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Abstract

We consider the identifiability theory of probabilistic models and establish sufficient
conditions under which the representations learned by a very broad family of
conditional energy-based models are unique in function space, up to a simple
transformation. In our model family, the energy function is the dot-product between
two feature extractors, one for the dependent variable, and one for the conditioning
variable. We show that under mild conditions, the features are unique up to scaling
and permutation. Our results extend recent developments in nonlinear ICA, and
in fact, they lead to an important generalization of ICA models. In particular,
we show that our model can be used for the estimation of the components in
the framework of Independently Modulated Component Analysis (IMCA), a new
generalization of nonlinear ICA that relaxes the independence assumption. A
thorough empirical study shows that representations learned by our model from
real-world image datasets are identifiable, and improve performance in transfer
learning and semi-supervised learning tasks.

1 Introduction

A central question in unsupervised deep learning is how to learn nonlinear representations that
are a faithful reconstruction of the true latent variables behind the data. This allows us to learn
representations that are semantically meaningful, interpretable and useful for downstream tasks.
Identifiability is fundamental for meaningful and principled disentanglement, and in applications
such as causal discovery. However, this is a very difficult task: by definition, we never observe
the latent variables; the only information directly available to us is given by the observed variables.
Learning the true representations is only possible when the representation is identifiable: if, in the
limit of infinite data, only a single representation function can fit the data. Conversely, if, in the limit
of infinite data, multiple representation functions can fit the data, then the true representation function
is unidentifiable.

Until recently (Hyvärinen and Morioka, 2016, 2017), results relating to identifiability of (explicit and
implicit) latent variable models were mainly constrained to linear models (e.g., as in linear ICA), as it
was acknowledged that the flexibility of nonlinear mappings could yield arbitrary latent variables
which fulfill model assumptions such as independence (Hyvärinen and Pajunen, 1999). However, it
is now understood that nonlinear deep latent variable models can be identifiable provided we observe
some additional auxiliary variables such that the latent variables are conditionally independent given
the auxiliary variable. The approach was introduced using self-supervised learning by Hyvärinen
et al. (2019), and Khemakhem et al. (2020) explicited a connection between nonlinear ICA and the
framework of variational autoencoders. It was shortly followed by work by Sorrenson et al. (2020),
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where a similar connection was made to flow-based models (Rezende and Mohamed, 2015). This
signals the importance of identifiability in popular deep generative models.

We extend this trend to a broad family of (unnormalized) conditional energy-based models (EBM),
using insight from the nonlinear ICA theory. EBMs offer unparalleled flexibility, mainly because
they do not require the modeled densities to be normalized nor easy to sample from. In fact, the
energy model we suggest will have universal approximation capabilities. The energy function we will
consider is defined in two steps: we learn two feature extractors, parameterized by neural networks,
one for each of the observed variables (dependent and conditioning); then, we set the energy function
to be the dot-product of the learned features. The modeled conditional densities are defined to be the
exponential of the negative energy function.

A first important contribution of this paper is to provide a set of sufficient mild conditions to be satisfied
by the feature extractors, which would guarantee their identifiability: they learn representations that
are unique up to a linear transformation. In addition, by slightly altering the definition of the
energy function, we prove the linear transformation is essentially a permutation. These conditions are
functional, i.e. they abstract away the architecture of the networks. As a concrete example, we provide
a neural network architecture based on fully connected layers, for which the functional conditions
hold, and is thus identifiable. Moreover, we do not make any assumptions on the distributions of the
learned representations. Effectively, this makes our family of models very flexible and adaptable
to practical problems. We call this model Identifiable Conditional Energy-Based deep Models, or
ICE-BeeM for short.

Our second contribution is to develop a framework we call Independently Modulated Component
Analysis (IMCA): a deep latent variable model where the latents are non-independent (thus gen-
eralizing nonlinear ICA), with an arbitrary global dependency structure. Nonlinear ICA research
has formalized the trade-off between expressivity of the mapping between latents to observations
(from linear to nonlinear) and distributional assumptions over latent variables (from independent to
conditionally independent given auxiliary variables). However, the need for (conditional) indepen-
dence in order to obtain identifiability results may sometimes be seen as a limitation, for example
in the context of learning disentangled representations. Therefore, it would be important to relax
the assumption of independence while maintaining identifiability. This was achieved before in the
linear case (Monti and Hyvärinen, 2018; Hyvärinen and Hurri, 2004), and we show how it may be
achieved in the nonlinear setting. We show how our ICE-BeeM can estimate this generative model,
thus connecting both the generative and non-generative views.

Finally, we show empirically that ICE-BeeM learns identifiable representations from real-world
image datasets. As a further, rather different application of our results, we show how identifiability of
ICE-BeeM can be leveraged for transfer learning and semi-supervised learning. In fact, we believe
that the identifiability results are generally important for principled application of EBMs, whether for
the purposes of disentanglement or otherwise.

2 Identifiable conditional energy-based deep models

In this section, we define ICE-BeeM , and study its properties. All proofs can be found in Appendix C.

2.1 Model definition

We collect a dataset of observations of tuples (x,y), where x ∈ X ⊂ Rdx is the main variable of
interest, also called the dependent variable, and y ∈ Y ⊂ Rdy is an auxiliary variable also called the
conditioning variable.

Consider two feature extractors fθ(x) ∈ Rdz and gθ(y) ∈ Rdz , which we parameterize by neural
networks, and θ is the vector of weights and biases. To alleviate notations, we will drop θ when it’s
clear which quantities we refer to. These feature extractors are used to define the conditional energy
function Eθ(x|y) = fθ(x)Tgθ(y).

The parameter θ lives in the space Θ which is defined such that the normalizing constant Z(y;θ) =∫
X exp(−Eθ(x|y))dx <∞ is finite. Our family of conditional energy-based models has the form:

pθ(x|y) =
exp(−fθ(x)Tgθ(y))

Z(y;θ)
(1)
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As we will see later, this choice of energy function is not restrictive, as our model has powerful
theoretical guarantees: universal approximation capabilities and strong identifiability properties.
There exists a multitude of methods we can use to estimate this model (Hyvärinen, 2005; Gutmann
and Hyvärinen, 2010; Ceylan and Gutmann, 2018; Uehara et al., 2020). In this work, we will use
Flow Contrastive Estimation (Gao et al., 2019) and Denoising Score Matching (Vincent, 2011), which
are discussed and extended to the conditional case in Appendix B.

2.2 Identifiability

As stated earlier, we want our model to learn meaningful representations of the dependent and
conditioning variables. In particular, when learning two different models of the family (1) from the
same dataset, we want the learned features to be very similar.

This similarity between representations is better expressed as equivalence relations on the parameters
θ of the network, which would characterize the form of identifiability we will end up with for our
energy model. This notion of identifiability up to equivalence class was introduced by Khemakhem
et al. (2020) to address the fact that there typically exist many choices of neural network parameters
θ that map to the same point in function-space. In our case, it is given by the following definitions:
Definition 1 (Weak identifiability). Let ∼f

w and ∼g
w be equivalence relations on Θ defined as:

θ ∼f
w θ′ ⇔ ∀x, fθ(x) = Afθ′(x) + c

θ ∼g
w θ′ ⇔ ∀x,gθ(y) = Bgθ′(y) + e

(2)

where A and B are (dz × dz)-matrices of rank at least min(dz, dx) and min(dz, dy) respectively,
and c and e are vectors.
Definition 2 (Strong identifiability). Let ∼f

s and ∼g
s be the equivalence relations on Θ defined as:

θ ∼f
s θ
′ ⇔ ∀i,∀x, fi,θ(x) = aifσ(i),θ′(x) + ci

θ ∼g
s θ′ ⇔ ∀i,∀x, gi,θ(x) = bigγ(i),θ′(x) + ei

(3)

where σ and γ are permutations of [[1, n]], ai and bi are non-zero scalars and ci and ei are scalars.

Two parameters are thus considered equivalent if they parameterize two feature extractors that are
equal up to a linear transformation (2) or a scaled permutation (3). The subscripts w and s stand for
weak and strong, respectively. Special cases are discussed in Appendix C.1.

Identifiability in the context of probability densities modeled by neural networks can be seen as
a study of degeneracy of the networks. In applications where the representations are used in a
downstream classification task, the weak identifiability (2) may be enough. It guarantees that the
hyperplanes defining the boundaries between classes in the feature space are consistent, up to a global
rotation, and thus the downstream task may be unaffected. Strong identifiability (3), on the other
hand, is crucial in applications where such rotation is undesirable. For example, Monti et al. (2019)
propose an algorithm for causal discovery based on independence tests between the observations and
latent variables learnt by solving a nonlinear ICA task. The tested independences only hold for the
true latent noise variables. Were one to learn the latents only up to a rotation, such causal analysis
method would not work at all.

2.2.1 Weak identifiability

This initial form of identifiability requires very few assumptions on the feature extractors f and g. In
fact, the conditions we develop here are easy to satisfy in practice, and we will see how in Section 2.3.
Most importantly, our result also covers the case where the number of features is larger than the
number of observed variables. As far as we know, this is the first identifiability result that extends to
overcomplete representations in the nonlinear setting. The following theorem summarizes the main
result. Intuition behind the conditions, as well as a proof under milder assumptions, can be found in
Appendix C.2.
Theorem 1. Let ∼f

w and ∼g
w be the equivalence relations in (2). Assume that for any choice of

parameter θ:

1. The feature extractor fθ is differentiable, and its Jacobian Jfθ is full rank.1

1Its rank is equal to its smaller dimension.
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2. There exist dz + 1 points y0, . . . ,ydz such that the matrix Rθ =(
gθ(y1)− gθ(y0), . . . ,gθ(ydz )− gθ(y0)

)
of size dz × dz is invertible.

then pθ(x|y) = pθ′(x|y) =⇒ θ ∼f
w θ′.

With fθ and gθ switched, the same conclusion applies to gθ: pθ(x|y) = pθ′(x|y) =⇒ θ ∼g
w θ′.

Finally, if both assumptions 1 and 2 are satisfied by both feature extractors fθ and gθ, then the
matrices A and B in (2) have full row rank equal to dz .

2.2.2 Strong identifiability

We propose two different alterations to our energy function which will both allow for the stronger
form of identifiability defined by ∼f

s and ∼g
s in (3). We will focus on f , but the same results hold for

g by a simple transposition of assumptions. Importantly, we will suppose that the output dimension
dz is smaller than the input dimension dx.

The first is based on restricting the feature extractor f to be non-negative. It will induce constraints
on the matrix A defining the equivalence relation ∼f

w: loosely speaking, if A induces a rotation in
space, then it will violate the non-negativity constraint, since the only rotation that maps the positive
orthant of the plan to itself is the identity.

The second alteration is based on augmenting f by its square, effectively resulting in the 2dz-
dimensional feature extractor f̃(x) = (. . . , fi(x), f2

i (x), . . . ) ∈ R2dz . This augmented feature map
is combined with a 2dz-dimensional feature map g̃(y) ∈ R2dz for the conditioning variable y, to
define an augmented energy function Ẽ(x|y) = f̃(x)T g̃(y). The advantage of this approach is that
it doesn’t require the feature extractors to be positive. However, it makes the effective size of the
feature extractor equal to 2dz .

Identifiability results derived from these two alterations are summarized by the following theorem.
Theorem 2. Assume that dz ≤ dx and that the assumptions of Theorem 1 hold. Further assume that,
for any choice of parameter θ, either one of the following conditions hold:

3. The feature extractor fθ is surjective, and its image is Rdx+ .

4. The feature extractor fθ is differentiable and surjective, its Jacobian Jfθ is full
rank; there exist 2dz + 1 points y0, . . . ,y2dz such that the matrix R̃θ =(
g̃θ(y1)− g̃θ(y0), . . . , g̃θ(y2dz )− g̃θ(y0)

)
of size 2dz × 2dz is invertible; and we use

the augmented energy function Ẽ(x|y) in the definition of the model.

Then pθ(x|y) = pθ′(x|y) =⇒ θ ∼f
s θ
′ where ∼f

s is defined in (3).

A more general form of the Theorem is provided in Appendix C.5. This theorem is fundamental as it
proves very strong identifiability results for a conditional deep energy-based model. As far as we
know, our results require the least amount of assumptions in recent theoretical work for functional
identifiability of deep learning models (Khemakhem et al., 2020; Sorrenson et al., 2020). Most
importantly, we do not make any assumption on the distribution of the latent features.

2.3 An identifiable neural network architecture

In this section, we give a concrete example of a neural network architecture that satisfies the functional
assumptions of Theorem 1. We suppose that each of the networks f and g are parameterized as
multi-layer perceptrons (MLP). More specifically, consider an MLP with L layers, where each layer
consists of a linear mapping with weight matrix Wl ∈ Rdl×dl−1 and bias bl ∈ Rdl , followed by an
activation function hl. Consider the following architecture:

(a.) The activation functions hl are LeakyReLUs, ∀l ∈ [[1, L− 1]].2

(b.) The weight matrices Wl are full rank (its rank is equal to its smaller dimension), ∀l ∈ [[1, L]].
(c.) The row dimension of the weight matrices are either monotonically increasing or decreasing:

dl ≥ dl+1,∀l ∈ [[0, L− 1]] or dl ≤ dl+1,∀l ∈ [[0, L− 1]].
2A LeakyReLU has the form hl(x) = max(0, x) + αmin(0, x), α ∈ (0, 1).
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(d.) All submatrices of Wl of size dl × dl are invertible if dl < dl+1, ∀l ∈ [[0, L− 1]].

This architecture satisfies the assumptions of Theorems 1 and 2, as is stated by the propositions below.
Proposition 1. Consider an MLP f whose architecture satisfies assumptions (a.), (b.) and (c.), then
f satisfies Assumption 1. If in addition, dL ≤ d0, then f satisfies Assumption 4. Finally, if on top of
that, we apply a ReLU to the output of the network, then f satisfies Assumption 3.
Proposition 2. Consider a nonlinear MLP g whose architecture satisfies assumptions (a.), (b.),
and (d.).3 Then, g satisfies Assumptions 2 and 4.

While assumptions (a.)-(d.) might seem a bit restrictive, they serve the important goal of giving
sufficient architectural conditions that correspond to the purely functional assumptions of Theorems 1
and 2. Note that the full rank assumptions are necessary to ensure that the learnt representations are
not degenerate, since we lose information with low rank matrices. In practice, random initialization
of floating point parameters, which are then optimized with stochastic updates (SGD), will result in
weight matrices that are almost certainly full rank.

2.4 Universal approximation capability

With such a potentially overcomplete network, we can further achieve universal approximation of
the data distribution. It might initially seem that this is an impossible endeavor given the somehow
restricted form of the energy function. However, if we also consider the dimension dz of f and g as
an additional architectural parameter that we can change at will, then we can always find an arbitrarily
good approximation of the conditional probability density function:
Theorem 3. Let p(x|y) be a conditional probability density. Assume that X and Y are compact
Hausdorff spaces, and that p(x|y) > 0 almost surely ∀(x,y) ∈ X × Y . Then for each ε >
0, there exists (θ, dz) ∈ Θ × N, where dz is the dimension of the feature extractor, such that
sup(x,y)∈X×Y |pθ(x|y)− p(x|y)| < ε.

This means that our model is capable of approximating any conditional distribution that is positive on
its compact support arbitrarily well. In practice, the optimal dimension dz of the feature extractors
can be estimated using cross-validation for instance. It is possible that to achieve a near perfect
approximation, we require a value of dz that is larger than the dimension of the input. This is why it
is crucial that our identifiability result from Theorem 1 covers the overcomplete case as well, and
highlights the importance of our contribution in comparison to previous identifiable deep models.

3 Independently modulated component analysis

Next, we show how ICE-BeeM relates to a generative, latent variable model. We develop here a novel
framework that generalizes nonlinear ICA to non-independent latent variables, and show how we can
use our energy model to estimate them.

Model definition Assume we observe a random variable x ∈ Rdx as a result of a nonlinear
transformation h of a latent variable z ∈ Rdz . We assume the distribution of z is conditioned on an
auxiliary variable y ∈ Rdy , which is also observed:

z ∼ p(z|y) , x = h(z) (4)

We will suppose here that dx = dz = d. The proofs, as well as an extension to dz < dx, can be found
in Appendix D. The main modeling assumption we make on the latent variable is that its density has
the following form:

p(z|y) = µ(z)e
∑dz
i=1 Ti(zi)

Tλi(y)−Γ(y) (5)
where µ(z) is a base measure and Γ(y) is the conditional normalizing constant. Crucially, the
exponential term factorizes across components: the sufficient statistic T of this exponential family is
composed of d functions that are each a function of only one component zi of the latent variable z.

Equations (4) and (5) together define a nonparametric model with parameters (h,T,λ, µ). For the
special case µ(z) =

∏
i µi(zi), the distribution of z factorizes across dimensions, and the components

3The particular case of linear MLPs is discussed in Appendix C.4.
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zi are independent. Then the generative model gives rise to a nonlinear ICA model, and it was studied
to a great depth by Khemakhem et al. (2020).

We propose to generalize such earlier models by allowing for an arbitrary base measure µ(z), i.e. the
components of the latent variable are no longer independent, as µ doesn’t necessarily factorize across
dimensions. We call this new framework Independently Modulated Component Analysis (IMCA).
We show in Appendix E that the strong identifiability guarantees developed for nonlinear ICA can be
extended to IMCA, yielding a more general and more flexible principled framework for representation
learning and disentanglement.

Estimation by ICE-BeeM Guided by the strong identifiability results above, we suggest aug-
menting our feature extractor f by output activation functions, resulting in the modified feature
map f̃(x) = (H1(f1(x)), . . . ,Hd(fd(x))). In Section 2.2.2 for instance, we used Hi(x) = (x, x2).
These output nonlinearities play the role of sufficient statistics to the learnt representation fθ(x), and
have a double purpose: to allow for strong identifiability results, and to match the dimensions of the
components Ti of sufficient statistic in (5), as formalized by the following theorem.
Theorem 4. Assume:

(i) The observed data follows the exponential IMCA model of equations (4)-(5).

(ii) The mixing function h is a D2-diffeomorphism.4

(iii) The sufficient statistics Ti are twice differentiable, and the functions Tij ∈ Ti are linearly
independent on any subset of X of measure greater than zero. Furthermore, they all satisfy
dim(Ti) ≥ 2, ∀i; or dim(Ti) = 1 and Ti is non-monotonic ∀i.

(iv) There exist k + 1 distinct points y0, . . . ,yk such that the matrix L =

(λ(y1)− λ(y0), . . . ,λ(yk)− λ(y0)) of size k×k is invertible, where k =
∑d
i=1 dim(Ti).

(v) We use a consistent estimator to fit the model (1) to the conditional density p(x|y), where
we assume the feature extractor f(x) to be a D2-diffeomorphism and d-dimensional, and
the vector-valued pointwise nonlinearities Hi to be differentiable and k-dimensional, and
their dimensions to be chosen from (dim(T1), . . . ,dim(Td)) without replacement.

Then, in the limit of infinite data, Hi(fi(x)) = AiTγ(i)(zγ(i)) + bi where γ is a permutation
of [[1, d]] such that dim(Hi) = dim(Tγ(i)) and Ai is an invertible square matrix; that is: we
can recover the latent variables up to a block permutation linear transformation and point-wise
nonlinearities.

4 Relation to previous work on nonlinear ICA

Our results greatly extend existing identifiability results and models. The closest latent variable
model identifiability theory to ours is that of nonlinear ICA theory (Hyvärinen and Morioka, 2016;
Hyvärinen et al., 2019; Khemakhem et al., 2020). These works formalized a trade-off between distri-
butional assumptions over latent variables (from linear and independent to nonlinear but conditionally
independent given auxiliary variables) that would lead to identifiability.

On this front, our first contribution was to identify that conditional independence is not necessary for
identifiability, and to propose the more general IMCA framework. Our proofs extend previous ones
to the non-independent case, and are the most general to date, even considering linear ICA theory.
In fact, as a second contribution, our conditional EBM generalizes previous results by completely
dropping any distributional assumptions on the representations—which are ubiquitous in the latent
variable case.

Third, most of our theoretical results hold for overcomplete representations, which means that
unlike the earlier works cited above, our model can be shown to even have universal approximation
capabilities. Fourth, while recent identifiability theory focused on providing functional conditions for
identifiability, such work is a bit removed from the reality of neural network training. Our results on
network architectures are the first step towards bridging the gap between theory and practice.

4That is: invertible, all second order cross-derivatives of the function and its inverse exist.
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Figure 1: (a)− (b) Quantifying the identifiability of learnt representations using MCC (higher is
better). (c) − (d) Transfer learning onto unseen classes using denoising score matching objective
(lower is better). (e)− (f) Simulations on artificial nonlinear ICA/IMCA data (higher is better).

5 Experiments

5.1 Identifiability of representations on image datasets

We explore the importance of identifiability and the applicability of ICE-BeeM in a series of experi-
ments on image datasets (MNIST, FashionMNIST, CIFAR10 and CIFAR100). First, we investigate
the identifiability of ICE-BeeM by comparing representations obtained from different random ini-
tializations, using an unconditional EBM as a baseline. We further present applications to transfer
and semi-supervised learning, where we find identifiability leads to significant improvements. The
different architectures used throughout these experiments are described in Appendix A.1. Code for
reproducibility is available here.

Quantifying identifiability We start by empirically validating Theorems 1 and 2 on image datasets.
Briefly, these theorems provided conditions for weak and strong identifiability of latent represen-
tations, respectively. We propose to study the weak and strong identifiability properties of both
conditional and unconditional EBMs by training such models multiple times using distinct random
initializations. We subsequently compute the mean correlation coefficient (MCC, see Appendix A.2)
between learned representations obtained via distinct random initializations; consistent high MCCs
indicate the model is identifiable. In the context of weak identifiability, we consider the MCC up
to a linear transformation, A, as defined in (2). Throughout experiments, we employ CCA to learn
the linear mapping A. However, our main interest is studying the strong identifiability of EBM
architectures, defined in (3). To this end we consider the MCC directly on inferred representations
(i.e., without a linear mapping A). Both an ICE-BeeM model and an unconditional EBM were trained
on three distinct image datasets: MNIST, CIFAR 10 and 100. For each dataset, we train models
using 20 distinct random initializations and compare inferred representations. Conditional denoising
score matching (CDSM, see Appendix B.1) was employed to train all networks. Results presented in
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Table 1: (a) Transfer learning. (b) Semi-supervised learning.

(a) CDSM objective (lower is better)

Dataset f · gθ f · 1 fθ · gθ fθ · 1
MNIST 2.95 23.43 4.22 3.64

CIFAR10 8.03 23.08 8.37 8.16

(b) Classification Accuracy (higher is better)

Dataset ICE-BeeM Uncond. EBM

FMNIST 77.07± 1.39 56.33± 3.18

CIFAR10 64.42± 1.09 51.88± 1.33

Figures [1a-1b] show that for ICE-BeeM, the representations were more consistent, both in the weak
and the strong case, thus validating our theory. See Appendix A.3 for further details and experiments.

Application to transfer learning Second, we present an application of ICE-BeeM to transfer
learning. We suppose that the auxiliary variable y ∈ R is the index of a dataset or a task. We propose
an intuitively appealing approach, where we approximate the unnormalized log-pdf in y-th dataset
log p(x|y) by a linear combination of a learned "basis" functions fi,θ as log p(x; y) + logZ(θ) ≈∑k
i=1 gi(y)fi,θ(x), where the gi(y) are scalar parameters that act as coefficients in the basis (fi,θ).

For a new unseen dataset ynew, reducing the transfer learning to the estimation of the gi(ynew) clearly
requires that we have estimated the true fi, at least up to a linear transformation. This is exactly what
can be achieved by ICE-BeeM based on weak identifiability. To this end, an ICE-BeeM model was
trained on classes 0-7 of MNIST and CIFAR10 using the CDSM objective. After training, we fix f
and learn gθ(ynew) for the unseen classes (we denote this by f · gθ; unseen classes are 8 & 9). We
allow gθ to be parameterized by a vector for each class, which leads to a drastic simplification for
the new classes. We compare against a baseline where both fθ and gθ are trained directly on data
from unseen classes only (i.e. there is no transfer learning—denoted fθ · gθ). Results are presented
in Figures [1c] and [1d] where we vary the sample size of the unseen classes and report the CDSM
objective. Overall, the use of a pretrained f network improves performance, demonstrating effective
transfer learning. We also compare against a baseline where we just evaluate the pretrained f on the
new classes, while fixing g = 1 (without learning the new coefficients—denoted f ·1); and a baseline
where we estimate an unconditional EBM using new classes only (no transfer—denoted fθ · 1). The
average CDSM scores are reported in Table [1a], where the transfer learning with an identifiable
EBM (i.e., using ICE-BeeM ) performs best. See Appendix A.4 for further details and experiments.
We note here that based on strong identifiability, we could impose sparsity on the coefficients gi(y),
which might improve the results even further.

Application to semi-supervised learning Finally, we also highlight the benefits of identifiability
in the context of semi-supervised learning. We compared training both an identifiable ICE-BeeM
model and an unconditional (non-identifiable) EBM on classes 0-7 and employing the learned features
fθ to classify unseen classes 8-9 using a logistic regression. In both cases, training proceeded via
CDSM. Table [1b] reports the classification accuracy over unseen classes. We note that ICE-BeeM
obtains significantly higher classification accuracy, which we attribute to the identifiable nature of its
representations. See Appendix A.5 for further details and experiments.

5.2 IMCA and nonlinear ICA simulations

We run a series of simulations comparing ICE-BeeM to previous nonlinear ICA methods such as iVAE
(Khemakhem et al., 2020) and TCL (Hyvärinen and Morioka, 2016). We generate non-stationary
5-dimensional synthetic datasets, where data is divided into segments, and the conditioning variable
y is defined to be a segment index. First, we let the data follow a nonlinear ICA model, which
is a special case of equation (4) where the base measure, µ(z), is factorial. Following Hyvärinen
and Morioka (2016), the z are generated according to isotropic Gaussian distributions with distinct
precisions λ(y) determined by the segment index. Second, we let the data follow an IMCA model
where the base measure µ(z) is not factorial. We set it to be a Gaussian term with a fixed but non-
diagonal covariance matrix. More specifically, we randomly generate an invertible and symmetric
matrix Σ0 ∈ Rd×d, such that µ(z) ∝ e−0.5zTΣ−1

0 z. The covariance matrix of each segment is now
equal to Σ(y) = (Σ−1

0 + diag(λ(y)))−1, meaning the latent variables are no longer conditionally
independent. In both cases, a randomly initialized neural network with varying number of layers,
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L ∈ {2, 4}, was employed to generate the nonlinear mixing function h. The data generation process
and the employed architectures are detailed in Appendix A.6.

In the case of ICE-BeeM, conditional flow contrastive estimation (CFCE, see Appendix B.2) was
employed to estimate network parameters. To evaluate the performance of the method, we compute
the mean correlation coefficient (MCC, see Appendix A.2) between the true latent variables and the
recovered latents estimated by all three methods. Results for nonlinear ICA are provided in Figure
[1e], where we note that ICE-BeeM performs competitively with respect to both iVAE and TCL. We
note that as the depth of the mixing network, L, increases the performance of all methods decreases.
Results for IMCA are provided in Figure [1f] where ICE-BeeM outperforms alternative nonlinear
ICA methods, particularly when L = 4. This is because such other methods implicitly assume latent
variables are conditionally independent and are therefore misspecified, whereas in ICE-BeeM , no
distributional assumptions on the latent space are made.

6 Conclusion

We proposed a new identifiable conditional energy-based deep model, or ICE-BeeM for short, for
unsupervised representation learning. This is probably the first energy-based model to benefit from
rigorous identifiability results. Crucially, the model benefits from the tremendous flexibility and
generality of EBMs. We even prove a universal approximation capability for the model.

We further prove a fundamental connection between EBMs and latent variable models, showing
that ICE-BeeM is able to estimate nonlinear ICA, as a special case. In fact, it can even estimate
a generalized version where the components do not need to be independent: they only need to be
independently modulated by another variable such as a time index, history or noisy labels.

Empirically, we showed on real-world image datasets that our model learns identifiable representations
in the sense that the representations do not change arbitrarily from one run to another, and that such
representations improve performance in a transfer learning and semi-supervised learning applications.

Identifiability is fundamental for meaningful and principled disentanglement; it is necessary to make
any interpretation of the features meaningful; it is also crucial in such applications as causal discovery
(Monti et al., 2019) and transfer learning. The present results go further than any identifiability
results hitherto and extend them to the EBM framework. We believe this paves the way for many new
applications of EBMs, by giving them a theoretically sound basis.

Broader Impact

This work is mainly theoretical, and aims to provide theoretical guarantees for the identifiability of a
large family of deep models. Identifiability is very important, as it is key for reproducible science and
interpretable results. For instance, if the networks behind search engines were identifiable, then their
results would be consistent for most users. In addition, using perfectly identifiable networks in real
life applications eliminates the randomness and arbitrariness of the system, and gives more control to
the operator.

In general, identifiability is a desirable property. The system we develop here does not make any
decisions, and thus can not exhibit any bias. Our theoretical guarantees abstract away the nature of
the data and the practical implementation. Therefore, our work doesn’t encourage the use of biased
data or networks with potentially dangerous consequences.
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