
A Omitted Proofs

A.1 Proof of Theorem 4.1

Proof. Let IPFC a given instance of PFC(k, p), SOLPFC = (S∗PFC, φ
∗
PFC) the optimal solution of

IPFC and OPTPFC its corresponding optimal value. Also, for Cluster(k, p) and for any instance
of it, the optimal value is denoted by OPTCluster and the corresponding solution by SOLCluster =
(S∗Cluster, φ

∗
Cluster).

The proof closely follows that from Bera et al. [2019]. First running the color-blind α approx-
imation algorithm results in a set of centers S, an assignment φ, and a solution value that is at
most αOPTCluster ≤ αOPTPFC. Note that OPTCluster ≤ OPTPFC since PFC(k, p) is a more
constrained problem than Cluster(k, p). Now we establish the following lemma:

Lemma A.1. OPTFA-PFC ≤ (α+ 2) OPTPFC

Proof. The lemma is established by finding the instance satisfying the inequality. Let φ′(v) =
arg mini∈S d(i, φ∗PFC(v)), i.e. an assignment that routes the vertices from the optimal center to the
nearest center in color-blind solution S. For any point v the following holds:

d(v, φ′(v)) ≤ d(v, φ∗PFC(v)) + d(φ∗PFC(v), φ′(v))

≤ d(v, φ∗PFC(v)) + d(φ∗PFC(v), φ(v))

≤ d(v, φ∗PFC(v)) + d(v, φ∗PFC(v)) + d(v, φ(v))

= 2d(v, φ∗PFC(v)) + d(v, φ(v))

stacking the distance values in the vectors ~d(v, φ′(v)), ~d(v, φ∗PFC(v)), and ~d(v, φ(v)). By the virtue
of the fact that

(∑
v∈C x

p(v)
)1/p

is the `p-norm of the associated vector ~x and since each entry in
~d(v, φ′(v)) is non-negative, the triangular inequality for norms implies:(∑

v∈C
dp(v, φ′(v))

)1/p ≤ 2
(∑
v∈C

dp(v, φ∗PFC(v))
)1/p

+
(∑
v∈C

dp(v, φ(v))
)1/p

It remains to show that φ′ satisfies the fairness constraints 3b, for any color h` and any center i in S,
denote N(i) = {j ∈ S∗PFC| arg mini′∈S d(i′, j) = i}, then we have:∑

v∈φ′−1(i) p
h`
v

|φ′−1(i)|
=

∑
j∈N(i)

(∑
v∈φ∗−1

PFC(j) p
h`
v

)
∑
j∈N(i) |φ∗

−1
PFC(j)|

It follows by algebra and the lower and upper fairness constrain bounds satisfied by φ∗PFC:

lh`
≤ min
j∈N(i)

(∑
v∈φ∗−1

PFC(j) p
h`
v

)
|φ∗−1PFC(j)|

≤

∑
j∈N(i)

(∑
v∈φ∗−1

PFC(j) p
h`
v

)
∑
j∈N(i) |φ∗

−1
PFC(j)|

≤ max
j∈N(i)

(∑
v∈φ∗−1

PFC(j) p
h`
v

)
|φ∗−1PFC(j)|

≤ uh`

This shows that there exists an instance for FA-PFC that both satisfies the fairness constraints and
has cost ≤ 2 OPTPFC +αOPTCluster ≤ (α+ 2) OPTPFC.

Now combining the fact that we have an α approximation ratio for the color-blind problem, along
with an algorithm that achieves a γ violation to FA-PFC with a value equal to the optimal value for
FA-PFC, the proof for theorem 4.1 is complete.
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A.2 General Theorem for Lower Bounded Deterministic Fair Clustering

Before stating the theorem and proof, we introduce some definitions. Let FA-PFC-LB denote the fair
assignment problem with lower bounded cluster sizes. Specifically, in FA-PFC-LB(S, p, L) we are
given a set of clusters S and we seek to find an assignment φ : C → S so that the fairness constraints
8b are satisfied, in addition to constraint 8c for lower bounding the cluster size by at least L.

Note that although we care about the deterministic case, the statement and proof hold for the
probabilistic case. Since the deterministic case is a special case of the probabilistic, the proof follows
for the deterministic case as well.

Theorem A.1. Given an α approximation algorithm for the color blind clustering problem
Cluster(k, p) and a γ violating algorithm for the fair assignment problem with lower bounded
cluster sizes FA-PFC-LB(S, p, L), a solution with approximation ratio α+ 2 and violation at most
γ can be achieved for the deterministic fair clustering problem with lower bounded cluster size
DFCLB(k, p).

Proof. First running the color-blind α approximation algorithm results in a set of centers S, an
assignment φ, and a solution value that is at most αOPTCluster ≤ αOPTDFCLB

.

Now we establish the equivalent to lemma A.1 for this problem:

Lemma A.2. For the fair assignment problem with lower bounded cluster sizes FA-PFC-LB, we
have that OPTFA-PFC-LB ≤ (α+ 2) OPTDFCLB

Proof. The proof is very similar to the proof for lemma A.1. Letting SOL∗DFCLB
=

(S∗DFCLB
, φ∗DFCLB

) denote the optimal solution to DFCLB with optimal value OPTDFCLB
. Similarly,

define the assignment φ′(v) = arg mini∈S d(i, φ∗DFCLB
(v)), i.e. an assignment which routs vertices

from the optimal center to the closest center in the color-blind solution. By identical arguments to
those in the proof of lemma A.1, it follows that:(∑

v∈C
dp(v, φ′(v))

)1/p ≤ 2
(∑
v∈C

dp(v, φ∗DFCLB
(v))

)1/p
+
(∑
v∈C

dp(v, φ(v))
)1/p

and that:

lh`
≤
∑
v∈φ′−1(i) p

h`
v

|φ′−1(i)|
≤ uh`

What remains is to show that each cluster is lower bounded by L. Here we note that a center in S
will either be allocated the vertices of one or more centers in S∗DFCLB

or it would not be allocated
any vertices at all. If it is not allocated any vertices, then it is omitted as a center (since no vertices
are assigned to it). If vertices for a center or more are routed to it, then it will have a cluster of size∑
j∈N(i) |φ∗

−1
DFCLB

(j)| ≥ L. This follows since any center in the optimal solution to DFCLB must
satisfy the lower bound L.

Now combining the fact that we have an α approximation ratio for the color-blind problem, along
with an algorithm that achieves a γ violation to FA-PFC-LB with value equal to the optimal value
for FA-PFC-LB, the proof for theorem A.2 is complete.

A.3 Proof of the theorem 4.2 (Two-Color and Metric Membership Violation)

Proof. For a given center i, every vertex q ∈ Ci is assigned some vertices and adds value∑
j∈φ−1(i,q)Rjx

q
ij to the entire average (expected) value of cluster iwhere φ−1(i, q) refers to the sub-

set in φ−1(i) assigned to q. After the rounding,
∑
j∈φ−1(i,q)Rjx

q
ij will become

∑
j∈φ−1(i,q)Rj x̄

q
ij .

Denoting maxj∈φ−1(i,q)Rj and minj∈φ−1(i,q)Rj by Rmaxq,i and Rminq,i , respectively. The following
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bounds the maximum violation:
|Ci|∑
q=1

( ∑
j∈φ−1(i,q)

Rj x̄
q
ij

)
−
|Ci|∑
q=1

( ∑
j∈φ−1(i,q)

Rjx
q
ij

)

=

|Ci|∑
q=1

∑
j∈φ−1(i,q)

(
Rj x̄

q
ij −Rjx

q
ij

)

≤
|Ci|∑
q=1

Rmaxq,i −Rminq,i(
Rmax1,i −Rmin1,i

)
+
(
Rmax2,i −Rmin2,i

)
+
(
Rmax3,i −Rmin3,i

)
+ · · ·+

(
Rmax|Ci|,i −R

min
|Ci|,i

)
≤
(
Rmax1,i −Rmin1,i

)
+
(
Rmin1,i −Rmin2,i

)
+
(
Rmin2,i −Rmin3,i

)
+ · · ·+

(
Rmin|Ci|−1,i −R

min
|Ci|,i

)
≤ Rmax1,i −Rmin|Ci|,i

≤ R− 0 = R

where we invoked the fact that Rmaxk,i ≤ Rmink−1,i. By following the reverse logic we see that the
maximum drop is −R. For the probabilistic case, simply R = 1.

A.4 Proof of theorem 4.3 (Lower Bound on the Additive Violation for the Two Color and
Metric Membership Case)

Proof. Proof. Consider the following instance (in Figure 5) with 5 points. Points 2 and 4 are
chosen as the centers and both clusters have the same radius. The entire set has average color:
2(0)+2( 3R

4 )+R

2+2+1 =
5R
2

5 = R
2 . If the upper and lower values are set to u = l = R

2 , then the fractional

assignments for cluster 1 can be: x21 = 1, x22 = 1, x23 = 1
2 , leading to average color

3R
4 +0+R

2

1+1+ 1
2

= R
2 .

For cluster 2 we would have: x43 = 1
2 , x44 = 1, x45 = 1 and the average color is R( 3

4+
1
2 )

5
2

=
5R
4
5
2

= R
2 .

Only assignments x23 and x43 are fractional and hence will be rounded. WLOG assume that x23 = 1
and x43 = 0. It follows that the change (violation) in the assignment

∑
j rjxij for a cluster i will be

R
2 . Consider cluster 1, the resulting color is 3R

4 +R = 7R
4 , the change is | 7R4 −

5R
4 | =

R
2 . Similarly,

for cluster 2 the change is | 5R4 −
3R
4 | =

R
2 .

Figure 5: Points 2 and 4 have been selected as centers by the integer solution. Each points has its
value written next to.

A.5 Proof of Theorem 4.4

Proof. First, each cluster Ci has an amount of color h` equal to Sh`

Ci
with E[Sh`

Ci
] =

∑
v∈Ci

ph`
v

according to theorem B.2. Furthermore, since the cluster is valid it follows that: lh`
≤ E[Sh`

Ci
] ≤ uh`

.
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Define lmin = minh`∈H{lh`
} > 0, then for any δ ∈ [0, 1] by Theorem B.1 we have:

Pr(|Sh`

Ci
− E[Sh`

Ci
]| > δ E[Sh`

Ci
]) ≤ 2e

−E[Sh`
Ci

]δ2/3

≤ 2 exp(−δ
2

3

∑
v∈Ci

ph`
v ) ≤ 2 exp(−δ

2

3
Llmin)

This upper bounds the failure probability for a given cluster. For the entire set we use the union bound
and get:

Pr
({
∃i ∈ {1, . . . , k}, h` ∈ H s.t. |Sh`

Ci
− E[Sh`

Ci
]| > δ E[Sh`

Ci
]
})

≤ 2k|H| exp(−δ
2

3
Llmin) ≤ 2

n

L
|H| exp(−δ

2

3
Llmin)

≤ 2|H|n1−r exp(−δ
2

3
lminn

r)

It is clear that given r, δ, and lmin there exists a constant c such that the above is bounded by 1
nc .

Therefore, the result holds with high probability.

A.6 Proof of Theorem 4.5

Proof. First, given an instance IPFC with optimal value OPTPFC the clusters in the optimal solution
would with high probability be a valid solution for the deterministic setting, as showed in Theorem
4.4. Moreover the objective value of the solution is unchanged. Therefore, the resulting deterministic
instance would have OPTDFCLB

≤ OPTPFC. Hence, the algorithm will return a solution with cost
at most (α+ 2) OPTDFCLB

≤ (α+ 2) OPTPFC.

For the solution SOLDFCLB returned by the algorithm, each cluster is of size at least L, and the
Chernoff bound guarantees that the violation in expectation is at most ε with high probability.

B Further details on Independent Sampling and Large Cluster Solution

Here we introduce more details about independent sampling. In section B.1 we discuss the concentra-
tion bounds associated with the algorithm. In section B.2 we show that relaxing the upper and lower
bounds might be necessary for the algorithm to have a high probability of success. Finally, in section
B.3 we show that not enforcing a lower bound when solving the deterministic fair instance may lead
to invalid solutions.

B.1 Independent Sampling and the Resulting Concentration Bounds

We recall the Chernoff bound theorem for the sum of a collection of independent random variables.

Theorem B.1. Given a collection of n many binary random variables where Pr[Xj = 1] = pj
and S =

∑n
j=1Xj . Then µ = E[S] =

∑n
j=1 pj and the following concentration bound holds for

δ ∈ (0, 1):

Pr(|S − µ| > δµ) ≤ 2e−µδ
2/3 (9)

In the following theorem we show that although we do not know the true joint probability distribution
DTrue, sampling according to the marginal probability ph`

v for each point v results in the amount of
color having the same expectation for any collection of points. But furthermore, the amount of color
would have a Chernoff bound for the independently sampled case.

Theorem B.2. Let PrDTrue [X1 = x1, . . . , Xn = xn] equal the probability that (X1 =
x1, . . . , Xn = xn) where Xi is the random variable for the color of vertex i and xi ∈ H (H
being the set of colors) is a specific value for the realization and the probability is according to the
true unknown joint probability distribution DTrue. Using Xh`

i for the indicator random variable of
color h` for vertex i, then for any collection of points C, the amount of color h` in the collection is
Sh`

DTrue
=
∑
i∈C X

h`

i,DTrue
when sampling according to DTrue and it is Sh`

DIndep
=
∑
i∈C X

h`

i,DIndep

when independent sampling is done. We have that:
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• In general: PrDTrue [X1 = x1, . . . , Xn = xn] 6= PrDIndep
[X1 = x1, . . . , Xn = xn].

• Expectations agree on the of amount of color: E[Sh`

DTrue
] = E[Sh`

DIndep
].

• The amount of color has a Chernoff bound for the independently sampled case Sh`

DIndep
.

Proof. The first point follows since we simply don’t have the same probability distribution. The
second is immediate from the linearity of expectations and the fact that both distributions agree in the
marginal probabilities (PrDTrue [Xi = h`] = PrDIndep

[Xi = h`] = ph`
i ):

E[Sh`

DIndep
] =E

[∑
i∈C

Xh`

i,DIndep

]
=
∑
i∈C

E
[
Xh`

i,DIndep

]
=
∑
i∈C

ph`
i =

∑
i∈C

E
[
Xh`

i,DTrue

]
= E[Sh`

DTrue
]

The last point follows from the fact that Sh`

DIndep
is a sum of independent random variables and

therefore the Chernoff bound has to hold (B.1).

B.2 Relaxing the Upper and Lower Bounds

Suppose for an instance IPFC of probabilistic fair clustering that there exists a color h` for which
the the upper and lower proportion bounds are equal, i.e. lh`

= uh`
. Suppose the optimal solution

SOLPFC = (S∗PFC, φ
∗
PFC), has a cluster Ci which we assume can be made arbitrarily away than the

other points. The Chernoff bound guaranteed by independent sampling would not be useful since the
realization has to precisely equal the expectation, not be within a δ of the expectation. In this case
sampling will not result in cluster Ci having a balanced color and therefore the points in Ci would
have to merged with other points (if possible, since the entire instance maybe infeasible) to have a
cluster with balance equal to lh`

and uh`
for color h`. Since we assumed cluster Ci can be made

arbitrarily far away the cost of deterministic instance generated can be arbitrarily worse.

Note, that we do not really need lh`
= uh`

. Similar arguments can be applied if lh`
6= uh`

, by
assuming the that optimal solution has a cluster Ci (which is arbitrarily far away) whose balance
either precisely equals lh`

or uh`
. Simply note that with independent sampling would result in

violation to the bounds for cluster Ci.

Therefore, in the worst case relaxing the bounds is necessary to make sure that a valid solution would
remain valid w.h.p. in the deterministic instance generated by independent sampling.

B.3 Independent Sampling without Lower Bounded Cluster Sizes Could Generate Invalid
Solutions

To show that enforcing a lower bound on the cluster size is necessary, consider the case shown in
figure 6:(a) where the outlier points in the top-right have probability 0.45 of being white, whereas the
other points have probability 1 of being white. Let the lower and upper bounds for the white color be
lwhite = 0.6 and uwhite = 1, respectively. Since the outlier points don’t have the right color balance,
they are merged with the other points, although that leads to a higher cost.

However, independent sampling would result in the outlier points being white with probability
(0.45)(0.45) ' 0.2. This makes the points have the right color balance and therefore the optimal
solution for deterministic fair clustering would have these points merged as shown in figure 6:(b).
However, the cluster for the two outlier points is not a valid cluster for the probabilistic fair clustering
instance

Therefore, forcing a lower bound is necessary to make sure that a solution found in deterministic
fair clustering instance generated by independent sampling is w.h.p. valid for the probabilistic fair
clustering instance.

18



Figure 6: (a): The two outlier points at the top-right have probabilities 0.45 of being white, whereas
the rest have probabilities 1. All points are merged together to form a balanced cluster. (b): An
instance of same points with the colors resulting from independent sampling. The two outlier points
have been merged to form their own cluster.

C Example on Forming the Network Flow Graph for the Two-Color (Metric
Membership) Case

Suppose we have two centers and 5 vertices and that the LP solution yields the following assignments
for center 1: x11 = 0.3, x12 = 0.6, x13 = 0.7, x14 = 0, x15 = 1.0 and the following assignments
for center 2: x21 = 0.7, x22 = 0.4, x23 = 0.3, x24 = 1.0, x25 = 0. Further let the probability values
be: p1 = 0.7, p2 = 0.8, p3 = 0.4, p4 = 0.9, p5 = 0.1. The following explains how the network flow
graph is constructed.

Cluster 1: First we calculate |C1| =
⌈∑

j∈C x1j

⌉
= d2.6e = 3, this means the we will have 3

vertices in C1. The collection of vertices having non-zero assignments to center 1 are {1, 2, 3, 5},
sorting the vertices by a non-increasing order according to their probability we get ~A1 = [2, 1, 3, 5].
Now we follow algorithm 1, this leads to the graph shown in figure 7.

2

1

3

5

c11

c21

c31

0.6

0.3

0.1 0.6

0.4
0.6

Figure 7: Graph constructed in cluster 1. For clarity, we write above each edge the assignment is
"sends" to the vertex in C1. Notice how each vertex in C1 receives a total assignment of 1, except for
the last vertex c31.

Cluster 2: We follow the same procedure for cluster 2. First we calculate |C2| =
⌈∑

j∈C x1j

⌉
=

d2.4e = 3, this means the we will have 3 vertices in C2. The collection of vertices having non-zero
assignments to center 2 are {1, 2, 3, 4}, sorting the vertices by a non-increasing order according to
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their probability we get ~A2 = [4, 2, 1, 3]. Now we follow algorithm 1, this leads to the graph shown
in figure 8 Now we construct the entire graph by connecting the edges from each vertex in C1 to the

4

2

1

3

c12

c22

c32

1.0

0.4

0.6

0.1
0.3

Figure 8: Graph constructed in cluster 2. For clarity, we write above each edge the assignment is
"sends" to the vertex in C2. Notice how each vertex in C2 receives a total assignment of 1, except for
the last vertex c32.

vertex for center 1 and each vertex in C2 to the vertex for center 2. Finally, we connect the vertices
for 1 and 2 to the vertex t. This leads to the graph in figure 9. Note that the edge weights showing the
sent assignment are not put as they have no significance once the graph is constructed.

The entire graph is constructed by the union of both subgraphs for clusters 1 and 2, but without
repeating the vertices of C. Further, we drop the wedge weights which designated the amount of LP
assignment sent, as it has no affect on the following steps. Finally, the vertices of both C1 and C2

are connected to their centers 1 and 2 in S, respectively, and the centers themsevles are connected to
vertex t. Figure 9 shows the final constructed graph.

For the case of metric membership the procedure is unaltered, but instead of sorting according to the
probability value pv for a vertex, we sort according to the value rv .

2

1

3

5

4

c11

c21

c31

c12

c22

c32

1

2

t

Figure 9: Diagram for the final network flow graph.

D Dependent Rounding for Multiple Colors under a Large Cluster
Assumption

Here we discuss a dependent rounding based solution for the k-center problem under the large cluster
assumption 4.1. First we start with a brief review/introduction of dependent rounding.
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D.1 Brief Summary of Dependent Rounding

Here we summarize the properties of dependent rounding, see Gandhi et al. [2006] for full details.
Given a bipartite graph (G = (A,B), E) each edge (i, j) ∈ E has a value 0 ≤ xij ≤ 1 which
will be rounded to Xij ∈ {0, 1}. Further for every vertex v ∈ A ∪ B define the fractional degree
as dv =

∑
u:(v,u)∈E xvu and the integral degree as Dv =

∑
u:(v,u)∈E Xvu. Dependent rounding

satisfies the following properties:

1. Pr[Xij = 1] = xij .

2. ∀v ∈ A ∪B : Dv ∈ {bdvc , ddve}

3. ∀v ∈ A ∪B, let Ev denote any subset of edges incident on v, then Pr[
∧
ev∈Ev

Xev = b] ≤
Πev∈Ev Pr[Xev = b] where b ∈ {0, 1}.

We note that property 3 implies the following theorem about the variables Xij (see theorem 3.1 in
Gandhi et al. [2006]):

Theorem D.1. Let a1, . . . , at be reals in [0, 1], and X1, . . . , Xt be random variables taking values
in {0, 1}, and E[

∑
i aiXi] = µ. If Pr[

∧
i∈S Xi = b] ≤ Πi∈S Pr[Xi = b] where S is any subset of

indices from {1, . . . , t} and b ∈ {0, 1}, then we have for δ ∈ (0, 1):

Pr
[
|
∑
i

aiXi − µ| ≥ δµ
]
≤ 2e−µδ

2/3

D.2 Multiple Color Large Cluster solution using Dependent Rounding

For the multiple color k-center problem satisfying assumption 4.1. Form the following bipartite graph
(G = (A,B), E), A has all vertices of of C , and B has all of the vertices of S (the cluster centers).
Further the fractional assignments xij represent the weight of the edge, ∀(i, j) ∈ E. Applying
dependent rounding leads to the following theorem:

Theorem D.2. Under assumption 4.1, the integer solution resulting from dependent rounding for the
multi-color probabilistic k-center problem has: (1) An approximation ratio of α + 2. (2) For any
color h` and any cluster i ∈ S, the amount of color Sh`

Ci
=
∑
j∈C p

h`
j Xij is concentrated around the

LP assigned color
∑
j∈C p

h`
j xij .

Proof. For (1): Note that the approximation ratio before applying dependent rounding is α+ 2. By
property 1 of dependent rounding if xij = 0, then Pr[Xij = 1] = 0 and therefore a point will not be
assigned to a center it was not already assigned to by the LP.

For (2): Again by property 1 of dependent rounding EDR[Xij ] = (1)xij +0 = xij where EDR refers
to the expectation with respect to the randomness of dependent rounding, therefore for any cluster
i the expected amount of color equals the amount of color assigned by the LP, i.e. EDR[Sh`

Ci
] =

EDR[
∑
j∈C p

h`
j Xij ] =

∑
j∈C p

h`
j EDR[Xij ] =

∑
j∈C p

h`
j xij . It follows by property 3 of dependent

rounding and theorem D.1 that Sh`

Ci
is highly concentrated around EDR[Sh`

Ci
]. Specifically :

Pr
[
|Sh`

Ci
− EDR[Sh`

Ci
]| ≥ δ EDR[Sh`

Ci
]
]
≤ 2e

−EDR[S
h`
Ci

]δ2/3

Similar to the proof of 4.4, the probability of failure can be upper bounded by:

Pr
({
∃i ∈ {1, . . . , k}, h` ∈ H ||Sh`

Ci
− E[Sh`

Ci
]| > δ E[Sh`

Ci
]
})

≤ 2k|H| exp(−δ
2

3
Llmin) ≤ 2

n

L
|H| exp(−δ

2

3
Llmin)

≤ 2|H|n1−r exp(−δ
2

3
lminn

r)

Therefore w.h.p the returned integral solution will be concentrated around the LP color assignments
which are fair.
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E Further details on solving the lower bounded fair clustering problem

The solution for the lower bounded deterministic fair clustering problem, follows a similar two
step solution framework. Step (1) is unchanged and simply amounts to running a color-blind
approximation algorithm with ratio α. Step (2) sets up an LP similar to that in section 4.1.2. The
constraints in 7c still remain but with deterministic (not probabilistic) color assignments, further a
new constraint lower bounding the cluster size is added. Specifically, we have the following LP:

min
∑

v∈C,i∈S
dp(v, i) s.t.

lh`

∑
v∈C

xij ≤
∑

v∈C:χ(v)=h`

xij ,∀i ∈ S, ∀h` ∈ H (10)

∑
v∈C:χ(v)=h`

xij ≤ uh`

∑
v∈C

xij ,∀i ∈ S, ∀h` ∈ H (11)

∑
j∈C

xij ≥ L , ∀i ∈ S (12)

∑
j∈C

xij = 1 ,∀j ∈ C

0 ≤ xij ≤ 1 ,∀i ∈ S,∀j ∈ C

Constraints 10 and 11 are the deterministic counterparts to constraints 7c, respectively. Constraint 12
is introduced to lower bound the cluster size. The resulting solution will have an approximation ratio
of α+ 2 (see A.2).

What remains is to round the solution. We apply the network flow rounding from Bercea et al. [2018]
(specifically section 2.2 in Bercea et al. [2018]). This results in a violation of at most 1 in the cluster
size and a violation of at most 1 per color in any give cluster (lemma 8 in Bercea et al. [2018]).

F Further Experimental Details and Results

F.1 Further Experiments for the two color case

How does labeling accuracy level pacc impact this problem? Fig. 10 shows pacc vs POF for δ = 0.2
and δ = 0.1. At pacc = 1

2 , color assignments are completely random and the cost is, as expected,
identical to color-blind cost. As pacc increases, the colors of the vertices become more differentiated,
causing POF to increase, eventually reaching the maximum at pacc = 1 which is the deterministic
case.

Figure 10: Plot showing pacc vs POF, (a):δ = 0.2 and (b):δ = 0.1.

22



Next, we test against an “obvious” strategy when faced with probabilistic color labels: simply
threshold the probability values, and then run a deterministic fair clustering algorithm. Fig. 11(a)
shows that this may indeed work for guaranteeing fairness, as the proportions may be satisfied with
small violations; however, it comes at the expense of a much higher POF. Fig. 11(b) supports this
latter statement: our algorithm can achieve the same violations with smaller POF. Further, running a
deterministic algorithm over the thresholded instance may result in an infeasible problem.3

Figure 11: Comparing our algorithm to thresholding followed by deterministic fair clustering:
(a)maximum violation, (b) POF.

F.2 Further Details about the Datasets and the Experimental Setup

For each dataset, the numeric features are used as coordinates and the distance between points is
equal to Euclidean distance. The numeric features are normalized prior to clustering.

For metric membership in the Adult dataset, age is not used as a coordinate despite the fact that it is
numeric since it is the fairness attribute. Similarly, for the CreditCard dataset, credit is not used as a
coordinate.

When solving the min-cost flow problem, distances are first multiplied by a large number (1000)
and then rounded to integer values. After obtaining the solution for the flow problem, the cost is
calculated with the original distance values (which have not been rounded) to verify that the cost is
not worse.

Although run-time is not a main concern in this paper. We find that we can solve large instances
containing 100,000 points for the k-means with 5 clusters in less than 4 minutes using our commodity
hardware.

F.3 Further Experiments

Here we verify the performance of our algorithm on the k-center and the k-median objectives. All
datasets have been sub-sampled to 1,000 data points. For the two color probabilistic case, throughout
we set pacc = 0.9 (see section 5.2 for the definition of pacc).

F.3.1 k-center

As can be seen from figure 12 our violations are indeed less than 1 matching the theoretical guarantee.
Similarly, for metric membership the normalized violation is less than 1 as well, see figure 13.

3An intuitive example of infeasibility: consider the two color case where pv = 1
2
+ ε, ∀ v ∈ C for some

small positive ε. Thresholding drastically changes the overall probability to 1; therefore no subset of points
would have proportion around 1

2
+ ε.
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Figure 12: k-center for the two color probabilistic case using the Bank dataset. (a): number of
clusters vs maximum violation, (b): number of clusters vs POF.

Figure 13: k-center for the metric membership problem using the Adult dataset (metric membership
over age). (a): number of clusters vs normalized maximum violation, (b): number of clusters vs POF.

F.3.2 k-median

Similar observations apply to the k-median problems. That is, our algorithm indeed leads to small
violations not exceeding 1 in keeping with the theory. See figure 14 for the two color probabilistic
case and figure 15 for the metric membership case.

F.3.3 Further Experiments on the Census1990 Dataset with the Large Cluster Assumption

We ran the large cluster experiment on Census1990 dataset the for different values of k; Fig. 16
shows a reasonable (and expected) degradation in quality.
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Figure 14: k-median for the two color probabilistic case using the Bank dataset. (a): number of
clusters vs maximum violation, (b): number of clusters vs POF.

Figure 15: k-median for the metric membership problem using the CreditCard dataset (metric
membership over credit) (a): number of clusters vs normalized maximum violation, (b): number of
clusters vs POF.

Figure 16: Results on the Census1990 dataset for different values of k. We see a reasonable
degradation in the violation (a) and POF (b) for larger values of k.
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