A Appendix

A.1 Training procedure for the LIDC and BraTS datasets.

For the LIDC dataset, all methods were trained using the same configuration and hyper-parameters as
in [9]]. The models were trained for 500000 iterations using the Adam optimiser [45] with a learning
rate of 0.001 and a batch size of 12. The images were randomly augmented through flipping, rotating,
and scaling.

For the BraTS dataset, we split the data into training, validation and test sets (60/10/30%) and trained
the models for 1200 epochs. At each epoch, we randomly sampled 50 images and extracted 20 patches
from each image. We randomly sampled the patches centred around a lesion or background voxel
with equal probability. We used the RMSProp optimiser [46] with momentum 0.6 and a learning rate
of le-3 which we halved at the following epochs: 440, 640, 800, 900, 980, 1050. For augmentation,
we used random elastic deformations, right-angle rotations, flips and linear intensity transformations.
We used a batch size of 10, except for the 60 mm? model where we used a batch size of 4 due to GPU
memory constraints.

A.2 Evaluation details.

To calculate the distance between two label maps we used d = 1 — IoU(+, -). To calculate the IoU in
a multi-class setting, we averaged over the IoU of the individual classes, excluding the background
class. If both label maps are empty d = 0. The D.SC (which is equivalent to the F1-score) reported
in our work is lower than the results reported in PHiSeg [9]. The authors used a convention where the
DSC'is 1.0 if both the predicted and ground-truth slices are empty. We argue that this choice skews
results since an algorithm that always predicts an empty label map would achieve an average DSC
equal to the fraction of empty slices in the dataset, e.g. if the dataset has 40% of empty slices the
average DSC'is also 40%. In contrast, we used the standard definition of D.SC, where these cases
are undefined and thus excluded from the calculation of the average D.SC'. This changes the range of
the numbers we report but not the underlying performance. When we calculated the D SC' using the
convention used in previous literature, we observed the baseline models performance to match that of
what was previously reported in [9]]. To calculate uncertainty maps, we used the marginal entropy of
the categorical distributions predicted for each voxel ::
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A.3 Rank ablation study

Intuitively, the rank of the multivariate normal distribution controls the number of independent
clusters of pixels that are controlled together, thus, limiting the maximum possible sample complexity.
In this section, we provide an ablation study of how the rank of the multivariate normal distribution
impacts the performance metrics on the BraTS dataset using models trained on 110 mm image
patches. Figure shows the sample diversity, generalised energy distance and average class DSC'
for different six rank values: rank € [1,2,5,10,15,20]. The results are shown as the mean and
standard error over five random seeds, that is 6 x 5 = 30 total training runs. We observe that as
long as the rank is greater than one, there seems to be no clear relation between the rank and the
performance metrics. From Figure[A2] we see that increasing the rank increases the visual sample
complexity, with more intricate structures appearing. Even though we haven’t quantified sample
complexity, we speculate that the increase in sample complexity does not improve performance
because the structure of the aleatoric uncertainty in this dataset is very simple. This property is
dataset-specific, which should be taken into account when choosing the rank for a new dataset.

A4 Extra figures for the BraTS dataset
Figure[A3|compares sampling from the independent categorical distributions of a deterministic model

with sampling from the proposed model. Notice the grainy label noise for the deterministic model.
Figures [Ad]-[A7]show additional random samples for the stochastic model for multiple test cases.
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Figure Al: Impact of rank on different performance metrics for the BraTS dataset. Results are shown
as mean and standard error over five random seeds.
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Figure A2: Visual impact of rank on samples for one case. Each row represents a model with
different rank, and each column a different sample. Rank is increasing from top to bottom: rank €
[1,2,5,10,15,20].

Figure A3: Sampling from the independent categorical distributions (top) versus the proposed model
(bottom). From left to right: Tlce slice; ground-truth; marginal entropy; five random samples.
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