight; and (b) the GAS SENSOR dataset with 4 million
data points [5, 6] which was used to train a model that predicts the CO concentration (ppm) from
measurements of humidity, temperature, flow rate, heater voltage and the resistant measures of 14
gas sensors.

In both settings, we compare our revised SSGP method with the traditional SSGP on both datasets
to demonstrate its sample efficiency. In particular, our SSGP method is applied on the embedded
space of data which was generated and configured using the auto-encoding method in Section 3.3.2
to approximately meet the aforementioned Conditions 1-3.

The detailed parameterization of our entire algorithm7 is provided in Appendix C. The traditional
SSGP method on the other hand was applied directly to the data space. The prediction root-mean-
square-error (RMSE) achieved by each method is reported at different sample complexities in Figure 1
below. All reported performances were averaged over 5 independent runs on a computing server with
a Tesla K40 GPU with 12GB RAM.

Results and Discussions. It can be observed from the results that at all levels of sample complexity,
the revised SSGP achieves substantially better performance than its vanilla SSGP counterpart. This

7Our experimental code is released at https://github.com/hqminh/gp_sketch_nips.

7

https://github.com/hqminh/gp_sketch_nips

(a) (b) (c)

Figure 1: Graphs of performance comparisons between our revised SSGP and the traditional SSGP
on the ABALONE dataset [42] at varying sample complexities (see Theorem 2) p = 16, 32 and 64.

is expected since our revised SSGP is guaranteed to require many fewer samples than the vanilla
SSGP when the data is reconfigured to exhibit a certain clustering structure (see Conditions 1-3 and
Theorem 2). As such, when both are set to operate at the same level of sample complexity, one would
expect the revised SSGP to achieve better performance since SSGP generally performs better when
its sample complexity is set closer to the required threshold. On the larger GAS SENSOR dataset
(which contains approximately 4M data points), we also observe the same phenomenon from the
performance comparison graph as shown in Figure 2a below: A vanilla SSGP needs to increase its
number of samples to marginally improve its predictive performance while our revisited SSGP is
able to outperform the former with the least number of samples (p = 16).

(a) (b) (c)

Figure 2: Graphs of (a) performance comparison between our revisited SSGP’s (with sample complex-
ity p = 16) and the vanilla SSGP’s (with sample complexity p = 16, 32, 64) on the GAS SENSOR
dataset [4]; and visualizations of (b) original and (c) reconfigured data distributions of GAS SENSOR
data on a 2-dimensional latent space generated by our auto-encoding algorithm in Section 3.3.

Furthermore, a closer look into the data distribution (visualized on a 2D space in Fig. 2b) and
the data reconfigured data distribution (visualized on a 2D space in Fig. 2c) also corroborates our
hypothesis earlier that a well-separated data partition with high in-cluster concentration (in the form
of a mixture of clusters – see Condition 1) can be found (by our embedding algorithm in Section 3.3)
to reconfigure our data distribution to (approximately) meet the necessary technical conditions
that enable our sample-complexity enhancement analysis (see Section 3.1). Due to limited space,
interested readers are referred to Appendix D for more detailed empirical studies and demonstrations.

5 Conclusion

We present a new method and analysis for approximating Gaussian processes. We obtain provable
guarantees for both training and inference, which are the first to hold simultaneously over the entire
space of kernel parameters. Our results complement existing work in kernel approximation that
often assumes knowledge of its defining parameters. Our results also reveal important (practical)
insights that allow us to develop an algorithmic handle on the tradeoff between approximation quality
and sample complexity, which is achieved via finding an embedding that disentangles the latent
coordinates of data. Our empirical results show for many datasets, such a disentangled embedding
space can be found, which leads to a significantly reduced sample complexity of SSGP.

8

6 Statement of Broader Impact
Our work focuses on approximating Gaussian processes using a mixture of practical methods and
theoretical analysis to reconfigure data in ways that reduce their approximation complexity. As such,
it could have significant broader impact by allowing users to more accurately solve practical problems
such as the ones discussed in our introduction, while still providing concrete theoretical guarantees.
While applications of our work to real data could result in ethical considerations, this is an indirect
(and unpredictable) side-effect of our work. Our experimental work uses publicly available datasets
to evaluate the performance of our algorithms; no ethical considerations are raised.

7 Acknowledgement

T. N. Hoang is supported by the MIT-IBM Watson AI Lab, IBM Research. Q. M. Hoang is supported
by the Gordon and Betty Moore Foundation’s Data-Driven Discovery Initiative through Grant
GBMF4554, by the US National Science Foundation (DBI-1937540), by the US National Institutes
of Health (R01GM122935), and by the generosity of Eric and Wendy Schmidt by recommendation
of the Schmidt Futures program. D. Woodruff is supported by National Institute of Health grant 5R01
HG 10798-2, Office of Naval Research grant N00014-18-1-2562, and a Simons Investigator Award.

References
[1] Rakshit Allamraju and Girish Chowdhary. Communication efficient decentralized gaussian

process fusion for multi-uas path planning. In American Control Conference, pages 4442–4447,
05 2017.

[2] T. J. Ansell et al. Daily mean sea level pressure reconstructions for the European-North Atlantic
region for the period 1850-2003. J. Climate, 19(12):2717–2742, 2006.

[3] H. Avron, M. Kapralov, C. Musco, C. Musco, A. Velingker, and A. Zandieh. Random fourier
features for kernel ridge regression: Approximation bounds and statistical guarantees. In Proc.
ICML, pages 253–262, 2017.

[4] Javier Burgues. Gas Sensor Array Temperature Modulation Dataset, howpublished= https:
//archive.ics.uci.edu/ml/machine-learning-databases/00487/.

[5] Javier Burgués, Juan Manuel Jiménez-Soto, and Santiago Marco. Estimation of the limit of
detection in semiconductor gas sensors through linearized calibration models. Analytica chimica
acta, 1013:13–25, 2018.

[6] Javier Burgués and Santiago Marco. Multivariate estimation of the limit of detection by
orthogonal partial least squares in temperature-modulated mox sensors. Analytica chimica acta,
1019:49–64, 2018.

[7] N. Cao, K. H. Low, and J. M. Dolan. Multi-robot informative path planning for active sensing
of environmental phenomena: A tale of two algorithms. In Proc. AAMAS, pages 7–14, 2013.

[8] J. Chen, N. Cao, K. H. Low, R. Ouyang, C. K.-Y. Tan, and P. Jaillet. Parallel Gaussian process
regression with low-rank covariance matrix approximations. In Proc. UAI, pages 152–161,
2013.

[9] J. Chen, K. H. Low, C. K.-Y. Tan, A. Oran, P. Jaillet, J. M. Dolan, and G. S. Sukhatme.
Decentralized data fusion and active sensing with mobile sensors for modeling and predicting
spatiotemporal traffic phenomena. In Proc. UAI, pages 163–173, 2012.

[10] Jie Chen, Kian Hsiang Low, and Colin Tan. Gaussian process-based decentralized data fusion
and active sensing for mobility-on-demand system. Robotics: Science and System, 06 2013.

[11] H. Chernoff. A measure of asymptotic efficiency for tests of hypothesis based on the sum of
observations. Annals of Mathematical Statistics, 23:493–509, 1952.

9

https://archive.ics.uci.edu/ml/machine-learning-databases/00487/
https://archive.ics.uci.edu/ml/machine-learning-databases/00487/

[12] J. M. Dolan, G. Podnar, S. Stancliff, K. H. Low, A. Elfes, J. Higinbotham, J. C. Hosler, T. A.
Moisan, and J. Moisan. Cooperative aquatic sensing using the telesupervised adaptive ocean
sensor fleet. In Proc. SPIE Conference on Remote Sensing of the Ocean, Sea Ice, and Large
Water Regions, volume 7473, 2009.

[13] Y. Gal, M. van der Wilk, and C. Rasmussen. Distributed variational inference in sparse Gaussian
process regression and latent variable models. In Proc. NIPS, 2014.

[14] Yarin Gal and Richard Turner. Improving the gaussian process sparse spectrum approximation
by representing uncertainty in frequency inputs. 2015.

[15] J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In Proc. UAI, pages
282–290, 2013.

[16] M. Hoang and C. Kingsford. Optimizing dynamic structures with bayesian generative search.
In Internation Conference on Machine Learning, 2020.

[17] Q. M. Hoang, T. N. Hoang, and K. H. Low. A generalized stochastic variational Bayesian
hyperparameter learning framework for sparse spectrum Gaussian process regression. In Proc.
AAAI, pages 2007–2014, 2017.

[18] Q. M. Hoang, T. N. Hoang, K. H. Low, and C. Kingsford. Collective model fusion for multiple
black-box experts. In Proc. ICML, 2019.

[19] T. N. Hoang, Q. M. Hoang, and K. H. Low. A unifying framework of anytime sparse Gaussian
process regression models with stochastic variational inference for big data. In Proc. ICML,
pages 569–578, 2015.

[20] T. N. Hoang, Q. M. Hoang, and K. H. Low. A distributed variational inference framework for
unifying parallel sparse Gaussian process regression models. In Proc. ICML, pages 382–391,
2016.

[21] T. N. Hoang, Q. M. Hoang, K. H. Low, and J. P. How. Collective online learning of Gaussian
processes in massive multi-agent systems. In Proc. AAAI, 2019.

[22] T. N. Hoang, Q. M. Hoang, O. Ruofei, and K. H. Low. Decentralized high-dimensional bayesian
optimization with factor graphs. In Proc. AAAI, 2018.

[23] T. N. Hoang, K. H. Low, P. Jaillet, and M. Kankanhalli. Nonmyopic ε-Bayes-optimal active
learning of Gaussian processes. In Proc. ICML, pages 739–747, 2014.

[24] T. N. Hoang, K. H. Low, P. Jaillet, and M. S. Kankanhalli. Active learning is planning: Non-
myopic ε-Bayes-optimal active learning of Gaussian processes. In Proc. ECML-PKDD Nectar
Track, pages 494–498, 2014.

[25] W. Hoeffding. Probability inequalities for the sum of bounded random variables. Journal of the
American Statistical Association, 58:13–30, 1963.

[26] D. Kingma and M. Welling. Auto-Encoding Variational Bayes. In Proc. ICLR, 2013.

[27] A. Krause and C. Guestrin. Nonmyopic active learning of Gaussian processes: An exploration-
exploitation approach. In Proc. ICML, pages 449–456, 2007.

[28] M. Lázaro-Gredilla, J. Quiñonero-Candela, C. E. Rasmussen, and A. R. Figueiras-Vidal. Sparse
spectrum Gaussian process regression. Journal of Machine Learning Research, pages 1865–
1881, 2010.

[29] K. H. Low, J. Yu, J. Chen, and P. Jaillet. Parallel Gaussian process regression for big data:
Low-rank representation meets Markov approximation. In Proc. AAAI, pages 2821–2827, 2015.

[30] Emile Mathieu, Tom Rainforth, Siddharth Narayanaswamy, and Yee Whye Teh. Disentangling
disentanglement in variational autoencoders. In ICML, 2019.

[31] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.
MIT press, 2018.

10

[32] C. Musco and C. Musco. Recursive sampling for the nystrom method. In Proc. NIPS, 2016.

[33] J. Quiñonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian
process regression. Journal of Machine Learning Research, 6:1939–1959, 2005.

[34] J. Quiñonero-Candela, C. E. Rasmussen, and C. K. I. Williams. Approximation methods for
gaussian process regression. Large-Scale Kernel Machines, pages 203–223, 2007.

[35] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Proc. NIPS,
2007.

[36] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press,
2006.

[37] M. Seeger, C. K. I. Williams, and N. D. Lawrence. Fast forward selection to speed up sparse
Gaussian process regression. In Proc. AISTATS, 2003.

[38] J. Snoek, L. Hugo, and R. P. Adams. Practical Bayesian optimization of machine learning
algorithms. In Proc. NIPS, pages 2960–2968, 2012.

[39] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit
setting: No regret and experimental design. In Proc. ICML, pages 1015–1022, 2010.

[40] M. K. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In Proc.
AISTATS, 2009.

[41] L. J. P. van der Maaten and G. E. Hinton. Visualizing high-dimensional data using t-sne. Journal
of Machine Learning Research, 9:2579–2605, 2008.

[42] Sam Waugh. Abalone Dataset, howpublished= https://archive.ics.uci.edu/ml/
machine-learning-databases/abalone/.

[43] N. Xu, K. H. Low, J. Chen, K. K. Lim, and E. B. Özgül. GP-Localize: Persistent mobile robot
localization using online sparse Gaussian process observation model. In Proc. AAAI, pages
2585–2592, 2014.

[44] Y. Zhang, T. N. Hoang, K. H. Low, and M. Kankanhalli. Near-optimal active learning of
multi-output Gaussian processes. In Proc. AAAI, pages 2351–2357, 2016.

[45] Y. Zhang, T. N. Hoang, K. H. Low, and M. Kankanhalli. Information-based multi-fidelity
bayesian optimization. In NIPS Workshop BayesOpt, 2017.

11

https://archive.ics.uci.edu/ml/machine-learning-databases/abalone/
https://archive.ics.uci.edu/ml/machine-learning-databases/abalone/

A Intermediate Results for Theorem 2

Let ∆(xu,xv) , |K(xu,xv) −K′(xu,xv)| where K′(xu,xv) = (1/p)
∑p
i=1 Kεi(xu,xv), and

where εi ∼ N(0, I) as defined in Lemma 1 above. We will first measure the approximation loss across
different value-bands of K(xu,xv), thereby deriving tight sample bounds for each band. Combining
these with the union bound allows us to establish a much cheaper overall sample complexity as
compared to the naïve O(n2 log n) bound.
Lemma 2. Suppose the data distribution follows Conditions 1-3 above. Let c(xu) denote the cluster
index of each data point xu. Let C , {u, v | c(xu) = c(xv)} and C′ , {u, v | c(xu) 6= c(xv)}
denote the sets of in-cluster and out-cluster kernel entries, respectively, where |C| ' n2

4 and
|C′| ' 3n2

4 .

Proof. By Condition 2, since n data points are scattered across b clusters and each cluster i has 2i/2

points, it follows that:

n =

b∑
i=1

2
i
2 =

√
2b+1 −

√
2√

2− 1

⇒ |C| =

b∑
i=1

2i = 2b+1 − 1 =
(
n
(√

2− 1
)

+
√

2
)2
− 1 ' n2

4

⇒ |C′| = n2 − |C| ' 3n2

4
. (11)

This also implies that b = O(log n), which is consistent with Condition 1 above.

Lemma 3. Let Ci = {(u, v) ∈ C | c(xu) = c(xv) = i} for i ∈ [1 . . . b]. Then with probability at
least 1 − δ, for δ ≥ O(exp(log n −

√
d)), the following holds for all i and (u, v) ∈ Ci for which

u 6= v:(
1− 1

2a+i−1

) 1
4

≤ K(xu,xv) <

(
1− 1

2a+i

) 1
4

where a =
1

log 2
log

(
n4

n4 − λ4

)
(12)

Proof. If xu and xv are both generated from component i of the data distribution as defined in
Condition 1, it follows that Θ−1/2(xu − xv) ∼ N(ci, γ

2
i I). Therefore, by standard chi-squared tail

bounds, with probability at least 1− 2e−t, we have:∥∥∥Θ−1/2(xu − xv)
∥∥∥2
2

= γ2i d ± O
(
γ2i
√
dt
)
, (13)

where d is the data dimension. Using this, we can then figure out a setting for γ2i such that K(xu,xv)
follows the above condition in Eq. 12. In particular, set

L(i) = log

(
2a+i

2a+i − 1

)
and U(i) = log

(
2a+i−1

2a+i−1 − 1

)
. (14)

We can then choose:

γ2i =
1

4d

(
U(i) + L(i)

)
and t =

√
d

(
U(i)− L(i)

U(i) + L(i)

)
' O

(√
d
)
, (15)

so that by plugging these choices in Eq. 13 above, we have with probability at least 1− 2e−t:∥∥∥Θ−1/2(xu − xv)
∥∥∥2
2
∈

[
1

2
log

(
2a+i

2a+i − 1

)
,

1

2
log

(
2a+i−1

2a+i−1 − 1

)]
⇒ K(xu,xv) ∈

[(
1− 1

2a+i−1

) 1
4

,

(
1− 1

2a+i

) 1
4

]
. (16)

Now, note that for any δ for which δ ≥ O
(

4be−
√
d
)
≥ O

(
4ie−

√
d
)
∀i ≤ b, we have δ/4i ≥ 2e−t

since t ' O(
√
d). This also means δ ≥ O(exp(log n−

√
d)) since b = O(log n).

12

That is, Eq. (16) and hence, Eq. (12), hold with probability at least 1 − 2e−t ≥ 1 − δ/4i for
each entry in Ci. For each cluster i, even though there are up to 2i kernel entries, by the triangle
inequality it is easy to see that we only need to apply a union bound over at most 2i/2 (carefully
selected) entries (excluding the entries on the diagonal) to meet Eq. (12) with probability at least
1− 2i(δ/4i) = 1− δ/2i.
Subsequently, applying a union bound over all clusters gives us that with probability at least 1 −
δ
∑b
i=1 1/2i ≥ 1 − δ, all kernel entries within the i-th cluster satisfy Eq. (12) simultaneously for

1 ≤ i ≤ b.

Lemma 4. For all (u, v) ∈ C′ , {u, v | c(xu) 6= c(xv)}, we have K(xu,xv) <

(
1− 1

2a

) 1
4

where a =
1

log 2
log

(
n4

n4 − λ4

)
as defined in Lemma 3 above.

Proof. For any (u, v) for which c(xu) = i and c(xv) = j and i 6= j, we have:∥∥∥Θ−1/2(xu − xv)
∥∥∥2
2
≥

∥∥∥Θ−1/2 (ci − cj)
∥∥∥2
2
−
∥∥∥Θ−1/2 (xu − ci)

∥∥∥2
2
−
∥∥∥Θ−1/2 (xv − cj)

∥∥∥2
2

≥
∥∥∥Θ−1/2 (ci − cj)

∥∥∥2
2
− 1

2
log

(
2a+i

2a+i − 1

)
− 1

2
log

(
2a+j

2a+j − 1

)
≥

∥∥∥Θ−1/2(ci − cj)
∥∥∥2
2
− log

(
2a

2a − 1

)
⇒ K (xu,xv) = exp

(
−1

2

∥∥∥Θ−1/2 (xu − xv)
∥∥∥2
2

)
≤ exp

(
−1

2
·
∥∥∥Θ−1/2 (ci − cj)

∥∥∥2
2

+
1

2
log

(
2a

2a − 1

))
<

(
1− 1

2a

) 1
4

since for all (i, j), by Condition 3:∥∥∥Θ−1/2 (ci − cj)
∥∥∥2
2

>
3

2
log

(
2a

2a − 1

)
. (17)

This completes our proof for the stated result of Lemma 4.

Corollary 1. With probability at least 1 − δ, there are exactly n entries that are greater than
1−2−(a+b) where a = 1

log 2 log
(

n4

n4−λ4

)
. These are the diagonal entries K(xu,xu) with 1 ≤ u ≤ n.

Proof. Lemma 3 asserts that with probability 1 − δ, all kernel entries K(xu,xv), where c(xu) =
c(xv) = i, belong to their respective band κi = {(u, v) | 1−1/2a+i−1 ≤ K4(xu,xv) ≤ 1−1/2a+i}.
When this happens, all in-cluster entries (except the diagonal entries) will have values between
1 − 1/2a and 1 − 1/2a+b (since there are b bands) and as such, off-cluster entries will either be
smaller than 1 − 1/2a or larger than 1 − 1/2a+b. But then Lemma 4 further guarantees that all
off-cluster entries are smaller than 1− 1/2a, following Condition 3. Thus, it follows that the only
entries that are larger than 1− 1/2a+b are the diagonal items and there are exactly n of them.

Lemma 5. Let κi =
{

(u, v) | 1− 1/2a+i−1 ≤ K4(xu,xv) < 1− 1/2a+i
}

. It follows that for
each i ∈ [1 . . . b], with probability at least 1− δ/b:∑

(u,v)∈Gi

∆2(xu,xv) ≤ λ2

b
, (18)

if the kernel approximation K′(xu,xv) , 1
p

∑p
t=1 Kεt(xu,xv) is formed using at least p =

b|κi|
λ2 · 2a+i

log

(
b|κi|
δ

)
= O

(
log2 n

λ2
log

(
log n

δ

))
samples.

13

Proof. For all (u, v), we have Kεt (xu,xv) = cos(ε>t Θ−1/2 (xu − xv)) where εt ∼ N(0, I) and,

Kεt(xu,xv) = cos

(
d∑
`=1

ε`t ·
(

x`u − x`v
θ`

))
, cos

(
ztuv
)
. (19)

Since ε`t ∼ N(0, 1), ztuv is then a weighted sum of Gaussian random variables and ztuv ∼ N(0,Σt
uv),

where Σt
uv , (xu − xv)

>Θ−1(xu − xv), which in turn implies:

E[cos(ztuv)] = exp
(
−0.5Σt

uv

)
= K(xu,xv) ,

V[cos(ztuv)] =
1

2

[
1− E[cos(ztuv)]

2
]2

=
1

2

(
1−K2(xu,xv)

)2
≤ 2× 1

2a+i
, (20)

where the last inequality follows from the choice of (u, v) ∈ κi and the definition of the κi above.
Next, applying the Chernoff-Hoeffding inequality and union bounding over the κi, we have:

Pr

(
∀(u, v) ∈ κi : ∆(xu,xv) ≤

ε

p

)
≥ 1− 2|κi|exp

(
− ε2

4
∑p
t=1 V [cos(ztuv)]

)

⇒ Pr

 ∑
(u,v)∈κi

∆2(xu,xv) ≤
|κi|ε2

p2

 ≥ 1− 2|κi|exp

(
−ε

2 · 2a+i

8p

)
. (21)

Thus, setting ε2 =
λ2p2

4b|κi|
and p ≥ 32b|κi|

λ2 · 2a+i
log

(
2b|κi|
δ

)
yields:

Pr

 ∑
(u,v)∈Gi

∆2(xu,xv) ≤
λ2

4b

 ≥ 1− 2|κi|exp

(
−λ

2p · 2a+i

32b|κi|

)
≥ 1− δ

b
. (22)

where the last inequality follows from the above choice of p. Since |κi| = 2i by Condition 2, we

further have p ≥ 32b

λ2 · 2a
log

(
b · 2b+1

δ

)
= O

(
log2 n

λ2
log

(
log n

δ

))
.

Lemma 5 thus establishes a very strong sample complexity of O(log2 n log log n) for approximating
all kernel entries within a narrow band of values, which is significantly cheaper than the sample
complexity of O(n2 log n) we would get if we were to ignore the distribution of kernel values in
different bands. This is made clear in Corollary 2 below, which combines Lemmas 3, 4 and 5 to
establish an overall sample complexity resulting in only a small approximation loss accumulated over
all bands.

Corollary 2. If a kernel approximation K′ of K is formed such that K′(xu,xv) ,
1
p

∑p
t=1 Kεt(xu,xv) for all in-cluster entries (u, v) ∈ C using p = O

(
(log2 n/λ2) log (log n/δ)

)
samples and K′(xu′ ,xv′) , 0 for all off-cluster entries (u′, v′) ∈ C′, then,

‖K−K′‖22 ≤ ‖K−K′‖2F ≤ λ2 ,

with probability at least 1− 2δ with δ ≥ O(exp(log n−
√
d)). This immediately guarantees that K′

is spectrally close to K using the notion of λ-closeness (see Definition 1).

Proof. By Lemma 3, with probability 1 − δ, |κi| = |Ci| simultaneously for all i. Thus, applying
a union bound over this event and the results obtained in Lemma 5 for all clusters, we have the
following bound on the total approximation loss over in-cluster entries in C with probability 1− 2δ:∑

(u,v)∈C

∆2(xu,xv) ≤ λ2

4
. (23)

Furthermore, by Lemma 4, we also have the following bound on the total approximation loss over
off-cluster entries in C′ (which were approximated uniformly by zero):∑

(u,v)∈C′
∆2(xu,xv) ≤

3n2

4

(
K(xu,xv)− 0

)2
≤ 3n2

4

√
1− 1

2a
=

3λ2

4
, (24)

14

when the last inequality is due to the facts (established in Lemma 4) that K4(xu,xv) ≤ 1− 1/2a

and that a =
1

log 2
log

(
n4

n4 − λ4

)
. Finally, combining these yields:

‖K−K′‖22 ≤ ‖K−K′‖2F =
∑

(u,v)∈C

∆2(xu,xv) +
∑

(u,v)∈C′
∆2(xu,xv) ≤

1

4
λ2 +

3

4
λ2 = λ2 (25)

B Intermediate Results for Theorem 3

Lemma 6. Let K and K′ be positive semidefinite matrices in Rn×n such that −λI � K−K′ � λI,
Q , K + σ2I and Q′ , K′ + σ2I for some λ, σ > 0, then:

‖Q′−1‖2 =

(
1± λ

σ2

)
‖Q−1‖2 . (26)

Proof. By definition of the spectral norm, we have ∀x ∈ Rn:

K−K′ � λI , (27)

which implies

Q � K′ + (σ2 + λ)I

� (σ2 + λ)K′ + (σ2 + λ)I

=

(
1 +

λ

σ2

)
Q′ . (28)

where � and � denote the Loewner inequality operators. Likewise, by symmetry, we also have:

Q′ �
(

1 +
λ

σ2

)
Q . (29)

Let A , (1 + λ/σ2)Q′ and B , Q. Since A and B are symmetric and positive semidefinite, there
exist U,V with orthogonal rows and columns and diagonal matrices Σ,Σ′ for which A = UΣU>

and B = VΣ′V>. We further let A−1/2 , UΣ−1/2 and B−1/2 , VΣ′−1/2.

Then, we can rewrite Eq. (28) as:

A−B � 0

⇒ B−1/2(A−B)B−1/2 � 0

⇒ B−1/2AB−1/2 − I � 0

⇒ A−1/2B1/2(B−1/2AB−1/2)B−1/2A1/2 � A−1/2B1/2B−1/2A1/2

⇒ A1/2B−1A1/2 � I

⇒ A−1/2(A1/2B−1A1/2)A−1/2 � A−1/2A−1/2

⇒ B−1 � A−1

⇒ Q−1 � σ2

σ2 + λ
Q′−1

⇒
(

1 +
λ

σ2

)
Q−1 � Q′−1 . (30)

Again, by symmetry, we can rewrite Eq. 29 as:

Q′−1 � σ2

σ2 + λ
Q−1 �

(
1− λ

σ2 + λ

)
Q−1

�
(

1− λ

σ2

)
Q−1 . (31)

Therefore, we have ‖Q′−1‖2 = (1± λ/σ2)‖Q−1‖2 .

15

Let g(x∗) and g′(x∗) respectively denote the predictive distributions of full GP and the approximated
GP pertaining to an arbitrary test input x∗. We then state the following lemmas:

Lemma 7. Let K′ denote an approximation that is λ-close to the original kernel K. The induced
predictive mean of K′ is bounded by a factor of 1± λ/σ2 times the original predictive mean.

E[g(x∗)] =

(
1± λ

σ2

)
E[g′(x∗)] . (32)

Proof. Let k∗ , [k(x∗,xi)]
n
i=1 where xi denotes the i-th training data point. We have:

E[g(x∗)] =
1

2

(
(k∗ + y)>Q−1(k∗ + y)− k>∗ Q−1k∗ − y>Q−1y

)
=

1

2

(
1± λ

σ2

)(
(k∗ + y)>Q′

−1
(k∗ + y)− k>∗ Q′

−1
k∗ − y>Q′

−1
y
)

=

(
1± λ

σ2

)
E[g′(x∗)] , (33)

where the first and third equations follow from adding and subtracting the same terms to the expression
of g(x∗) – see Eq. (2) – while the second equation follows from applying Lemma 6 above.

Lemma 8. Let K′ denote an approximation that is λ-close to the original kernel K. The induced
predictive variance of K′ is bounded by a factor of 1± λ/σ2 of the original predictive variance up
to a constant bias of λ/σ2,

V[g(x∗)] =

(
1± λ

σ2

)
V[g′(x∗)]±

λ

σ2
. (34)

Proof. Following the definition of the Gaussian kernel, we assume that the signal of the SE (Squared
Exponential) kernel is unitary 8. As such,

V[g(x∗)] = 1− k>∗ Q−1k∗

= 1−
(

1± λ

σ2

)
k>∗ Q′

−1
k∗

=

(
1± λ

σ2

)(
1− k>∗ Q′

−1
k∗

)
± λ

σ2

=

(
1± λ

σ2

)
V[g′(x∗)] ±

λ

σ2
, (35)

where (again) the above equation follows straightforwardly from applying Lemma 6 and standard
algebraic manipulation. Lemma 7 and Lemma 8 thus provide an explicit bound on the difference
between the original and approximated predictive distributions. We will now establish another bound
on the difference between the original and approximated negative log likelihoods (i.e., the training
objectives) in Lemma 9 and Lemma 10 below.

Lemma 9. Let K′ denote an approximation that is λ-close to the original kernel K. Let Q = K+σ2I
and Q′ = K′ + σ2I. We have:

log |Q′| =
(

1± τλ,σ(K)
)

log |Q| . (36)

where the spectral constant τλ,σ(K) of K is defined below:

τλ,σ(K) ,
max

(∣∣∣ log
(
1 + λ

σ2

) ∣∣∣, ∣∣∣ log
(
1− λ

σ2

) ∣∣∣)
min

(∣∣∣ log(λmin(K) + σ2)
∣∣∣, ∣∣∣ log(λmax(K) + σ2)

∣∣∣) . (37)

8This simplifies the analysis and does not restrict the expressiveness of the kernel since we can either
normalize the output or absorb it into the length-scales (i.e., the θi).

16

Proof. Let λ1 ≤ λ2 · · · ≤ λn and λ′1 ≤ λ′2 · · · ≤ λ′n be the eigenvalues of K and K′ respectively.
Applying the Courant-Fischer theorem on the result obtained in Lemma 6, we have:

λ′i + σ2 =

(
1± λ

σ2

)(
λi + σ2

)
. (38)

This implies:

log |Q′| ≤
n∑
i=1

∣∣∣ log(λ′i + σ2)
∣∣∣ =

n∑
i=1

∣∣∣∣log(λi + σ2) + log

(
1± λ

σ2

)∣∣∣∣
≤

n∑
i=1

∣∣∣ log(λi + σ2)
∣∣∣+

n∑
i=1

max

(∣∣∣∣log

(
1 +

λ

σ2

)∣∣∣∣ , ∣∣∣∣log

(
1− λ

σ2

)∣∣∣∣)

≤
(

1 + τλ,σ(K)
) n∑
i=1

∣∣∣ log(λi + σ2)
∣∣∣ =

(
1 + τλ,σ(K)

)
log |Q| . (39)

Similarly, by symmetry, we have:

log |Q′| ≥
n∑
i=1

∣∣∣ log(λi + σ2)
∣∣∣− n∑

i=1

max

(∣∣∣∣log

(
1 +

λ

σ2

)∣∣∣∣ , ∣∣∣∣log

(
1− λ

σ2

)∣∣∣∣)

≥
(

1− τλ,σ(K)
) n∑
i=1

∣∣∣ log(λi + σ2)
∣∣∣ =

(
1− τλ,σ(K)

)
log |Q| . (40)

Together, Eq. (39) and Eq. (40) imply log |Q′| =
(

1± τλ,σ(K)
)

log |Q|.

Lemma 10. Let K′ denote an approximation that is λ-close to the original kernel K. With τλ,σ(K)
previously defined in Lemma 9, we have:

`′(Θ) =

(
1±max

(
τλ,σ(K),

λ

σ2

))
`(Θ) . (41)

where `(Θ) and `′(Θ) respectively denote the negative log likelihood of the full GP and the approxi-
mated GP evaluated at the hyper-parameters Θ = diag[θ21, θ

2
2 . . . θ

2
d] as defined previously.

Proof. We have:

`′(Θ) =
1

2
log |Q′|+ 1

2
y>Q′

−1
y

=
1

2
(1± τλ,σ(K)) log |Q|+ 1

2

(
1± λ

σ2

)
y>Q−1y

=

(
1±max

(
τλ,σ(K),

λ

σ2

))
1

2

(
log |Q|+ y>Q−1y

)
=

(
1±max

(
τλ,σ(K),

λ

σ2

))
`(Θ) . (42)

Using the result of Lemma 10 above, we can further analyze how the quality of the optimized
parameter Θ′∗ = arg maxΘ `′(Θ) of the approximated training objective compares to the true
optimizer of the original objective function Θ∗ = arg maxΘ `(Θ) in Lemma 11 below.
Lemma 11. Let Θ∗ and Θ′∗ denote the optimal hyper-parameters obtained by respectively minimiz-
ing the negative log likelihood of the full GP and the approximated GP. We have:

`′(Θ′∗) =

(
1±max

(
τλ,σ(K),

λ

σ2

))
`(Θ∗) . (43)

Proof. By Lemma 10, we have:

`′(Θ′∗) ≤ `′(Θ∗)

≤
(

1 + max

(
τλ,σ(K),

λ

σ2

))
`(Θ∗) (44)

17

and

`′(Θ′∗) ≥
(

1−max

(
τλ,σ(K),

λ

σ2

))
`(Θ′∗)

≥
(

1−max

(
τλ,σ(K),

λ

σ2

))
`(Θ∗) . (45)

Together, these results imply `′(Θ′∗) =
(
1±max

(
τλ,σ(K), λσ2

))
`(Θ∗).

Lemma 12. Let δ ∈ (0, 1) and let K′ denote an approximation of K for which ‖K −K′‖22 ≤ λ2

with probability at least 1− δ uniformly over the entire parameter space. Let Θ∗ and Θ′∗ denote the
optimal hyper-parameters obtained by respectively minimizing the negative log likelihood of the full
GP and the approximated GP. Then, with probability 1− δ, the following holds:

E[g′(x∗; Θ
′
∗)] =

(
1± ρ(λ, σ,Θ∗,Θ

′
∗)
)
· E[g(x∗; Θ∗)] + ℘(λ, σ,Θ∗,Θ

′
∗) (46)

where ρ(λ, σ,Θ∗,Θ
′
∗) and ℘(λ, σ,Θ∗,Θ

′
∗) are constant with respect to λ, σ,Θ∗,Θ′∗

Proof. We have:

E[g(x∗; Θ∗)] = k>∗ Q−1y
∣∣∣
Θ∗

=
1

2

[
(k∗ + y)>Q−1(k∗ + y)− k∗Q

−1k∗ + log |Q|
]∣∣∣∣∣

Θ∗

− 1

2
`(Θ∗)

≥ −1

2

[
`(Θ∗) + 1−

n∑
i=1

log
(
λi + σ2

)∣∣∣∣∣
Θ∗

]
(47)

On the other hand, we have:

E[g(x∗; Θ∗)] = k>∗ Q−1y

≤ 1

2

[
k>∗ Q−1k∗ + y>Q−1y

]∣∣∣∣∣
Θ∗

≤ 1

2

[
`(Θ∗) + 1−

n∑
i=1

log
(
λi + σ2

)∣∣∣∣∣
Θ∗

]
(48)

Thus, we have:

E[g(x∗; Θ∗)] = ±1

2

[
`(Θ∗) + 1−

n∑
i=1

log
(
λi + σ2

)∣∣∣∣∣
Θ∗

]
(49)

and by symmetry:

E[g′(x∗; Θ
′
∗)] = ±1

2

`′(Θ′∗) + 1−
n∑
i=1

log
(
λ′i + σ2

)∣∣∣∣∣
Θ′∗


=

(
1± ρ(λ, σ,Θ∗,Θ

′
∗)
)
· E[g(x∗; Θ∗)] + ℘(λ, σ,Θ∗,Θ

′
∗) (50)

where ℘(Θ∗,Θ
′
∗) is a constant as defined below:

ρ(λ, σ,Θ∗,Θ
′
∗) , max

(
τλ,σ(K), τλ,σ(K′),

λ

σ2

)

℘(λ, σ,Θ∗,Θ
′
∗) ,

 n∑
i=1

log
λi + σ2

∣∣∣
Θ∗

λ′i + σ2
∣∣∣
Θ′∗

± ρ(λ, σ,Θ∗,Θ
′
∗) ·

(
1−

n∑
i=1

log(λi + σ2)
∣∣∣
Θ∗

)

18

C Model Parameterization and Practical Implementation

Our embedding algorithm is based on a VAE implementation where the latent prior, posterior
and likelihood of the data generation process are represented via separate mixtures of k Gaussian
distributions over a 4-dimensional space. For the latent prior, we set (and fixed) the means of each
Gaussian component (i.e., the prior cluster means) at k equidistant points on a 4-dimensional sphere
centered at zero with an optimizable radius. For the latent posterior and likelihood, the mean and
covariance entries of each component in the mixture are parameterized as outputs of their respective
neural networks, which we refer to as Gaussian nets.

In turn, the Gaussian nets are parameterized separately. Each starts with a linear layer comprising
of 10 neurons whose outputs are fed simultaneously to two separate hidden (linear) layers with 10
hidden neurons each. Their outputs are then used to form the mean and covariance entries of the
corresponding Gaussian component. All neurons are activated by a ReLU unit, and in addition, the
(batch) outputs of the first linear layer are also standardized via a learnable 1D batch-norm layer to
ensure the stability of batch optimization. The mixing weights that combine such Gaussian nets in
the mixtures are also parameterized as the outputs of a linear layer with k = 8 neurons where k = 8
is also the number of components in our mixture.

The above parameterized latent prior, posterior, and likelihood are then connected in the variational
lower-bound (ELBO) as expressed in the first two terms of Eq. (9). This ELBO objective is then
combined with two regularization terms weighted with (manually tuned) parameters α = 8.0 and
β = 1.2 as detailed in Eq. (10). The entire function is optimized via gradient descent using the
standard Adam optimizer with the default setting implemented in PyTorch.

Once learned, the outputs of the latent posterior were used as the encoded data which were fed as
input to our revisited SSGP. For a practical implementation, we also found that additionally passing
the encoded data to the latent likelihood generates a reconfigured version of the original data which
helps to marginally improve the performance. All of our reported results below are generated with
respect to this version of reconfiguration. All of our implementations of GP, SSGP and revisited SSGP
that makes use of the output of this reconfiguration process, are also in PyTorch. Our experimental
code is released at https://github.com/hqminh/gp_sketch_nips.

D Additional Empirical Results and Visualizations

This section provides additional empirical results and visualizations that complement and corroborate
the reported results in the main text. In particular, we provide: (a) a more refined and comprehensive
visualization of how our embedding algorithm (Section 3.3) re-configures data across different
settings; and (b) an extended comparison with SSGP at different levels of sample complexity when
evaluated on middle (10K data points) and large (500K data points) data sets. All data samples used
in this section were extracted from the GAS SENSOR dataset [4]9.

D.1 The Effect of Data Re-configuration: A Visual Demonstration

This section describes an ablation study to demonstrate the effectiveness of our data re-configuration
component (i.e., to approximately meet the practical Conditions 1-3 of our refined analysis). Specifi-
cally, we demonstrate this by contrasting the scatter plots of data embeddings (see Fig. 3) before and
after reconfiguration using our algorithm in Section 3.3 below. The visualizations are shown for 3
different samples of data, each of which has 10K data points.

For each data sample, its embedding was clustered and re-clustered before and after its reconfiguration.
Both clustering processes were generated independently using K-Means to provide an objective
visual measurement of the reconfiguration effects of our algorithm.

Observing the above visual excerpts, it appears that after reconfiguration, the clusters across different
data samples all became significantly more disengtangled with a visibly increased distance between
their cluster centers. This provides conclusive evidence to the data disengtangling effect of our

9The entire GAS SENSOR dataset contains approximately 4M data points. However, in the body of this
paper we only used a sample of 500K points to conduct our experiments.

19

https://github.com/hqminh/gp_sketch_nips

(S1): Original Embedding (S2): Original Embedding (S3): Original Embedding

(S1): Reconfig. Embedding (S2): Reconfig. Embedding (S3): Reconfig. Embedding

Figure 3: Visualizations of original (top) and reconfigured (bottom) data embeddings for 3 different
(randomly selected) data samples annotated with S1, S2 and S3, respectively. Each visual excerpt is
annotated with different colors corresponding to the different clusters that the data belong to. All
visualizations are generated using T-SNE [41].

embedding algorithm. More importantly, this demonstration further reveals a practical aspect of data
that has not been investigated before in the existing literature of GP:

Data (especially experimental data) is often the manifestation of how latent concepts that un-
derlie them were observed and depending on specific parameters of the observation process,
these concepts might manifest differently in either more or less useful forms for learning. This
raises the question of whether one can reorient the observation process to increase the utility
of such data.

In this vein of thought, to address the above question, our data reconfiguration algorithm can be
considered to be one potential solution which uses a parameterized construction of a latent space to
provide a handle on how to reorient the latent concepts that underlie our data. For an intuitive example,
imagine how we would look at the outside world via a narrowed pigeonhole. With different viewing
angles, we would perceive the same scene outside differently and apparently, some angles provide a
much better perception of that scene (thus, allowing us to interpret the scene more accurately).

In technical terms, such a reorientation is implemented in our algorithm via the regularization of the
mixture composition of the latent prior while constraining the entire embedding process to have it
reflected on the latent posterior – see Eq. (10) – which was used to encode data into a latent space that
exhibits the desired separation effect. Such separation/disentanglement is then shown (empirically)
to be richer in information and can be leveraged to improve the sample complexity of SSGP (see
Section D.2), thus supporting our theoretical analysis in Appendix A.

D.2 Comparison with SSGP on Large Data

To demonstrate the effectiveness of the data disentanglement in reducing the sample complexity of
SSGP, we compare the performance of SSGP and our revisited SSGP (which was instead applied on
the reconfigured space of data) at different levels of sample complexity. All results were generated
for two different data samples extracted from GAS-SENSOR [4]. One of these (containing 500K
data points) is in fact on the same scale of the most extensive datasets used in the GP literature. All
performance plots were visualized in Fig. 4 below. For each experiment, the data sample is divided
into a train/test partition with an 8-2 ratio. All results were averaged over 5 independent runs.

We see that our revised SSGP consistently achieves better performance than its SSGP counterpart at
all complexity levels. In particular, in all cases of the 10K setting, the performance of our revised

20

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Graphs of performance comparisons between the full GP, our revised SSGP and the
traditional SSGP on a 10K sample (a-c); 500K sample (d-f) and the entire GAS SENSOR dataset
[4] totalling approximately 4M data points (g-i). In both settings, the performance differences were
plotted at p = 16, 32 and 64. Note that for the 500K sized sample and the entire dataset (which
contains 4M data points), the full GP model is not applicable due to its inability (memory- and
computation-wise) to store and invert the corresponding large covariance matrix.

SSGP is also shown to approach closely that of the full GP, which serves as a gold-standard lower-
bound on the achievable prediction error. This concludes our empirical demonstration which (we
believe) has shown that with a proper reconfiguration of data, the predictive performance of a GP can
be well-preserved at a much cheaper sample complexity as compared to the previous conservative
estimate yielded by SSGP. In fact, the performance trend of SSGP as depicted in the above graphs
shows that with more samples, it also slowly converges towards the performance level of GP and our
revised SSGP but at a much greater sample complexity – see the shrinking performance gap between
revisited SSGP and SSGP from Fig. 4d to Fig. 4e; and similarly, from Fig. 4g to Fig. 4h.

21

	Introduction
	Related Work
	Gaussian Processes (GPs)
	Sparse Spectrum Gaussian Processes

	Provable Approximation of SSGPs with Improved Sample Complexity
	Practically Improved Sample Complexity for Sparse Spectrum Gaussian Processes
	Spectral Sampling Scheme and Spectral Loss
	Practical Conditions on Data Distributions
	Main Results

	Approximation Loss for Prediction and Model Evidence
	Optimizing Feature Map Complexity
	Variational Auto-Encoders (VAEs)
	Re-configuring Data via an Augmenting Variational Auto-Encoder

	Experiments
	Conclusion
	Statement of Broader Impact
	Acknowledgement
	Intermediate Results for Theorem 2
	Intermediate Results for Theorem 3
	Model Parameterization and Practical Implementation
	Additional Empirical Results and Visualizations
	The Effect of Data Re-configuration: A Visual Demonstration
	Comparison with SSGP on Large Data

