
Thank reviewers for the comments. Please find our responses below, with reference indices consistent with the paper.1

Figure 1: Angle dynamics (left) and policy
(right) in CartPole from expert data.

To reviewer 3. Q3-1: Experimental choices. Imitation learning (IL)2

aims to match the state-action distributions between the learner and the3

expert, rather than the goal feature(s). The expert state-action distributions4

from the data are high-dimensional and stochastic. Taking CartPole as5

an example, Fig. 1 (right) shows the expert (stochastic) policy on two6

sample states, where the states are from a 4-dimensional continuous space7

(see Appendix B in [18]). Moreover, Fig. 1 (left) shows that in the expert8

demonstrations, the angle (feature) is NOT simply a constant (over 2509

trajectories in CartPole). In addition, for fair comparisons, our evaluation10

tasks/settings are consistent with SOTA [13,18,20]. Q3-2: Sample efficiency. Results on sample efficiency are11

presented in Fig. 5 in the paper, where f -GAIL outperforms baselines over different sample sizes (Sec 4.2). Moreover,12

it is true that f -GAIL can more accurately estimate f -divergence from a limited number of samples. Fig. 2 below shows13

that given a task, the learned f∗ functions are consistent with different sample sizes. In fact, the choice of f -divergence14

matters. The better divergence estimation accuracy enables f -GAIL to examine and compare f -divergence choices,15

which is why f -GAIL consistently outperforms baselines.16

Figure 2: The learned f∗
φ(u) with different sample sizes

Q3-3: Meaning of the “best” f -divergence. Our f -17

GAIL is defined as a minimax optimization problem in18

eq.(5) in the paper. The best f -divergence is searched19

in the “max” inner-loop given the current learned policy20

π learned from the “min” outer-loop, eventually leading21

to a stable solution of (π, f∗). Q3-4: The optimality22

depends on the divergence and context? The notion of23

optimality exists and depends on the expert demonstration24

data, rather than the divergence, namely, the optimality25

refers to the smallest discrepancy of behavior distributions (in state-action pairs) between the learner and the expert.26

Given an expert demonstration dataset, a better divergence can measure the discrepancy more precisely than other27

divergences, thus enable training a learner with closer behaviors to the expert. In the example of whether mode-seeking28

or -covering makes sense, it depends on the expert demonstration data (NOT the context), i.e., whether the expert was29

performing mode-seeking or -covering when generating the data. Q3-5: Meaning of the learned divergence? The30

variance of the learned divergence? It is nontrivial to find an analytical close-form function to express the learned31

f∗, due to the huge convex function space with f(1) = 0. We leave this as our future work. Fig. 2 above shows that32

given a task, the learned f∗ functions are consistent (small variance) for different sample sizes. Q3-6: Comparison33

with BC. We agree that BC minimizes the policy KL divergence as what we noted in Sec. 4 (line 200). We included34

BC as a baseline for completeness, namely, a comprehensive comparison with SOTA. Q3-7: Notation of P in line 62.35

Our notation represents a probability distribution of transitioning from (s, a) to a next state s′, thus the outcome is in36

[0, 1]. It is consistent with the literature, e.g., Sec. 2 in [Yu et al. arXiv:1909.09314].37 Table 1: Baseline performances
in HalfCheetah.
Datasize GAIL GAILf

4 4047±3444055±257
25 4340±1854472±166

To reviewer 2. Q2-1: Necessity and sufficiency of two constraints. The f -38

divergence definition requires the generator f function to be convex and f(1) = 039

[11,23,24]. Convex and zero-gap constraints are necessary and sufficient conditions to40

guarantee an f -divergence, based on f∗∗ = f (see §3.3.2 in [9]) for convex functions,41

i.e., f(1) = f∗∗(1) = maxu{u − f∗(u)} = 0. Q2-2: Implementation details. We42

used 5 random seeds with mean and variance calculated over 50 trajectories (see Sec. 4 and Appendix B). These43

settings are consistent with SOTA [11,23,24]. Q2-3: Baselines. All baselines were implemented with their original44

models [13,18,20], rather than f∗(T (s, a)). In fact, as shown in Tab. 1 (with GAIL as the original model and GAILf45

as f∗(T (s, a))), the baseline results are similar, when implemented using original models vs f∗(T (s, a)). Q2-4: The46

input state distributions were sampled from expert demonstrations. Q2-5: Divergence evaluation. Following your47

suggestion, Fig. 3 below shows the training curve of f -divergence wrt. epochs where it converges to less than 0.02 for48

HalfCheetah after 450 epochs. Similar results were observed in other tasks.49

Figure 3: f -divergence
curve in HalfCheetah.

To reviewer 1. Q1-1: Novelty: We are the first to model imitation learning with a learnable50

f -divergence measure (using the proposed f∗-network), rather than a predefined divergence,51

which yields better learner policies than the literature on GAIL [13,18,20]. Q1-2: More52

complex tasks: We evaluated f -GAIL on tasks consistent with SOTA [13,18,20], including53

Humanoid, with the high state dimension of 376. We plan to evaluate f -GAIL on more54

complex tasks, e.g., Simitate [Memmesheimer et al. arXiv:1905.06002].55

To reviewer 5. Training objective: In our Alg 1, all three networks are trained with the56

same objective in eq.(5), using adversarial training. The updating gradients (∇ω and ∇φ)57

are obtained by taking the derivative of eq.(5) wrt. ω and φ, respectively, while fixing πθ.58

The objective for policy πθ is the same as eq.(5) with Tω and f∗φ fixed. We will add such details in the final paper.59


